Introduction to the Structure and Function of the Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to the Structure and Function of the Nervous System © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER 3 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Introduction to the Structure and Function of the Nervous System © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION STRUCTURE AND FUncTION OF THE makes possible complex activities, such NERVOUS SYSTEM as walking, running, playing a piano, and © Jones & BartlettThe Learning, nervous system LLC is a complex regulatory© Jones using& Bartlett a computer, Learning, as well as simpleLLC activi- NOT FOR SALE ORsystem DISTRIBUTION that, along with the endocrine system (seeNOT FORties, SALE such as OR maintaining DISTRIBUTION muscle tone and Chapter 23), controls and coordinates activities posture while at rest. and functions throughout the body, internally • Monitoring and recognizing stimuli (and and externally, by sending, receiving, and sort- information) within the environment, and ing electrical impulses. Disruption of any part of then directing an appropriate response to the nervous© system Jones affects & bodyBartlett function Learning, in some LLC the stimuli. This function© Jonesmakes possible & Bartlett Learning, LLC way, either NOTinternally FOR or externally. SALE OR DISTRIBUTIONreflex actions, such as NOTpulling FOR away SALEone’s OR DISTRIBUTION The nervous system consists of the central hand from a hot surface, as well as perceiv- nervous system, which includes the brain and ing music being played in the next room. spinal cord, and the peripheral nervous system, • Monitoring and coordinating internal body states so that internal organs function as a © Joneswhich & includes Bartlett nerve Learning, fibers extending LLC from the © Jones & Bartlett Learning, LLC brain and spinal cord that carry information unit, internal body constancy (homeosta- NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION between the central nervous system and the rest sis) is maintained, and protective action is of the body. The peripheral nervous system is fur- taken. For example, in response to a lack of ther divided into two parts: the afferent (sensory) oxygen, more rapid breathing occurs; the system, which carries messages from other parts body shivers in response to cold; and when of the body to the central nervous system, and the threat or danger is encountered, the heart © Jones & Bartlett Learning, LLC © Jones beats& Bartlett more rapidly. Learning, LLC NOT FOR SALE ORefferent DISTRIBUTION (motor) system, which carries messagesNOT FOR SALE OR DISTRIBUTION from the central nervous system to other parts of Other functions, such as display of personality the body (see Table 3-1). traits, language, speech, learning, remembering, feeling emotion, reasoning, and generating and Function of the Nervous System relaying thoughts, are also controlled by the ner- Functions of© Jonesthe nervous & Bartlett system include Learning, the LLCvous system—specifically, by© the Jones brain. & Bartlett Learning, LLC following: NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION • Organizing and directing motor responses Nerve Cells of the voluntary muscle system, enabling Specialized cells called neurons are the func- the body to move more effectively as a tional units of the nervous system. Neurons © Jones &whole Bartlett and to achieve Learning, purposeful LLC movement. transmit messages© Jones to and & fromBartlett the brain. Learning, They LLC NOT FORThis SALE coordination OR DISTRIBUTION of voluntary muscles consist of NOTa cell FORbody andSALE processes OR DISTRIBUTION (nerve 31 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR32 DISTRIBUTION Chapter 3 • Introduction to the StructureNOT and FunctionFOR SALE of the NervousOR DISTRIBUTION System process begins again (see Figure 3-1). After neu- Table 3-1 The Nervous System rotransmitters are released, they are either taken (Central and Peripheral) © Jones & Bartlett Learning, LLCup again by the neuron or destroyed.© Jones & Bartlett Learning, LLC I. Central nervous system NOT FOR SALE OR DISTRIBUTIONLonger axons are generallyNOT grouped FOR in bun-SALE OR DISTRIBUTION A. Brain dles. When they are transmitting impulses within B. Spinal cord the central nervous system, these bundles are referred to as tracts. Those bundles located out- II. Peripheral nervous system side the central nervous system are referred to © Jones A. &Aff Bartletterent (sensory) Learning, LLC as nerves. © Jones & Bartlett Learning, LLC NOT FORB. Eff SALEerent (motor) OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 1. Somatic nervous system The Central Nervous System 2. Autonomic nervous system The central nervous system is made up of the a. Sympathetic nervous system brain and spinal cord. Bony coverings protect © Jones & Bartlett Learning,b. Parasympathetic LLC nervous system © Jonesboth the & brainBartlett and the Learning, spinal cord. LLC On the inte- rior of these bony coverings are three membranes NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION (meninges) that provide additional protection: • The dura mater is the outer membrane, fibers) that extend beyond the cell body. In most lying closest to the bony covering of the cases, a single long nerve fiber called an axon brain and spinal cord. conducts nerve© Jones impulses & (and Bartlett