Reconciling Form and Function Through Generative Design Nordin, Axel

Total Page:16

File Type:pdf, Size:1020Kb

Reconciling Form and Function Through Generative Design Nordin, Axel Reconciling Form and Function through Generative Design Nordin, Axel 2015 Link to publication Citation for published version (APA): Nordin, A. (2015). Reconciling Form and Function through Generative Design. Division of Machine Design, Department of Design Sciences, Faculty of Engineering LTH, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Reconciling Form and Function through Generative Design Axel Nordin DOCTORAL DISSERTATION by due permission of the Faculty of Engineering LTH, Lund University, Sweden. To be defended at Stora Hörsalen, IKDC, Sölvegatan 26, Lund. Date December 10, 2015 and time 09.15. Faculty opponent Professor Kristina Shea, ETH Zürich Organization: LUND UNIVERSITY Document name: DOCTORAL DISSERTATION Date of issue: 2015-11-16 Author(s): Axel Nordin Sponsoring organization Title and subtitle: Reconciling Form and Function through Generative Design Abstract: The current form-giving activity in industrial design is characterized by explorations that depend on the individual capability to mentally manipulate a solution space from which to select and express the intended result. Industrial designers frequently rely on artistic experimentation, aesthetic inspiration, or design briefs. These points of departure often result in satisfactory results, but they could be augmented by algorithmic form generation, optimization, and complex morphologies. By adopting this approach, the industrial designer would also be able to efficiently use forms that have previously been too complex to handle and evaluate manually, thereby gaining new ways of expanding his or her morphological repertoire. The difficulty of fulfilling these constraints is evident, as many iterations in the product development process are necessary between the different activities such as industrial design, engineering design, and production before a satisfactory design has been achieved. Additionally, if form is algorithmically generated and engineering and production demands are integrated in the process, partial or full transfer of the design activity to customers becomes a concrete option. The possible results of achieving these goals are that designers gain a larger repertoire of morphologies to work from, the product development time can be reduced, the design concepts can stay true to the vision of the industrial designer, and the customers can tailor products to their needs. To achieve these goals, an approach is suggested that entails developing generative design tools that allow a user to design products with complex forms, while assisting them in ensuring the products’ producibility and function. The focus is on increasing the integration between the industrial design activity and the other product development activities, more specifically engineering design and production The purpose of this thesis is to investigate this approach, and to develop and test its technical feasibility and acceptance among designers and consumers. This has involved compiling an inventory of suitable morphologies, production systems and products, implementing and testing several generative design tools in industrial projects, looking into challenges concerning user manipulation of complex morphologies and industrial implementation, developing techniques for handling engineering constraints and objectives, testing the acceptance of the generative design tools with industrial designers and customers, and producing physical objects based on the output from the tools. The results of this work show that this approach is feasible and is even already useful to the industry: the studies establish that there exists a feasible domain of application; they confirm that there are computational methods for handling engineering and user constraints and objectives; in the performed project the design process could be made to fit the needs of both consumers and designers; finally, physical products have been produced and have received acceptance by peers in international design fairs, thereby verifying and validating the output of the tools. Keywords: Generative design, morphological repertoire, constraint handling, optimization, customization, industrial design, engineering design Classification system and/or index terms (if any) Supplementary bibliographical information Language: English ISSN and key title ISBN 978-91-7623-540-9 Recipient’s notes Number of pages: xvi, 63 Price Security classification I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation. Signature Date Reconciling Form and Function through Generative Design Axel Nordin Copyright © 2015 Axel Nordin Division of Machine Design, Department of Design Sciences Faculty of Engineering LTH, Lund University P.O. Box 118 SE-221 00 LUND Sweden ISBN Print 978-91-7623-540-9 ISBN On-line 978-91-7623-541-6 ISRN LUTMDN/TMKT-15/1030-SE Printed in Sweden by Media-Tryck, Lund University Lund 2015 Acknowledgments The research presented in this thesis has been carried out at the