1 Classification of Heat Exchangers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
074-183X XTC/C XTC/2 Operating Manual
OPERATING MANUAL XTC/C XTC/2 XTC/C XTC/2 Thin Film Deposition Controller IPN 074-183 OPERATING MANUAL XTC/C XTC/2 Thin Film Deposition Controller IPN 074-183X TWO TECHNOLOGY PLACE ALTE LANDSTRASSE 6 BONNER STRASSE 498 EAST SYRACUSE, NY 13057-9714 USA LI-9496 BALZERS, LIECHTENSTEIN D-50968 COLOGNE, GERMANY Phone: +315.434.1100 Phone: +423.388.3111 Phone: +49.221.347.40 Fax: +315.437.3803 Fax: +423.388.3700 Fax: +49.221.347.41429 Email: [email protected] Email: [email protected] Email: [email protected] VISIT US ON THE WEB AT www.inficon.com ©2001 INFICON 092304 Trademarks The trademarks of the products mentioned in this manual are held by the companies that produce them. INFICON®, CrystalSix® are trademarks of INFICON Inc. All other brand and product names are trademarks or registered trademarks of their respective companies. The information contained in this manual is believed to be accurate and reliable. However, INFICON assumes no responsibility for its use and shall not be liable for any special, incidental, or consequential damages related to the use of this product. ©2001 All rights reserved. Reproduction or adaptation of any part of this document without permission is unlawful. DECLARATION OF CONFORMITY This is to certify that this equipment, designed and manufactured by: INFICON Inc. 2 Technology Place East Syracuse, NY 13057 USA meets the essential safety requirements of the European Union and is placed on the market accordingly. It has been constructed in accordance with good engineering practice in safety matters in force in the Community and does not endanger the safety of persons, domestic animals or property when properly installed and maintained and used in applications for which it was made. -
Analysis of Air-To-Air Rotary Energy Wheels
ANALYSIS OF AIR-TO-AIR ROTARY ENERGY WHEELS A dissertation presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Abdulmajeed S. Al-Ghamdi June 2006 © 2006 Abdulmajeed S. Al-Ghamdi All Rights Reserved This dissertation entitled ANALYSIS OF AIR-TO-AIR ROTARY ENERGY WHEELS by ABDULMAJEED S. AL-GHAMDI has been approved for the Department of Mechanical Engineering and the Russ College of Engineering and Technology by Khairul Alam Moss Professor of Mechanical Engineering Dennis Irwin Dean, Russ College of Engineering and Technology ABSTRACT Al-GHAMDI, ABDULMAJEED S., Ph.D., June 2006. Integrated Engineering ANALYSIS OF AIR-TO-AIR ROTARY ENERGY WHEELS (269 pp.) Director of Dissertation: Khairul Alam Integration of the energy recovery ventilator (ERV) with a traditional HVAC system has gained recent attention because of the potential for energy savings. The energy recovery ventilator selected for this research employs a rotary air-to-air energy wheel with a porous matrix as the heat and moisture transfer medium. The wheel is symmetrical and balanced, operating with counter-flow pattern. The primary goal of this research is to develop a mathematical and numerical model to predict the effectiveness of this energy wheel. Three models were developed for the energy recovery ventilator (ERV) containing a porous exchange matrix: a sensible model, a condensation model, and an enthalpy model. The sensible model describes the heat transfer in a rotary wheel with a non-desiccant porous matrix. Two energy conservation equations were used to model this ERV. -
Air Treatment and Residential HRV Technical Solutions for Integration Into Radiant Systems Rapid Selection of Heat Recuperators
