Evaluation of Thermophysical Properties for Thermal Energy Storage Materials - Determining Factors, Prospects and Limitations
Total Page:16
File Type:pdf, Size:1020Kb
Dissertation Evaluation of thermophysical properties for thermal energy storage materials - determining factors, prospects and limitations carried out for the purpose of obtaining the degree of Doctor technicae (Dr. techn.), submitted at TU Wien, Faculty of Mechanical and Industrial Engineering, by Daniel Lager Mat.Nr.: 00127134 Schubertgasse 3, 2491 Steinbrunn, Austria under the supervision of Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Werner Institute for Energy Systems and Thermodynamics, E302 Privatdoz. Dipl.-Ing. Dr.techn. Peter Weinberger Institute of Applied Synthetic Chemistry, E163 reviewed by Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Univ.Prof. Dipl.-Ing. Dr.techn. Heimo Walter Dr.h.c.mult. Herbert Danninger TU Wien, Institute for Energy TU Wien, Institute of Chemical Systems and Thermodynamics Technologies and Analytics This work was funded by the “Climate and Energy Fund” and the “Austrian research funding association (FFG)” under the scope of the energy research program (contract #848876). I confirm that going to press of this thesis needs the confirmation of the examination committee. Affidavit I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, using only literature cited in this volume. If text passages from sources are used literally, they are marked as such. I confirm, that this work is original and has not been submitted elsewhere for any examination, nor is it currently under consideration for a thesis elsewhere. Vienna, December, 2017 __________________________________ Signature i TECHNISCHE UNIVERSITÄT WIEN Abstract Faculty of Mechanical and Industrial Engineering Institute for Energy Systems and Thermodynamics, E302 Doctor technicae (Dr. techn.) Evaluation of thermophysical properties for thermal energy storage materials - determining factors, prospects and limitations by Daniel LAGER Thermal Energy Storage (TES) is representing a promising technology for energy conser- vation and utilizing fluctuating renewable energy sources and waste heat. While Sensible Thermal Energy Storage (STES) systems make use of the enthalpy change due to differences of heat capacity and temperature, Latent Thermal Energy Storage (LTES) systems utilize phase change enthalpies of different phase transitions and Thermochemical Energy Storage (TCES) systems use the heat of chemical reactions or sorption of the storage material. LTES and TCES promise higher energy densities based on higher enthalpy changes during phase transitions or chemical reactions at different temperature levels compared to STES. Due to that, a detailed knowledge of the thermophysical properties is needed, in order to identify the actual energy density but also thermal transport properties of the observed stor- age material. In this thesis, a literature review on already published TES materials and their thermophys- ical properties is done. Furthermore the state-of-the art in measurement methodologies for thermophysical properties is shown and applied to different Phase Change Material (PCM) and Thermochemical Material (TCM) candidates. Focusing on specific heat capacity cp(T ), phase transition enthalpy ∆ht, reaction enthalpy ∆hr, thermal diffusivity a(T ), thermal con- ductivity λ(T ) and characteristic temperatures, different already standardized but also new measurement methodologies were conducted, compared and evaluated. In the end, this thesis should serve as a handbook for engineers and scientists who are working with thermal analysis and thermophysical measurements of heat storage materials and demonstrate the determining factors, prospects and limitations of the different mea- surement methodologies. iii Acknowledgements Diese Danksagung widme ich allen Personen, die mich dazu ermutigt haben, diese Arbeit fertigzustellen. Besonders möchte ich mich bei meinen beiden Betreuern Andreas Werner und Peter Wein- berger bedanken, die mir immer ein offenes Ohr als auch die notwendige Freiheit gegeben haben, um diese Dissertation nach meinen Vorstellungen durchführen zu können. Darüber hinaus bedanke ich mich bei Heimo Walter und Herbert Danninger für den Aufwand der Begutachtung dieser Arbeit. Des Weiteren bedanke ich mich bei Markus Deutsch, Stylianos Flegkas, Christian Knoll, Danny Müller, Christian Jordan, Christian Gierl und Michael Harasek die während der Pro- jekttreffen immer wertvolle Diskussionspartner waren. Ganz besonders möchte ich mich bei meinem Kollegen Wolfgang Hohenauer bedanken, der mir vor 10 Jahren die Chance gegeben hat, in der Thermophysik Fuß zu fassen und in dieser Zeit als Mentor und Diskussionspartner immer zur Verfügung stand. Der größte Dank richtet sich an meine Frau Patricia und meine beiden Kinder Roman