Optimal Design of a Hydro-Mechanical Transmission Power Split Hybrid Hydraulic Bus
Total Page:16
File Type:pdf, Size:1020Kb
Optimal Design of a Hydro-Mechanical Transmission Power Split Hybrid Hydraulic Bus A dissertation SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF MINNESOTA BY Muhammad Iftishah Ramdan IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Adviser: Professor Kim A. Stelson December 2013 Copyright ©Muhammad Iftishah Ramdan. All rights reserved. Acknowledgements First and foremost, I would like to express my deepest gratitude to Professor Kim A. Stelson for his guidance and patience during his years as my adviser. I am also grateful to my sponsors, Malaysian Ministry of Higher Education (MOHE) and University of Science, Malaysia (USM), for their financial support during my graduate studies. I would like to express my sincere appreciation to my entire family - my wife, my mother, and siblings, for their endless moral support and for always believing in me. i Dedication This thesis is dedicated to my father who succumbed to COPD, caused in part by the air pollution in Malaysia. I hope my work could be one of the steps towards improving the environment and the public health situation both in my native country and abroad. ii Abstract This research finds the optimal power-split drive train for hybrid hydraulic city bus. The research approaches the optimization problem by studying the characteristics of possible configurations offered by the power-split architecture. The critical speed ratio ( ) is ͍-$/ introduced in this research to represent power-split configurations and consequently simplifies the optimal configuration search process. This methodology allows the research to find the optimal configurations among the more complicated dual-staged power-split architecture. The search for optimal single-staged and dual-staged power-split configurations is done by tuning the values until the optimal configuration is reached. The configuration candidates are ͍-$/ simulated over three city bus drive cycles and to ensure they operate at optimal condition at each drive cycle, a dynamic programming is used. This study also establishes that there are two kinds of power re-circulation modes and one of them has a usable range with better efficiency than the series hybrid hydraulic architecture. A configuration candidate from single-staged power-split architecture is chosen to be the optimal drive train. The value of the optimal ͍-$/ configuration is used to determine how all the gears in the optimal power-split HHB drive train are connected and the planetary gear ratio so that the physical drive train can be built. iii Table of Contents Acknowledgements and dedication ......................................................................................... i Abstract ................................................................................................................................. ii List of tables............................................................................................................................vi List of figures.........................................................................................................................viii Nomenclatures........................................................................................................................xi Chapter 1. Motivation and objective ...................................................................................... 1 Chapter 2. Study background ................................................................................................. 7 Chapter 3. Energy analysis in drive cycle ............................................................................... 12 3.1. City bus drive cycles ............................................................................................................ 12 3.2. Energy analysis .................................................................................................................... 14 3.2.1 Hybrid buses mass ...................................................................................................... 14 3.2.2 Mean tractive force ...................................................................................................... 15 3.3. Average energy analysis results .......................................................................................... 17 Chapter 4. Parameter study and drive train sizing ................................................................. 19 4.1. Vehicle top speed ................................................................................................................ 20 4.2. Equivalent gear ratio .......................................................................................................... 21 4.3. Gear ratio for HMT, GR1 and GR2 ....................................................................................... 23 Chapter 5. HMT configurations and operating modes ............................................................ 26 5.1. Single-staged HMT classifications ....................................................................................... 26 5.2. HMT modes ......................................................................................................................... 30 5.3. vs speed ratio derivations and plot ................................................................................ 35 PΖ 5.3.1. Input-coupled HMT kinematic equation: the IRC case derivation ............................... 36 5.3.2 Output-coupled HMT kinematic equation: the SRO case derivation. .......................... 38 5.3.3 vs speed ratio plot. .................................................................................................. 41 PΖ iv Chapter 6. HMT configurations generalization and candidates .............................................. 44 6.1. Critical speed ratio .............................................................................................................. 44 6.2. Generalized HMT and equations................................................................................. 46 SΑΠΗ 6.3 Optimal HMT design candidates .......................................................................................... 48 6.4 Dual-staged HMT drive train ................................................................................................ 49 Chapter 7. Drive train component modeling, simulation and optimal control strategy ........... 52 7.1 Drive train component modeling ......................................................................................... 52 7.2. Quasi-static simulation ....................................................................................................... 57 7.2.1. Deterministic Dynamic Programming (DDP) ............................................................... 58 7.3 Matlab adaptation ............................................................................................................... 59 Chapter 8. Simulation results and discussion ........................................................................ 61 8.1 Input-coupled HMT .............................................................................................................. 61 8.2 Output-coupled HMT ........................................................................................................... 64 8.3 Dual-staged HMT ................................................................................................................. 66 8.4 Simulation results discussion ............................................................................................... 69 Chapter 9. Conclusion .......................................................................................................... 71 9.1 Review .................................................................................................................................. 71 9.2 Contributions ....................................................................................................................... 72 9.3 Recommendations for future work ..................................................................................... 73 References ........................................................................................................................... 76 Appendices .......................................................................................................................... 80 v List of tables Chapter 1 .............................................................................................................................. 1 Table 1.1 Fuel economy improvements offered by the HEB [46] ................................................ 3 Chapter 3 ............................................................................................................................ 12 Table 3.1. Three city bus drive cycles summary ........................................................................ 13 Table 3.2. Four buses mass comparisons .................................................................................. 14 Table 3.3. Mean tractive force for four buses on three drive cycles ........................................ 17 Chapter 4. ........................................................................................................................... 19 Table 4.1. Physical limitation of engine and hydraulic pump/motor ........................................ 20 Table 4.2. Gear ratio for a city bus automatic transmission ZFHP590 ....................................... 23 Table 4.3. Speed reducers gear