Radiant Systems Catalog • Price List GIACOMINI.COM 05/2019 ITALY ER0008 JUN2019 AIR TREATMENT AND HRV RESIDENTIAL AIR TREATMENT GIACOMINI S.P.A. VIA PER ALZO, 39 28017 SAN MAURIZIO D’OPAGLIO NOVARA ITALY Air Treatment and Residential HRV Technical solutions for integration into radiant systems Rapid selection of heat recuperators EXCHANGE AIR HOUSE TYPE OF HEAT RECUPERATOR FLOW RATE HEAT RECUPERATOR SURFACE LODGING WITH AIR TREATMENT CALCULATED* 2 3 Nominal Catalog Nominal Catalog m m /h Type flow rate Page Type flow rate Page KHRD-V 300/150 m3/h page 67 KHR-V 200 m3/h page 45 Studio flat, KHRD-H 300/150 m3/h page 73 up to 50 two-roomed flat, max 70 KHR-H 200 m3/h page 50 3 1 bathroom KHRW-V 300/150 m /h page 93 KHRA-H 80 m3/h page 113 KHRW-H 300/150 m3/h page 99 KHRD-V 300/150 m3/h page 67 50÷60 75 KHRD-H 300/150 m3/h page 73 KHR-V 200 m3/h page 45 60÷70 Living room, kitchen 90 KHRW-V 300/150 m3/h page 93 1-2-3 bedrooms KHR-H 200 m3/h page 50 3 70÷80 1-2 bathrooms 105 KHRW-H 300/150 m /h page 99 KHRA-H 140 m3/h page 113 80÷90 115 KHRW-H 600/150 m3/h page 99 KDV water cond 300/160 m3/h page 79 KHRD-V 500/250 m3/h page 67 90÷100 130 KHR-V 200 m3/h page 45 KHRD-H 500/250 m3/h page 73 100÷110 Living room, kitchen 145 2-3 bedrooms KHR-H 200 m3/h page 50 KHRW-V 500/250 m3/h page 93 110÷120 2 bathrooms 160 KHRA-H 200 m3/h page 113 KHRW-H 500/250 m3/h page 99 120÷130 170 KDV air cond 360/220 m3/h page 79 KHRD-V 500/250 m3/h page 67 120÷130 170 KHR-V 300 m3/h page 45 KHRD-H 500/250 m3/h page 73 130÷140 Living room, kitchen 185 2-3-4 bedrooms -
Overview of Materials Used for the Basic Elements of Hydraulic Actuators and Sealing Systems and Their Surfaces Modification Methods
materials Review Overview of Materials Used for the Basic Elements of Hydraulic Actuators and Sealing Systems and Their Surfaces Modification Methods Justyna Skowro ´nska* , Andrzej Kosucki and Łukasz Stawi ´nski Institute of Machine Tools and Production Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lodz, Poland; [email protected] (A.K.); [email protected] (Ł.S.) * Correspondence: [email protected] Abstract: The article is an overview of various materials used in power hydraulics for basic hydraulic actuators components such as cylinders, cylinder caps, pistons, piston rods, glands, and sealing systems. The aim of this review is to systematize the state of the art in the field of materials and surface modification methods used in the production of actuators. The paper discusses the requirements for the elements of actuators and analyzes the existing literature in terms of appearing failures and damages. The most frequently applied materials used in power hydraulics are described, and various surface modifications of the discussed elements, which are aimed at improving the operating parameters of actuators, are presented. The most frequently used materials for actuators elements are iron alloys. However, due to rising ecological requirements, there is a tendency to looking for modern replacements to obtain the same or even better mechanical or tribological parameters. Sealing systems are manufactured mainly from thermoplastic or elastomeric polymers, which are characterized by Citation: Skowro´nska,J.; Kosucki, low friction and ensure the best possible interaction of seals with the cooperating element. In the A.; Stawi´nski,Ł. Overview of field of surface modification, among others, the issue of chromium plating of piston rods has been Materials Used for the Basic Elements discussed, which, due, to the toxicity of hexavalent chromium, should be replaced by other methods of Hydraulic Actuators and Sealing of improving surface properties. -
ACT-ATA-Heat-Exchangers
Advanced Cooling Technologies, Inc. Innovations in Action Energy Recovery Systems ACT-HP-ERS/A-A Series Passive Air-to-Air Heat Pipe Heat Exchangers Highly Recommended for Dedicated Outside Air Installations Limited Lifetime Warranty Start Saving Energy Today: Energy cost savings over 40%, cold or hot climates No cross-contamination between isolated airstreams Economically Improves Indoor Air Quality Quick return on investment from energy savings Reduce Heating or Cooling Requirements Totally passive, no moving parts or system maintenance Engineered efficient & compact design ApplicationApplication & & Specification Specification Guide Guide ACT Energy Recovery Systems ACT’s Heat Pipe Core Thermal Competence Thermal Expertise From Electronics to Space Flight Basic Heat Pipe for Electronics Cooling Heat Pipes for Loop Heat Pipes for Space Satellite High Heat Flux Solar Cell Cooling