Division of Machine Design, Department of Design Sciences LTH, Lund University. The research has in part been accomplished with support from Vinnova, which funded the hypothesis-testing project Renaissance 1.5, and from Fonden Innovativ Kultur, which funded the project Putting Nature to Work. I would like to thank my main advisor, Professor Robert Bjärnemo, for his support and faith in the overall research idea. His experience and extensive network has been essential to anchor this research in industrial projects. I am also grateful to my co-supervisor and co-author of several of the appended papers, Assistant Professor Damien Motte, for his comprehensive guidance and many stimulating discussions. His ideas and constructive comments on my work have been of utmost importance for the research. I would also like to thank Andreas Hopf, lecturer at Industrial Design, whose original ideas concerning the morphological repertoire and natural-mathematical forms were the starting point for my research, and who has also contributed to several of the appended papers. Thanks as well to Associate Professor Giorgos Nikoleris, who has contributed many ideas and insights regarding production, and the workshop staff for their guidance during the building of the prototypes presented in this thesis. Lund, November 2015 Axel Nordin v Populärvetenskaplig sammanfattning Industridesigners förlitar sig ofta på konstnärliga experiment, estetisk inspiration, eller så kallade designbriefer för att nå fram till lösningar på designproblem. Dessa utgångspunkter leder ofta till tillfredsställande resultat, men de skulle kunna kompletteras med verktyg hämtade från andra discipliner, till exempel algoritmer för att optimera en produkt, eller för att låta produktens form ”växa” fram som i naturen, så kallad generativ design. Genom att ta vara på möjligheterna som datorbaserade verktyg erbjuder så hade industridesignern alltså kunnat använda former som tidigare varit alltför komplexa för att hantera och utvärdera manuellt, och därmed få nya sätt att uttrycka sig på. Avhandlingen fokuserar på hur man kan öka samspelet mellan industridesign och de andra aktiviteterna inom produktutveckling, som till exempel konstruktion och produktion genom användningen av generativa designverktyg, men även på hur liknande verktyg hade kunnat användas av konsumenter för att designa sina egna produkter. Detta har krävt en inventering av lämpliga former i naturen och matematiken, produktionssystem och produktkategorier. Ett antal generativa designverktyg har även utvecklats och testats i industrin och av konsumenter. En stor utmaning har varit hur användaren av ett generativt designverktyg på bästa sätt kan manipulera de komplexa former som genereras. En annan utmaning har varit hur tekniska krav på produkten, som hållfasthet eller tillverkbarhet, ska kunna uppfyllas när användaren inte själv har möjlighet att utvärdera dem. Resultaten visar att det är möjligt att tillämpa generativ design inom produktdesign och att det redan är användbart för industrin: undersökningen visar att det finns ett stort område där det går att använda generativ design, den bekräftar att det finns beräkningsmetoder för att hantera tekniska och användarrelaterade krav och mål; den visar att det går att hitta användargränssnitt som passar både konsumenter och designers; och slutligen så har ett antal fysiska produkter tillverkats som har fått acceptans från såväl industri som
Recommended publications
  • Privacy When Form Doesn't Follow Function
    Privacy When Form Doesn’t Follow Function Roger Allan Ford University of New Hampshire [email protected] Privacy When Form Doesn’t Follow Function—discussion draft—3.6.19 Privacy When Form Doesn’t Follow Function Scholars and policy makers have long recognized the key role that design plays in protecting privacy, but efforts to explain why design is important and how it affects privacy have been muddled and inconsistent. Tis article argues that this confusion arises because “design” has many different meanings, with different privacy implications, in a way that hasn’t been fully appreciated by scholars. Design exists along at least three dimensions: process versus result, plan versus creation, and form versus function. While the literature on privacy and design has recognized and grappled (sometimes implicitly) with the frst two dimensions, the third has been unappreciated. Yet this is where the most critical privacy problems arise. Design can refer both to how something looks and is experienced by a user—its form—or how it works and what it does under the surface—its function. In the physical world, though, these two conceptions of design are connected, since an object’s form is inherently limited by its function. Tat’s why a padlock is hard and chunky and made of metal: without that form, it could not accomplish its function of keeping things secure. So people have come, over the centuries, to associate form and function and to infer function from form. Software, however, decouples these two conceptions of design, since a computer can show one thing to a user while doing something else entirely.
