Respiratory System

Total Page:16

File Type:pdf, Size:1020Kb

Respiratory System Respiratory system Sándor Katz M.D.,Ph.D. Nasal cavity • divided by the nasal septum • lined by nasal mucosa • divisible into an olfactory and a respiratory area • connection with the paranasal sinuses Cartilaginous nasal cavity superior nasal concha middle nasal concha inferior nasal concha Blood supply of the nasal cavity Kiesselbach’s plexus (90% of the epistaxes occure here) Innervation of the nasal cavity Paranasal sinuses • communication with the nasal cavity • they reduce the weight of the skull • lined by pseudostratified columnar ciliated epithelium • they heat and moisturise the air • act as resonators of voice Openings of the paranasal sinuses 1. hypophysis 2. sphenoid sinus 3. posterior ethmoidal air cells 4. sphenoethmoid recess 5. superior nasal concha 6. superior nasal meatus 7. middle nasal concha 8. ethmoid bulla 9. semilunar hiatus 10.opening of the maxillary sinus 11.middle nasal meatus 12.inferior nasal concha 13.inferior nasal meatus 14.opening of the auditory canal 15.soft palate 16.hard palate Ethmoidal air cells Sphenoid sinus (2) Maxillary sinus= Highmore’s sinus: Frontal sinus Laryngeal cartilages • epiglottis • thyroid cartilage • cricoid cartilage Laryngeal cartilages • arytenoid cartilages • corniculate cartilages • cuneiform cartilages Trachea • cartilaginous part • membranous part Right main bronchus: • more vertical • bigger lumen (inhaled foreign bodies can block the lumen easily) Left main bronchus: • more oblique • smaller lumen Pleura It is a serous membrane. Visceral pleura. Parietal pleura: costal part, diaphragmatic part, mediastinal part. Lungs Parts: base, apex and hilum Surfaces: costal, diaphragmatic and mediastinal Right lung: 3 lobes (superior, middle and inferior) Left lung: 2 lobes (superior and inferior) The lobes are built up by segments. Hilum of the lungs left lung right lung Thank you for your attention. References: Drake: Gray’s Anatomy for Students, 2nd ed. Standring: Gray’s Anatomy, 39th ed. Radiopaedia.org Thieme Atlas of Anatomy, General Anatomy and Musculoskeletal System, Head and Neuroanatomy and Internal Organs 2nd ed..
Recommended publications
  • Surgery in the Multimodality Treatment of Sinonasal Malignancies
    Surgery in the Multimodality Treatment of Sinonasal Malignancies alignancies of the paranasal sinuses represent a rare and biologi- cally heterogeneous group of cancers. Understanding of tumor M biology continues to evolve and will likely facilitate the develop- ment of improved treatment strategies. For example, some sinonasal tumors may benefit from treatment through primarily nonsurgical ap- proaches, whereas others are best addressed through resection. The results of clinical trials in head and neck cancer may not be generalizable to this heterogeneous group of lesions, which is defined anatomically rather than through histogenesis. Increasingly sophisticated pathologic assessments and the elucidation of molecular markers, such as the human papilloma virus (HPV), in sinonasal cancers have the potential to transform the clinical management of these malignant neoplasms. Published reports often suggest that treatment approaches that include surgery result in better local control and survival. However, many studies are marked by selection bias. The availability of effective reconstruction makes increas- ingly complex procedures possible, with improved functional outcomes. With advances in surgery and radiation, the multimodal treatment of paranasal sinus cancers is becoming safer. The use of chemotherapy remains a subject of active investigation. Introduction Sinonasal malignancies, a highly heterogeneous group of cancers, account for less than 1% of all cancers and less than 3% of all upper aerodigestive tract tumors. These lesions may originate from any of the histopathologic components of the sinonasal cavities, including Schnei- derian mucosa, minor salivary glands, neural tissue, and lymphatics. Sixty percent of sinonasal tumors arise in the maxillary sinus, whereas approximately 20% arise in the nasal cavity, 5% in the ethmoid sinuses, and 3% in the sphenoid and frontal sinuses.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Nasoconchal Paranasal Sinus in White Rhino