information) Learning, away LLC © Jones & Bartlett Learning, LLC • The arachnoid membrane is the middle from the cell body to other neurons. Smaller, NOT FOR SALE OR DISTRIBUTIONmembrane, a cobweb-appearingNOT FOR membrane. SALE OR DISTRIBUTION shorter nerve fibers called dendrites conduct • The pia mater is the inner membrane, which nerve impulses toward the cell body after receiv- lies closest to the brain and spinal cord. ing information from other neurons. Fibers that carry information from parts of the body to the Between each of the membrane layers are spaces. © Jonesbrain &are Bartlett called afferent Learning, neurons LLC(sensory neu- The space between© Jones the dura& Bartlett mater and Learning, the inner LLC NOT rons).FOR FibersSALE that OR carry DISTRIBUTION information from the surface of NOTthe bony FOR covering SALE is ORthe epiduralDISTRIBUTION brain to other parts of the body are called effer- space. T; the space between the dura mater and ent neurons (motor neurons). the arachnoid membrane is the subdural space; Surrounding neurons is a fatty sheath called and the space between the arachnoid membrane myelin, which, much like the covering of elec- and the pia mater is the subarachnoid space. © Jones & Bartletttrical Learning, cords, provides LLC insulation, ensuring that© JonesThe & central Bartlett nervous Learning, system is alsoLLC protected NOT FOR SALE ORelectrical DISTRIBUTION impulses are able to flow smoothly andNOT and FOR cushioned SALE by OR cerebrospinal DISTRIBUTION fluid (CSF), reliably. Information is passed from neuron to which is formed by specialized capillaries called neuron by both electrical and chemical impulses. the choroids plexus in inner chambers within the The electrical impulse, which has been picked up brain called ventricles. The cerebrospinal fluid by the dendrites,© Jones is passed & Bartlettthrough the Learning, cell body LLCbathes the brain and spinal cord,© circulatingJones & from Bartlett Learning, LLC to the axon. The electrical impulse then moves the ventricles into the subarachnoid space (see NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION down the full length of the axon until it reaches Figure 3-2). From the subarachnoid space it the its tip. At the tip of the axon are tiny processes, CSF flows to the back of the brain, down around which release chemicals known as neurotrans- the spinal cord, and then back to the brain, mitters. Neurotransmitters, through chemical where it is reabsorbed into the blood through the © Jonesmeans, & transferBartlett the Learning, impulse from LLC one neuron arachnoid membrane.© Jones The & Bartlettamounts of Learning, cerebro- LLC NOT toFOR another SALE across OR a space DISTRIBUTION between the two neu- spinal fluidNOT produced FOR and SALE absorbed OR are DISTRIBUTION equally rons called the synapse. The electrical impulse, balanced, so that under normal conditions, the through the vehicle of neurotransmitters, then amount of CSF within the central nervous system moves to the next neuron’s dendrites and the remains constant. © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOTStructure FOR and SALE Function OR of theDISTRIBUTION Nervous System 33 Figure 3-1 Neurons © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Copyright Jane Tinkler Lamm. © Jones & Bartlett Learning, LLC © Jones & Bartlett
Recommended publications
  • Head Start Early Learning Outcomes Framework Ages Birth to Five
    Head Start Early Learning Outcomes Framework Ages Birth to Five 2015 R U.S. Department of Health and Human Services Administration for Children and Families Office of Head Start Office of Head Start | 8th Floor Portals Building, 1250 Maryland Ave, SW, Washington DC 20024 | eclkc.ohs.acf.hhs.gov Dear Colleagues: The Office of Head Start is proud to provide you with the newly revisedHead Start Early Learning Outcomes Framework: Ages Birth to Five. Designed to represent the continuum of learning for infants, toddlers, and preschoolers, this Framework replaces the Head Start Child Development and Early Learning Framework for 3–5 Year Olds, issued in 2010. This new Framework is grounded in a comprehensive body of research regarding what young children should know and be able to do during these formative years. Our intent is to assist programs in their efforts to create and impart stimulating and foundational learning experiences for all young children and prepare them to be school ready. New research has increased our understanding of early development and school readiness. We are grateful to many of the nation’s leading early childhood researchers, content experts, and practitioners for their contributions in developing the Framework. In addition, the Secretary’s Advisory Committee on Head Start Research and Evaluation and the National Centers of the Office of Head Start, especially the National Center on Quality Teaching and Learning (NCQTL) and the Early Head Start National Resource Center (EHSNRC), offered valuable input. The revised Framework represents the best thinking in the field of early childhood. The first five years of life is a time of wondrous and rapid development and learning.The Head Start Early Learning Outcomes Framework: Ages Birth to Five outlines and describes the skills, behaviors, and concepts that programs must foster in all children, including children who are dual language learners (DLLs) and children with disabilities.