    [Show full text]
  • Introduction: Design Epistemology
    Design Research Society DRS Digital Library DRS Biennial Conference Series DRS2016 - Future Focused Thinking Jun 17th, 12:00 AM Introduction: Design Epistemology Derek Jones The Open University Philip Plowright Lawrence Technological University Leonard Bachman University of Houston Tiiu Poldma Université de Montréal Follow this and additional works at: https://dl.designresearchsociety.org/drs-conference-papers Citation Jones, D., Plowright, P., Bachman, L., and Poldma, T. (2016) Introduction: Design Epistemology, in Lloyd, P. and Bohemia, E. (eds.), Future Focussed Thinking - DRS International Conference 20227, 27 - 30 June, Brighton, United Kingdom. https://doi.org/10.21606/drs.2016.619 This Miscellaneous is brought to you for free and open access by the Conference Proceedings at DRS Digital Library. It has been accepted for inclusion in DRS Biennial Conference Series by an authorized administrator of DRS Digital Library. For more information, please contact [email protected]. Introduction: Design Epistemology Derek Jonesa*, Philip Plowrightb, Leonard Bachmanc and Tiiu Poldmad a The Open University b Lawrence Technological University c University of Houston d Université de Montréal * [email protected] DOI: 10.21606/drs.2016.619 “But the world of design has been badly served by its intellectual leaders, who have failed to develop their subject in its own terms.” (Cross, 1982) This quote from Nigel Cross is an important starting point for this theme: great progress has been made since Archer’s call to provide an intellectual foundation for design as a discipline in itself (Archer, 1979), but there are fundamental theoretical and epistemic issues that have remained largely unchallenged since they were first proposed (Cross, 1999, 2007).
    [Show full text]
  • Quantitative Computational Experiment (Qce): an Alternative Post-Positivist Experimental Research Strategy of Inquiry for Design Studies
    QUANTITATIVE COMPUTATIONAL EXPERIMENT (QCE): AN ALTERNATIVE POST-POSITIVIST EXPERIMENTAL RESEARCH STRATEGY OF INQUIRY FOR DESIGN STUDIES 1ALI GHAFFARIANHOSEINI, 2RAHINAH IBRAHIM, 3JOHN TOOKEY, 4AMIRHOSEIN GHAFFARIANHOSEINI 1,3School of Engineering, Faculty of Design and Creative Technologies, AUT University, Auckland, New Zealand 2Faculty of Design and Architecture, University of Putra Malaysia (UPM), Malaysia 4Department of Geography, Faculty of Arts and Social Sciences, University of Malaya (UM), Malaysia E-mail: [email protected] Abstract- One of the most important aspects for development of valid results in academic research is selection of the appropriate research methodology. Contemporary research in design studies confronts the rapid expansion of emerging high- tech trends. Correspondingly, an adapted research methodology is required to meet the needs of current circumstances. This paper articulates employment of a quantitative computational research methodology for design studies. The research framework, implementation and validations are expressed in details. Computational charrette test method and computational emulation reasoning and representation are incorporated in order to validate the discussed research methodology outputs. In summary, the developed research methodology is articulated in details to enable further exploitations in academic research and practices. Index terms- Quantitative Computation Experiment (QCE); Social Science Research; Design Cognition; Research Methodology; Design Studies I. INTRODUCTION artificial intelligent-based expert systems to better understand/perform the design process [17-19]. One of the most important aspects for development of Generally, QCE is applied in order to advance design valid results in academic research is selection of the computing and cognition [20] core progress by appropriate research methodology [1-6]. This paper understanding the way researcher/designer thinks/acts elaborates on an alternative method for putting into [21].
    [Show full text]
  • Fashion Design
    FASHION DESIGN FAS 112 Fashion Basics (3-0) 3 crs. FAS Fashion Studies Presents fashion merchandise through evaluation of fashion products. Develops awareness of construction, as well as FAS 100 Industrial Sewing Methods (1-4) 3 crs. workmanship and design elements, such as fabric, color, Introduces students to basic principles of apparel construction silhouette and taste. techniques. Course projects require the use of industrial sewing equipment. Presents instruction in basic sewing techniques and FAS 113 Advanced Industrial Sewing Methods (1-4) 3 crs. their application to garment construction. (NOTE: Final project Focuses on application and mastery of basic sewing skills in should be completed to participate in the annual department Little pattern and fabric recognition and problem solving related to Black Dress competition.) individual creative design. Emphasis on technology, technical accuracy and appropriate use of selected materials and supplies. FAS 101 Flat Pattern I (1-4) 3 crs. (NOTE: This course is intended for students with basic sewing Introduces the principles of patternmaking through drafting basic skill and machine proficiency.) block and pattern manipulation. Working from the flat pattern, Prerequisite: FAS 100 with a grade of C or better or placement students will apply these techniques to the creation of a garment as demonstrated through Fashion Design Department testing. design. Accuracy and professional standards stressed. Pattern Contact program coordinator for additional information. tested in muslin for fit. Final garment will go through the annual jury to participate in the annual department fashion show. FAS 116 Fashion Industries Career Practicum and Seminar Prerequisite: Prior or concurrent enrollment in FAS 100 with a (1-10) 3 crs.