    IDENTIFICATION OF A NASOCONCHAL PARANASAL SINUS IN THE WHITE RHINOCEROS (CERATOTHERIUM SIMUM) Author(s): Mathew P. Gerard, B.V.Sc., Ph.D., Dipl. A.C.V.S., Zoe G. Glyphis, B.Sc., B.V.Sc., Christine Crawford, B.S., Anthony T. Blikslager, D.V.M., Ph.D., Dipl. A.C.V.S., and Johan Marais, B.V.Sc., M.Sc. Source: Journal of Zoo and Wildlife Medicine, 49(2):444-449. Published By: American Association of Zoo Veterinarians https://doi.org/10.1638/2017-0185.1 URL: http://www.bioone.org/doi/full/10.1638/2017-0185.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Zoo and Wildlife Medicine 49(2): 444–449, 2018 Copyright 2018 by American Association of Zoo Veterinarians IDENTIFICATION OF A NASOCONCHAL PARANASAL SINUS IN THE WHITE RHINOCEROS (CERATOTHERIUM SIMUM) Mathew P.
    [Show full text]
  • Lab Manual Axial Skeleton Atla
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the axial skeleton, which consists of the bones that form the axis of the body. The axial skeleton includes bones in the skull, vertebrae, and thoracic cage, as well as the auditory ossicles and hyoid bone. In addition to learning about all the bones of the axial skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the axial skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens. You may also find it helpful to palpate bones on yourself or make drawings of the bones with the bone markings labeled.
    [Show full text]
  • Macroscopic Anatomy of the Nasal Cavity and Paranasal Sinuses of the Domestic Pig (Sus Scrofa Domestica) Daniel John Hillmann Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica) Daniel John Hillmann Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Structures Commons, and the Veterinary Anatomy Commons Recommended Citation Hillmann, Daniel John, "Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica)" (1971). Retrospective Theses and Dissertations. 4460. https://lib.dr.iastate.edu/rtd/4460 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 72-5208 HILLMANN, Daniel John, 1938- MACROSCOPIC ANATOMY OF THE NASAL CAVITY AND PARANASAL SINUSES OF THE DOMESTIC PIG (SUS SCROFA DOMESTICA). Iowa State University, Ph.D., 1971 Anatomy I University Microfilms, A XEROX Company, Ann Arbor. Michigan I , THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica) by Daniel John Hillmann A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Veterinary Anatomy Approved: Signature was redacted for privacy. h Charge of -^lajoï^ Wor Signature was redacted for privacy. For/the Major Department For the Graduate College Iowa State University Ames/ Iowa 19 71 PLEASE NOTE: Some Pages have indistinct print.
    [Show full text]
  • The Axial Skeleton Visual Worksheet
    Biology 201: The Axial Skeleton 1) Fill in the table below with the name of the suture that connects the cranial bones. Suture Cranial Bones Connected 1) Coronal suture Frontal and parietal bones 2) Sagittal suture Left and right parietal bones 3) Lambdoid suture Occipital and parietal bones 4) Squamous suture Temporal and parietal bones Source Lesson: Cranial Bones of the Skull: Structures & Functions 2) Fill in the table below with the name of the bony opening associated with the specific nerve or blood vessel. Bones and Foramina Associated Blood Vessels and/or Nerves Frontal Bone 1) Supraorbital foramen Ophthalmic nerve, supraorbital nerve, artery, and vein Temporal Bone 2) Carotid canal Internal carotid artery 3) Jugular foramen Internal jugular vein, glossopharyngeal nerve, vagus nerve, accessory nerve (Cranial nerves IX, X, XI) Occipital Bone 4) Foramen magnum Spinal cord, accessory nerve (Cranial nerve XI) 5) Hypoglossal canal Hypoglossal nerve (Cranial nerve XII) Sphenoid Bone 6) Optic canal Optic nerve, ophthalmic artery Source Lesson: Cranial Bones of the Skull: Structures & Functions 3) Label the anterior view of the skull below with its correct feature. Frontal bone Palatine bone Ethmoid bone Nasal septum: Perpendicular plate of ethmoid bone Sphenoid bone Inferior orbital fissure Inferior nasal concha Maxilla Orbit Vomer bone Supraorbital margin Alveolar process of maxilla Middle nasal concha Inferior nasal concha Coronal suture Mandible Glabella Mental foramen Nasal bone Parietal bone Supraorbital foramen Orbital canal Temporal bone Lacrimal bone Orbit Alveolar process of mandible Superior orbital fissure Zygomatic bone Infraorbital foramen Source Lesson: Facial Bones of the Skull: Structures & Functions 4) Label the right lateral view of the skull below with its correct feature.