und Iris, die immer Verständnis für die vielen Stunden, die in diese Arbeit geflossen sind, gezeigt haben. Daniel Lager v Contents Abstract i Acknowledgements iii Glossaries ix Acronyms.......................................... ix Symbols...........................................x Subscripts.......................................... xii Superscripts......................................... xii 1 Introduction1 2 Thermal Energy Storage Materials and Thermophysical Properties3 2.1 Introduction......................................3 2.2 Sensible Thermal Energy Storage - STES......................4 2.2.1 Principles...................................4 2.2.2 Applications..................................4 2.2.3 Sensible Heat Storage Materials - SHSM..................5 2.3 Latent Thermal Energy Storage - LTES.......................7 2.3.1 Principles...................................7 2.3.2 Applications..................................8 2.3.3 Phase Change Materials - PCM.......................9 2.4 Thermochemical Energy Storage - TCES...................... 12 2.4.1 Principles................................... 12 2.4.2 Applications.................................. 14 2.4.3 Thermochemical materials - TCM..................... 15 3 Thermodynamic Quantities and Measurement Methods 19 3.1 Introduction...................................... 19 3.2 Enthalpy........................................ 20 3.2.1 Specific heat capacity............................. 20 3.2.2 Phase transition enthalpy.......................... 21 3.2.3 Reaction enthalpy.............................. 22 3.3 Kinetics......................................... 23 3.4 Thermal conductivity................................. 24 3.5 Thermal expansion.................................. 24 3.6 Differential Scanning Calorimetry - DSC...................... 25 vi 3.6.1 Measurement principle........................... 25 3.6.2 Calibration................................... 26 3.6.3 Specific heat capacity measurements.................... 28 3.6.4 Phase transition and chemical reaction temperatures and enthalpies. 30 3.7 Thermogravimetric Analysis - TGA........................ 31 3.7.1 Measurement principle........................... 31 3.7.2 Calibration................................... 32 3.7.3 Mass change and temperature....................... 33 3.8 Laser Flash Apparatus - LFA............................. 34 3.8.1 Measurement principle........................... 34 3.8.2 Calibration................................... 34 3.8.3 Thermal diffusivity measurements..................... 35 3.8.4 Specific heat capacity measurements.................... 36 3.9 Transient Hot Bridge - THB............................. 37 3.9.1 Measurement principle........................... 37 3.9.2 Calibration................................... 38 3.9.3 Thermal conductivity measurements................... 38 3.10 Heat Flow Meter - HFM............................... 40 3.10.1 Measurement principle........................... 40 3.10.2 Calibration................................... 41 3.10.3 Thermal conductivity measurements................... 41 3.11 Push rod dilatometry................................. 42 3.11.1 Measurement principle........................... 42 3.11.2 Calibration................................... 42 3.11.3 Linear thermal expansion.......................... 43 4 PCM measurement methods and evaluated thermophysical properties 45 4.1 Introduction...................................... 45 4.2 PCM measurements via DSC............................ 47 4.2.1 DSC equipment and setup.......................... 47 4.2.2 Calibration experiments........................... 47 4.2.3 Enthalpy curve measurement of organic PCMs.............. 52 4.2.4 Specific heat capacity measurements.................... 54 4.2.5 Cycling tests.................................. 58 4.3 Thermal Conductivity and thermal diffusivity measurements......... 59 4.3.1 LFA experiments............................... 59 4.3.2 THB experiments on PCM.......................... 62 4.3.3 Comparison of the THB and LFA thermal conductivity results..... 63 4.4 Applicability of LFA liquid sample holder systems................ 66 4.4.1 FE Modell................................... 66 4.4.2 LFA measurements with water....................... 69 4.4.3 FE results and comparison to laser flash measurements......... 70 vii 4.5 Conclusion....................................... 72 5 TCM measurement methods and evaluated thermophysical properties 73 5.1 Introduction...................................... 73 5.2 Sorption and composite measurements via STA.................. 75 5.2.1 Equipment and setup............................ 75 5.2.2 Gas conditions................................ 76 5.2.3 Characterization of clinoptilolite and salt-based composites...... 76 5.2.4 Characterization of a synthetic zeolite..................