Thermal Payload Cooling Heat pipes are a proven heat transfer technology with highly dependable operational performance in diverse applications including HVAC, industrial electronics, military and aerospace. ACT has over 100 years of accumulated engineering experience in the design, testing and manufacturing of heat pipes. ACT-HP-ERS/A-A Air to Air Heat Exchangers Utilize High Performance Heat Pipes Thousand Times Better Conductor Than Copper CONDENSER PHASE CHANGE TO LIQUID Heat Pipe Operating Principle: HEAT OUT HEAT OUT Heat pipes function by absorbing heat at the evaporator end of the cylinder, boiling and converting the fluid to vapor. The vapor travels to the condenser end, rejects the heat, and condenses to liquid. The condensed liquid flows back to the evaporator, aided by gravity. This phase change cycle continues as long as there is heat (warm outside air) at the evaporator end of the Vapor flows through center Vapor heat pipe. -
A Lightweight, High-Effectiveness Recuperator for Next-Generation Airborne Cryocoolers
A Lightweight, High-Effectiveness Recuperator for Next-Generation Airborne Cryocoolers A. Niblick, J. Cox, M. Zagarola Creare LLC, Hanover, NH, 03755 USA ABSTRACT Next-generation turboelectric aircraft aim to decouple power generation from propulsion by using gas turbines driving electric generators connected to electric propulsion motors. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers. However, current cryocooler technologies offer cooling capacities that are too low and masses that are too high to meet projected aircraft needs. For turbo-Brayton cryocoolers, the recuperative heat exchanger historically has been the largest and most massive component, and offers the most potential for size and weight reduction. Improvements PD\EHDFKLHYHGWKURXJKWKHXVHRIVPDOOHUÀRZSDVVDJHVRUWKRWURSLFFRUHWKHUPDOUHVLVWDQFHWR GHFUHDVHUHVLVWDQFHEHWZHHQÀRZVWUHDPVZKLOHLQFUHDVLQJD[LDOUHVLVWDQFHIURPZDUPWRFROGHQGV and lighter-weight materials. To this end, a recuperator that implements all such improvements has been developed. The recuperator core consists of a stack of copper-polyimide plates. Miniature ÀRZIHDWXUHVDUHHWFKHGLQWRWKHFRSSHUWRSURYLGHWKHÀRZSDWKIRUWKHUHFXSHUDWHGJDVVWUHDP 7KHVPDOOÀRZIHDWXUHVHWFKHGLQWRWKHFRQGXFWLYHFRSSHUVXEVWUDWHSURPRWHKHDWWUDQVIHUUDGLDOO\ EHWZHHQÀRZVWUHDPVZKLOHWKHSRO\LPLGHDFWVDVDWKHUPDOUHVLVWRULQWKHD[LDOGLUHFWLRQ7KH ODPLQDWHVDUHERQGHGWRJHWKHU7KHUHVXOWLVDFRPSDFWPRQROLWKLFFRUHWKDWDFKLHYHVKLJKVSHFL¿F FRQGXFWDQFH7KLVQHZUHFXSHUDWRUWHFKQRORJ\¿OOVDYRLGEHWZHHQKLJKSHUIRUPDQFHOLJKWZHLJKW -
I4 Energy Recovery Wheel
I4 ENERGY RECOVERY WHEEL innergytech.com 5 year warranty parts & labor HEAT PIPES PLATES WHEELS CORES * 8068_IT_Manual I4_V2_octobre 2019 Révision 01 TABLE OF CONTENTS ABOUT THIS MANUAL ________________________________________________________________________________4 WINNERGY PRO SELECTION SOFTWARE _______________________________________________________________5 THE IMPROVED I4 WHEEL DESIGN _____________________________________________________________________6 THE I4R FIELD INSTALLED ENERGY RECOVERY WHEEL ___________________________________________________7 SPLIT FRAME DESIGN ________________________________________________________________________________7 PERFECT FOR MECHANICAL ROOMS AND RETROFIT APPLICATIONS _____________________________________7 OTHER FIELD SERVICES ______________________________________________________________________________7 FEATURES AND BENEFITS _____________________________________________________________________________7 PRODUCT OVERVIEW ________________________________________________________________________________8 PRINCIPLE OF OPERATION ___________________________________________________________________________9 1.1 Energy recovery _______________________________________________________________________________ 9 1.2 Key wheel effectiveness factors ________________________________________________________________10 I4 CONSTRUCTION/PARTS __________________________________________________________________________11 2.1 Construction details __________________________________________________________________________ -
Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft Hayder Hasan Jaafar Al-sarraf Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Mechanical Engineering Commons Repository Citation Al-sarraf, Hayder Hasan Jaafar, "Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft" (2017). Browse all Theses and Dissertations. 1831. https://corescholar.libraries.wright.edu/etd_all/1831 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. MODELING TWO PHASE FLOW HEAT EXCHANGERS FOR NEXT GENERATION AIRCRAFT A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering By HAYDER HASAN JAAFAR AL-SARRAF B.Sc. Mechanical Engineering, Kufa University, 2005 2017 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL July 3, 2017 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Hayder Hasan Jaafar Al-sarraf Entitled Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Mechanical Engineering. ________________________________ Rory Roberts, Ph.D. Thesis Director ________________________________ Joseph C. Slater, Ph.D., P.E. Department Chair Committee on Final Examination ______________________________ Rory Roberts, Ph.D. ______________________________ James Menart, Ph.D. ______________________________ Mitch Wolff, Ph.D. -
Isobaric Expansion Engines: New Opportunities in Energy Conversion for Heat Engines, Pumps and Compressors
energies Concept Paper Isobaric Expansion Engines: New Opportunities in Energy Conversion for Heat Engines, Pumps and Compressors Maxim Glushenkov 1, Alexander Kronberg 1,*, Torben Knoke 2 and Eugeny Y. Kenig 2,3 1 Encontech B.V. ET/TE, P.O. Box 217, 7500 AE Enschede, The Netherlands; [email protected] 2 Chair of Fluid Process Engineering, Paderborn University, Pohlweg 55, 33098 Paderborn, Germany; [email protected] (T.K.); [email protected] (E.Y.K.) 3 Chair of Thermodynamics and Heat Engines, Gubkin Russian State University of Oil and Gas, Leninsky Prospekt 65, Moscow 119991, Russia * Correspondence: [email protected] or [email protected]; Tel.: +31-53-489-1088 Received: 12 December 2017; Accepted: 4 January 2018; Published: 8 January 2018 Abstract: Isobaric expansion (IE) engines are a very uncommon type of heat-to-mechanical-power converters, radically different from all well-known heat engines. Useful work is extracted during an isobaric expansion process, i.e., without a polytropic gas/vapour expansion accompanied by a pressure decrease typical of state-of-the-art piston engines, turbines, etc. This distinctive feature permits isobaric expansion machines to serve as very simple and inexpensive heat-driven pumps and compressors as well as heat-to-shaft-power converters with desired speed/torque. Commercial application of such machines, however, is scarce, mainly due to a low efficiency. This article aims to revive the long-known concept by proposing important modifications to make IE machines competitive and cost-effective alternatives to state-of-the-art heat conversion technologies. Experimental and theoretical results supporting the isobaric expansion technology are presented and promising potential applications, including emerging power generation methods, are discussed. -
Compact Heat Exchangers for Mobile Co2 Systems
COMPACT HEAT EXCHANGERS FOR MOBILE CO2 SYSTEMS A. Hafner SINTEF Energy Research Refrigeration and Air Conditioning Trondheim (Norway) ABSTRACT The natural refrigerant carbon dioxide (CO2) with all its advantages offers new possibilities of efficient heating and cooling at different climates. In reversible air conditioning systems the capacity and efficiency in cooling mode is seen to be most important. The efficiency of the reversible interior heat exchanger depends on the design of the heat exchanger. Efficiency reduction is among other factors caused by refrigerant- side pressure drop, heat conduction, refrigerant- and air maldistribution. Uniform air temperatures at the outlet of the heat exchanger are an important aspect regarding comfort and control of the mobile HVAC system. A prototype CO2 system with a separator, refrigerant pump and a single pass heat exchanger was tested under varies conditions. The tests were performed at low compressor revolution speed i.e. idle conditions. Compared with a baseline heat exchanger of equal size, the use of an external operated pump to circulate the refrigerant through the heat exchanger, increased the cooling capacity at equal pressure levels by up to 14 %. At equal cooling capacities the COP increased by up to 23 %. Airside temperature distribution was more uniform with this way of operating the system. 