    [Show full text]
  • Sinonasal Tract and Nasopharyngeal Adenoid Cystic Carcinoma: a Clinicopathologic and Immunophenotypic Study of 86 Cases
    Head and Neck Pathol DOI 10.1007/s12105-013-0487-3 ORIGINAL RESEARCH Sinonasal Tract and Nasopharyngeal Adenoid Cystic Carcinoma: A Clinicopathologic and Immunophenotypic Study of 86 Cases Lester D. R. Thompson • Carla Penner • Ngoc J. Ho • Robert D. Foss • Markku Miettinen • Jacqueline A. Wieneke • Christopher A. Moskaluk • Edward B. Stelow Received: 14 July 2013 / Accepted: 23 August 2013 Ó Springer Science+Business Media New York (outside the USA) 2013 Abstract ‘Primary sinonasal tract and nasopharyngeal (n = 44), with a mean size of 3.7 cm. Patients presented adenoid cystic carcinomas (STACC) are uncommon equally between low and high stage disease: stage I and II tumors that are frequently misclassified, resulting in inap- (n = 42) or stage III and IV (n = 44) disease. Histologi- propriate clinical management. Eighty-six cases of STACC cally, the tumors were invasive (bone: n = 66; neural: included 45 females and 41 males, aged 12–91 years (mean n = 47; lymphovascular: n = 33), composed of a variety 54.4 years). Patients presented most frequently with of growth patterns, including cribriform (n = 33), tubular obstructive symptoms (n = 54), followed by epistaxis (n = 16), and solid (n = 9), although frequently a com- (n = 23), auditory symptoms (n = 12), nerve symptoms bination of these patterns was seen within a single tumor. (n = 11), nasal discharge (n = 11), and/or visual symp- Pleomorphism was mild with an intermediate N:C ratio in toms (n = 10), present for a mean of 18.2 months. The cells containing hyperchromatic nuclei. Reduplicated tumors involved the nasal cavity alone (n = 25), naso- basement membrane and glycosaminoglycan material was pharynx alone (n = 13), maxillary sinus alone (n = 4), or commonly seen.
    [Show full text]
  • Estimation of Nasal Cavity and Conchae Volumes by Stereological Method
    Folia Morphol. Vol. 71, No. 2, pp. 105–108 Copyright © 2012 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Estimation of nasal cavity and conchae volumes by stereological method M. Emirzeoglu1, B. Sahin1, M. Celebi2, A. Uzun1, S. Bilgic1, H.O. Tontus3 1Anatomy Department, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey 2ENT Department, Mehmet Aydin Research Hospital, Samsun, Turkey 3Medical Education Department, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey [Received 16 February 2012; Accepted 23 February 2012] Background: Studies evaluating the mean volumes of nasal cavity and concha are very rare. Since there is little date on the mentioned topic, we aimed to carry out the presented study to obtain a volumetric index showing the relation between the nasal cavity and concha. Material and methods: The volumes of the nasal cavity and concha were measured in 30 males and 30 females (18–40 years old) on computed tomo- graphy images using stereological methods. Results: The mean volumes of nasal cavity, concha nasalis media, and concha nasalis inferior were 5.95 ± 0.10 cm3, 0.56 ± 0.22 cm3, and 1.45 ± 0.68 cm3; 7.01 ± 0.18 cm3, 0.67 ± 0.31 cm3 and 1.59 ± 0.98 cm3 in females and males, respectively. There were statistically significant differences in the volume of the nasal cavity and concha nasalis media (p < 0.05) between males and females, except for concha nasalis inferior (p > 0.05). Conclusions: Our results could provide volumetric indexes for the nasal cavity and concha, which could help the physician to manage surgical procedures related to the nasal cavity and concha.