    [Show full text]
  • Open Design Education: Addressing Accountability in the Age of Computing Açık Tasarım Eğitimine Doğru: Hesaplama Ve Hesap Verebilme
    ARTICLE MEGARON 2020;15(3):343-349 DOI: 10.14744/MEGARON.2020.32650 Open Design Education: Addressing Accountability in the Age of Computing Açık Tasarım Eğitimine Doğru: Hesaplama ve Hesap Verebilme Desantila HYSA,1 Mine ÖZKAR2 ABSTRACT Attitudes complement knowledge and skills but are often overlooked as assessable competencies in higher education. In architectural design curriculum, attitudes are especially relevant in order to ensure the training of responsible designers. As humanistic and environ- mental approaches are increasingly at the forefront, the studio cultures of the schools seek to cultivate collaborative and participato- ry skills on individual creativity. The parallel acclaim of computational methods expounds the reasoning processes of design and new opportunities arise for open and liable cultures of design. However, the task of connecting these methods to a broader competency in design is still not fulfilled. This paper provides an interdisciplinary context for accountability as an attitude in design education and a conceptual framework for implementing and assessing it through computational methods. It argues that computation in early-design education, in the form of shape rules and devices of visual computing, is supportive in instilling reflective attitudes by promoting knowl- edge sharing with accountability among learners. Keywords: Collaborative design; computational design; ethics; first-year design education; reflective practice. ÖZ Yükseköğretimde öğrenim çıktıları olarak bilgi ve becerileri tamamlayan tutumlar,
    [Show full text]
  • Strategic Approach to Product Design and Development Process, And
    İşletme Fakültesi Dergisi, Cilt 8, Sayı 1, 2007, 43-67 STRATEGIC APPROACH TO PRODUCT DESIGN AND DEVELOPMENT PROCESS, AND EFFECTIVENESS OF INDUSTRIAL DESIGN PRACTICES Aykut Berber *, İbrahim Aksel ** ABSTRACT Emerging economies face international competition and moreover, similar technology applies to organizations in the relevant industry. Therefore companies must strive to keep their market positions or create new business opportunities. Novel and innovative strategies are required in either case, which depends on differentiation in the market. Recognized as a value for sustainable competitive advantage and commercial success, industrial design (ID) has an essential role. This paper proposes that strategic approach to product design and development process is beneficial for the effectiveness of ID practices. Context of the research in the study is divided into two sections. The first section derived from a study previously conducted in Poland and aimed to observe whether Turkish companies recognized ID as a strategic tool for differentiation. A comparison of the results was made with the results obtained in Poland. The second section of the research context focuses on Turkish companies. To explore how strategic approach to product design and development process impacts on ID practices; factors and hypotheses were generated through principal components analysis prior to regression analysis to analyze the relationship. 198 companies from textile, furniture, and home appliances industries took part in the research. Major indications of the research show that strategic effect of teamwork has a central role in effective ID practices. Keywords: Industrial Design, Strategic Innovation, Product Development ÜRÜN TASARIM VE GELİŞTİRME SÜRECİNE STRATEJİK YAKLAŞIM VE ENDÜSTRİYEL TASARIM FAALİYETLERİNİN ETKİNLİĞİ ÖZET Gelişmekte olan ekonomilerdeki işletmeler, hiç kuşkusuz bir yandan uluslararası rekabet koşullarıyla öte yandan aynı alanda faaliyet gösteren diğer işletmelerin aynı teknolojiyi kullanmasının yaygınlaşmasıyla mücadele etmek durumundadır.
    [Show full text]
  • Creativity and Evolution: a Metadesign Perspective
    Elisa Giaccardi and Gerhard Fischer Creativity and Evolution: A Metadesign Perspective Abstract In a world that is not predictable, improvisation, evolution, and innovation are more than a luxury: they are a necessity. The challenge of design is not a matter of getting rid of the emergent, but rather of including it and making it an opportunity for more creative and more adequate solutions to problems. Whereas user-centered and participatory design approaches (whether done for users, by users, or with users) have focused primarily on activities and processes taking place at design time, and have given little emphasis and provided few mechanisms to support systems as living entities that can be evolved by their users, metadesign is an emerging conceptual framework aimed at defining and creating social and technical infrastructures in which new forms of collaborative design can take place. Metadesign extends the traditional notion of design beyond the original development of a system to include co-adaptive processes between users and systems, which enable the users to act as designers and be creative. This paper presents the results of our studies and design activities in the last two decades at the Center for LifeLong Learning & Design of the University of Colorado at Boulder. Keywords Metadesign, design time, use time, multidimensional design space, open systems, adaptable interaction, embodiment, co-creation, co-evolution, social creativity, boundary objects, seeds, mediators, SER process model, critics, reuse, affect. Introduction In a world that is not predictable, improvisation, evolution, and innovation are more than a luxury: they are a necessity. The challenge of design is not a matter of getting rid of the emergent, but rather of including it and making it an opportunity for more creative and more adequate solutions to problems.