1 INTRODUCTION Several authors for example Hrnjak et al 2002, Nekså et al. 2001 describe CO2 systems where flash gas was bypassed the evaporator and thereafter reunified with the leaving gas of the evaporator. With such a system concept only liquid refrigerant enters the evaporator which has an positive effect on distribution of the refrigerant into 20000 the microchannels. -
Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick Materials
energies Article Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick Materials Kyaw Zin Htoo 1 , Phuoc Hien Huynh 2, Keishi Kariya 3 and Akio Miyara 3,4,* 1 Graduate School of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; [email protected] 2 Department of Heat and Refrigeration Engineering, Ho Chi Minh City University of Technology—VNU—HCM (HCMUT), 268 Ly Thuong Kiet, Ho Chi Minh City 72409, Vietnam; [email protected] 3 Department of Mechanical Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; [email protected] 4 International Institute for Carbon-Neutral Energy Research, Kyushu University, Nishi-ku, Motooka, Fukuoka 819-0395, Japan * Correspondence: [email protected] Abstract: In loop heat pipes (LHPs), wick materials and their structures are important in achieving continuous heat transfer with a favorable distribution of the working fluid. This article introduces the characteristics of loop heat pipes with different wicks: (i) sintered stainless steel and (ii) ceramic. The evaporator has a flat-rectangular assembly under gravity-assisted conditions. Water was used as a working fluid, and the performance of the LHP was analyzed in terms of temperatures at different locations of the LHP and thermal resistance. As to the results, a stable operation can be maintained in the range of 50 to 520 W for the LHP with the stainless-steel wick, matching the desired limited ◦ −2 Citation: Htoo, K.Z.; Huynh, P.H.; temperature for electronics of 85 C at the heater surface at 350 W (129.6 kW·m ). -
Mahogany Rush, Seattle Center Coliseum
CONCERTS 1) KISS w/ Cheap Trick, Seattle Center Coliseum, 8/12/77, $8.00 2) Aerosmith w/ Mahogany Rush, Seattle Center Coliseum,, 4/19/78, $8.50 3) Angel w/ The Godz, Paramount NW, 5/14/78, $5.00 4) Blue Oyster Cult w/ UFO & British Lions, Hec Edmondson Pavilion, 8/22/78, $8.00 5) Black Sabbath w/ Van Halen, Seattle Center Arena, 9/23/78, $7.50 6) 10CC w/ Reggie Knighton, Paramount NW, 10/22/78, $3.50 7) Rush w/ Pat Travers, Seattle Center Coliseum, 11/7/78, $8.00 8) Queen, Seattle Center Coliseum, 12/12/78, $8.00 9) Heart w/ Head East & Rail, Seattle Center Coliseum, 12/31/78, $10.50 10) Alice Cooper w/ The Babys, Seattle Center Coliseum, 4/3/79, $9.00 11) Jethro Tull w/ UK, Seattle Center Coliseum, 4/10/79, $9.50 12) Supertramp, Seattle Center Coliseum, 4/18/79, $9.00 13) Yes, Seattle Center Coliseum, 5/8/79, $10.50 14) Bad Company w/ Carillo, Seattle Center Coliseum, 5/30/79, $9.00 15) Triumph w/ Ronnie Lee Band (local), Paramount NW, 6/2/79, $6.50 16) New England w/ Bighorn (local), Paramount NW, 6/9/79, $3.00 17) Kansas w/ La Roux, Seattle Center Coliseum, 6/12/79, $9.00 18) Cheap Trick w/ Prism, Hec Edmondson Pavilion, 8/2/79, $8.50 19) The Kinks w/ The Heaters (local), Paramount NW, 8/29/79, $8.50 20) The Cars w/ Nick Gilder, Hec Edmondson Pavilion, 9/21/79, $9.00 21) Judas Priest w/ Point Blank, Seattle Center Coliseum, 10/17/79, Free – KZOK giveaway 22) The Dishrags w/ The Look & The Macs Band (local), Masonic Temple, 11/15/79, $4.00 23) KISS w/ The Rockets, Seattle Center Coliseum, 11/21/79, $10.25 24) Styx w/ The Babys, Seattle