    [Show full text]
  • Surgical Anatomy of the Paranasal Sinus M
    13674_C01.qxd 7/28/04 2:14 PM Page 1 1 Surgical Anatomy of the Paranasal Sinus M. PAIS CLEMENTE The paranasal sinus region is one of the most complex This chapter is divided into three sections: develop- areas of the human body and is consequently very diffi- mental anatomy, macroscopic anatomy, and endoscopic cult to study. The surgical anatomy of the nose and anatomy. A basic understanding of the embryogenesis of paranasal sinuses is published with great detail in most the nose and the paranasal sinuses facilitates compre- standard textbooks, but it is the purpose of this chapter hension of the complex and variable adult anatomy. In to describe those structures in a very clear and systematic addition, this comprehension is quite useful for an accu- presentation focused for the endoscopic sinus surgeon. rate evaluation of the various potential pathologies and A thorough knowledge of all anatomical structures their managements. Macroscopic description of the and variations combined with cadaveric dissections using nose and paranasal sinuses is presented through a dis- paranasal blocks is of utmost importance to perform cussion of the important structures of this complicated proper sinus surgery and to avoid complications. The region. A correlation with intricate endoscopic topo- complications seen with this surgery are commonly due graphical anatomy is discussed for a clear understanding to nonfamiliarity with the anatomical landmarks of the of the nasal cavity and its relationship to adjoining si- paranasal sinus during surgical dissection, which is con- nuses and danger areas. A three-dimensional anatomy is sequently performed beyond the safe limits of the sinus.
    [Show full text]
  • Crista Galli (Part of Cribriform Plate of Ethmoid Bone)
    Alveolar margins alveolar margins coronal suture coronal suture coronoid process crista galli (part of cribriform plate of ethmoid bone) ethmoid bone ethmoid bone ethmoid bone external acoustic meatus external occipital crest external occipital protuberance external occipital protuberance frontal bone frontal bone frontal bone frontal sinus frontal squama of frontal bone frontonasal suture glabella incisive fossa inferior nasal concha inferior nuchal line inferior orbital fissure infraorbital foramen internal acoustic meatus lacrimal bone lacrimal bone lacrimal fossa lambdoid suture lambdoid suture lambdoid suture mandible mandible mandible mandibular angle mandibular condyle mandibular foramen mandibular notch mandibular ramus mastoid process of the temporal bone mastoid process of the temporal bone maxilla maxilla maxilla mental foramen mental foramen middle nasal concha of ethmoid bone nasal bone nasal bone nasal bone nasal bone occipital bone occipital bone occipital bone occipitomastoid suture occipitomastoid suture occipitomastoid suture occipital condyle optic canal optic canal palatine bone palatine process of maxilla parietal bone parietal bone parietal bone parietal bone perpendicular plate of ethmoid bone pterygoid process of sphenoid bone sagittal suture sella turcica of sphenoid bone Sphenoid bone (greater wing) spehnoid bone (greater wing) sphenoid bone (greater wing) sphenoid bone (greater wing) sphenoid sinus sphenoid sinus squamous suture squamous suture styloid process of temporal bone superior nuchal line superior orbital fissure supraorbital foramen (notch) supraorbital margin sutural bone temporal bone temporal bone temporal bone vomer bone vomer bone zygomatic bone zygomatic bone.