    [Show full text]
  • This Copy Is for Staff Use Only
    Architecture, Design and Planning Handbook 2018 This copy is for staff use only Handbooks online: sydney.edu.au/handbooks Contents Contents Honours 21 Welcome 1 Bachelor of Design in Architecture enrolment 21 A message from the Dean 1 planner Bachelor of Architecture and Environments 3 Bachelor of Design in Architecture 23 Overview 3 Bachelor of Design in Architecture 23 Bachelor in Architecture and Environment 3 Bachelor of Design in Architecture (Honours) 23 enrolment guide Course Resolutions 23 Summary of requirements 3 Master of Architecture prerequisite unit of study 3 Bachelor of Design in Architecture 25 Honours 3 Table A: Units of study in the Bachelor of Design 25 Bachelor of Architecture and Environments 3 in Architecture enrolment planner Bachelor of Design in Architecture 29 Bachelor of Architecture and Environments 5 Table A: Units of study in the Bachelor of Design 29 Bachelor of Architecture and Environments 5 in Architecture Bachelor of Architecture and Environments 5 Bachelor of Design in Architecture - Core units of 29 (Honours) study Course Resolutions 5 Junior units of study 29 Senior units of study 29 7 Bachelor of Architecture and Environments Bachelor of Design in Architecture 31 Table D: Units of study in the Bachelor of 7 (Honours)/Master of Architecture honours core Architecture and Environments units Recommended electives 31 Bachelor of Architecture and Environments 9 Master of Architecture - Prerequisite unit of study 31 Table D: Units of study in the Bachelor of 9 Architecture and Environments School electives
    [Show full text]
  • Theoretically Comparing Design Thinking to Design Methods for Large- Scale Infrastructure Systems
    The Fifth International Conference on Design Creativity (ICDC2018) Bath, UK, January 31st – February 2nd 2018 THEORETICALLY COMPARING DESIGN THINKING TO DESIGN METHODS FOR LARGE- SCALE INFRASTRUCTURE SYSTEMS M.A. Guerra1 and T. Shealy1 1Civil Engineering, Virginia Tech, Blacksburg, USA Abstract: Design of new and re-design of existing infrastructure systems will require creative ways of thinking in order to meet increasingly high demand for services. Both the theory and practice of design thinking helps to exploit opposing ideas for creativity, and also provides an approach to balance stakeholder needs, technical feasibility, and resource constraints. This study compares the intent and function of five current design strategies for infrastructure with the theory and practice of design thinking. The evidence suggests the function and purpose of the later phases of design thinking, prototyping and testing, are missing from current design strategies for infrastructure. This is a critical oversight in design because designers gain much needed information about the performance of the system amid user behaviour. Those who design infrastructure need to explore new ways to incorporate feedback mechanisms gained from prototyping and testing. The use of physical prototypes for infrastructure may not be feasible due to scale and complexity. Future research should explore the use of prototyping and testing, in particular, how virtual prototypes could substitute the experience of real world installments and how this influences design cognition among designers and stakeholders. Keywords: Design thinking, design of infrastructure systems 1. Introduction Infrastructure systems account for the vast majority of energy use and associated carbon emissions in the United States (US EPA, 2014).