    [Show full text]
  • Anatomical Study of the Middle Meatus with Emphasis to the Maxillary Ostium and Their Clinical Relevance
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Anatomical Study of the Middle Meatus with Emphasis to the Maxillary Ostium and Their Clinical Relevance Anne D Souza1, Vrinda Hari Ankolekar1, Kumar M. R. Bhat2, Sushma R. K3, Antony Sylvan D Souza4 1Assistant Professor, 2Additional Professor, 3Lecturer, 4Professor and Head, Department of Anatomy, Kasturba Medical College, Manipal University, Manipal. Karnataka, India Corresponding Author: Sushma R. K Received: 03/01//2014 Revised: 27/01/2014 Accepted: 03/02/2014 ABSTRACT Introduction: The anatomical variations of the lateral wall of the nasal cavity may create technical difficulties during endoscopic sinus surgeries. Interventions involving the middle meatus are commonly performed as majority of the paranasal sinuses open into the osteomeatal complex. The present study was therefore designed to provide information on maxillary ostium in relation to the important anatomical landmarks and also about the variations possible in the morphology of the middle meatus. Materials and methods: The present observational study was carried out on 25sagittal sections of head and neck in the department of Anatomy Kasturba Medical College, Manipal. The nasal septum was removed to visualize the lateral wall. The middle meatus was then studied for the variations possible in the openings of the bulla ethmoidalis and hiatus semilunaris. The distance of the maxillary ostium from the prominent landmarks was measured. The findings were recorded and tabulated. Results: The mean and standard deviations of the parameters were measured. The variations in the middle nasal concha and the bulla ethmoidalis were also observed. Conclusion: This knowledge about the variations in the lateral wall of the nasal cavity is crucial during the endoscopic interventions and for functional endoscopic sinus surgeries.
    [Show full text]
  • Endoscopic Transnasal Resection of Adenoid Cystic Carcinoma of the Nasal Septum: a Case Report and Literature Review
    ISSN: 2688-8238 DOI: 10.33552/OJOR.2021.04.000600 Online Journal of Otolaryngology and Rhinology Case Report Copyright © All rights are reserved by Tessei Kuruma Endoscopic Transnasal Resection of Adenoid Cystic Carcinoma of the Nasal Septum: A Case Report and Literature Review Tessei Kuruma*, Tetsuya Ogawa, Mariko Arimoto, Mayuko Kishimoto, Kinga You, Yuka Kawade, Yutaka Kondo, Yasue Uchida and Yasushi Fujimoto Department of Otorhinolaryngology, Head and Neck Surgery, Aichi Medical University, Aichi, Japan *Corresponding author: Tessei Kuruma, Department of Otorhinolaryngology, Head Received Date: June 07, 2021 and Neck Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi, Aichi 480-1195, Japan. Published Date: June 21, 2021 Abstract Very few reports have described adenoid cystic carcinoma of the nasal septum. We performed endoscopic endonasal surgical resection of an has had no local recurrence or distant metastases as of 3 years postoperatively. adenoid cystic carcinoma of the nasal septum in a 61-year-old woman. Histological examination confirmed adenoid cystic carcinoma. The patient Keywords: Adenoid cystic carcinoma; Nasal septum; Endoscopic endonasal surgery; 4-Hand operation Abbreviations: Adenoid cystic carcinoma (ACC); Computed tomography (CT); Magnetic resonance imaging (MRI); Positron emission tomography (PET) Introduction the right nasal cavity and she was referred to our department for Adenoid cystic carcinoma (ACC) is the most common tumor of salivary gland tissues in the head and neck area and the second most common tumor in the nose and sinuses [1,2]. Sinonasal ACC further examination. Nasal endoscopic findings on the first visit blood vessels occupying the right nasal cavity (Figure 1). The tumor accounts for 10–25% of all head and neck ACCs [3].
    [Show full text]