    [Show full text]
  • Design Thinking Methods and Techniques in Design Education
    INTERNATIONAL CONFERENCE ON ENGINEERING AND PRODUCT DESIGN EDUCATION 7 & 8 SEPTEMBER 2017, OSLO AND AKERSHUS UNIVERSITY COLLEGE OF APPLIED SCIENCES, NORWAY DESIGN THINKING METHODS AND TECHNIQUES IN DESIGN EDUCATION Ana Paula KLOECKNER1, Cláudia de Souza LIBÂNIO1,2 and José Luis Duarte RIBEIRO1 1PPGEP/UFRGS, Brazil 2UFCSPA, Brazil ABSTRACT Design Thinking is a human-centred innovation process, with an emphasis on deep understanding of consumers, holistically, integratively, creatively, and awe-inspiring. Design Thinking methods and techniques represents how the theory will be operationalized by following the process steps. These methods and techniques can assist in the project management, especially in the initial phase of inspiration and ideation. Another strategy that can collaborate in project management is agile management, mainly in the execution phase of a project. Agile management prioritizes individuals, interactions between them, customers, appropriate software to operate, and prompt response to changes. Thus, this study aims to propose a model to integrate design thinking and project management methods and techniques and to analyze students’ projects and interactions to verify the applicability of these in ergonomic project management. For the development of the method, it was used the design science methodology, in four main steps called: Research Clarification, Descriptive Study I, Prescriptive Study, and Descriptive Study II. From the use of tools and techniques of design thinking in a project management exercise for students of two classes, it was revealed that the tools used facilitated the project development, helping from the search and organization of information until the deadline established for the delivery of the project. Keywords: Design Thinking, Design Education, Project Management.
    [Show full text]
  • Design Studies 1
    Design Studies 1 data and computational technology to create cutting-edge analysis and DESIGN STUDIES mapping approaches for a wide range of fields, such as urban planning, Interdepartmental Undergraduate Program architecture, landscape architecture, design, community development, agriculture, environmental sciences, natural resources, sociology, http://www.design.iastate.edu criminology, anthropology, political science, environmental studies and others. The minor is open to undergraduates in all university majors with The Design Studies programs bring together courses that deal with a minimum overall GPA of 2.0 prior to enrolling. the integrated study of the conceptualization, production, visible form, uses, and history of artifacts, buildings, and environments as well as the Minor - Illustration common qualities and connections among the design, art and planning The undergraduate minor in Illustration (http://catalog.iastate.edu/ fields. collegeofdesign/#minorstext) is ideal for students interested in Core Design Program illustration for books, graphic novels, magazine articles, advertising and concept art for game design and film. This minor provides the ability Four Design Studies courses constitute the Core Design Program: Design to tailor a curriculum that serves these varied career interests, whether Studio 1 (Dsn S 102), Drawing I (Dsn S 131), Design in Context (Dsn S you want to work in the industry or freelance as an independent studio 183) and Design Collaborative (Dsn S 115). Full or partial credit of the practitioner. Core Design program is required for all undergraduate students in the College of Design. Minor - Textile Design Minor—Critical Studies in Design The undergraduate minor in Textile Design (http://catalog.iastate.edu/ collegeofdesign/#minorstext) allows students to focus specifically on The undergraduate minor in Critical Studies in Design (http:// the design and creation of textiles — a practice with applications in catalog.iastate.edu/collegeofdesign/#minorstext) offers students the fine arts, fashion and related fields.
    [Show full text]
  • Design Thinking in Education: Perspectives, Opportunities and Challenges
    Open Education Studies, 2019; 1: 281–306 Review Article Stefanie Panke* Design Thinking in Education: Perspectives, Opportunities and Challenges https://doi.org/10.1515/edu-2019-0022 received March 13, 2019; accepted December 23, 2019. (Grots & Creuznacher, 2016, p. 191). As a problem- solving approach that has been tried and tested with Abstract: The article discusses design thinking as a socially ambiguous problem settings, it deals with process and mindset for collaboratively finding solutions everyday-life problems, which are nonetheless difficult for wicked problems in a variety of educational settings. to solve – “wicked problems” (Rauth, Köppen, Jobst, & Through a systematic literature review the article Meinel, 2010). Wicked problems have no right or wrong organizes case studies, reports, theoretical reflections, solution and resist traditional scientific and engineering and other scholarly work to enhance our understanding of approaches, as “the information needed to understand the purposes, contexts, benefits, limitations, affordances, the problem depends upon one’s idea for solving it” (Rittel constraints, effects and outcomes of design thinking in & Webber, 1973, p. 161). Wicked problems have a wide, education. Specifically, the review pursues four questions: unbound problem space and complexity, are open for (1) What are the characteristics of design thinking that interpretation, surrounded by competing or conflicting make it particularly fruitful for education? (2) How is opinions for solutions, and unlikely to ever be completely design thinking applied in different educational settings? solved (Hawryszkiewycz, Pradhan, & Agarwal, 2015). (3) What tools, techniques and methods are characteristic Design thinking aims at transcending the immediate for design thinking? (4) What are the limitations or boundaries of the problem to ensure that the right negative effects of design thinking? The goal of the article questions are being addressed.
    [Show full text]