    [Show full text]
  • Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection
    Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection This guide is for middle and high school students participating in AIMS Anatomy of the Human Brain and Sheep Brain Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human brain by observing, studying, and examining human specimens. The primary focus is on the anatomy, function, and pathology. Those students participating in Sheep Brain Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. The following topics will be covered: 1. The neurons and supporting cells of the nervous system 2. Organization of the nervous system (the central and peripheral nervous systems) 4. Protective coverings of the brain 5. Brain Anatomy, including cerebral hemispheres, cerebellum and brain stem 6. Spinal Cord Anatomy 7. Cranial and spinal nerves Objectives: The student will be able to: 1. Define the selected terms associated with the human brain and spinal cord; 2. Identify the protective structures of the brain; 3. Identify the four lobes of the brain; 4. Explain the correlation between brain surface area, structure and brain function. 5. Discuss common neurological disorders and treatments. 6. Describe the effects of drug and alcohol on the brain. 7. Correctly label a diagram of the human brain National Science Education
    [Show full text]
  • Neural Control of Movement: Motor Neuron Subtypes, Proprioception and Recurrent Inhibition
    List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Enjin A, Rabe N, Nakanishi ST, Vallstedt A, Gezelius H, Mem- ic F, Lind M, Hjalt T, Tourtellotte WG, Bruder C, Eichele G, Whelan PJ, Kullander K (2010) Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as mark- ers for fast motor neurons and partition cells. J Comp Neurol 518:2284-2304. II Wootz H, Enjin A, Wallen-Mackenzie Å, Lindholm D, Kul- lander K (2010) Reduced VGLUT2 expression increases motor neuron viability in Sod1G93A mice. Neurobiol Dis 37:58-66 III Enjin A, Leao KE, Mikulovic S, Le Merre P, Tourtellotte WG, Kullander K. 5-ht1d marks gamma motor neurons and regulates development of sensorimotor connections Manuscript IV Enjin A, Leao KE, Eriksson A, Larhammar M, Gezelius H, Lamotte d’Incamps B, Nagaraja C, Kullander K. Development of spinal motor circuits in the absence of VIAAT-mediated Renshaw cell signaling Manuscript Reprints were made with permission from the respective publishers. Cover illustration Carousel by Sasha Svensson Contents Introduction.....................................................................................................9 Background...................................................................................................11 Neural control of movement.....................................................................11 The motor neuron.....................................................................................12 Organization
    [Show full text]
  • Inside Your Brain You and Your Brain
    Inside your brain You and your brain Many simple and complex psychological functions are mediated by multiple brain regions and, at the same time, a single brain area may control many psychological functions. CC BY Illustration by Bret Syfert 1. Cortex: The thin, folded structure on the outside surface of the brain. 2. Cerebral hemispheres: The two halves of the brain, each of which controls and receives information from the opposite side of the body. 3. Pituitary gland: The ‘master gland’ of the body, which releases hormones that control growth, blood pressure, the stress response and the function of the sex organs. 4. Substantia nigra: The ‘black substance’ contains cells that produce the neurotransmitter dopamine and the pigment melatonin, giving it a black appearance. 5. Hypothalamus: The interface between the brain and pituitary gland. It controls the production and release of hormones. 6. Spinal cord: A large bundle of millions of nerve fibres and neuronal cells, which carries information back and forth between the brain and the body. 7. Medulla oblongata: Controls vital involuntary functions such as breathing and heart rate. 8. Cerebellum: The ‘little brain’ that controls balance and coordinates movements. It’s normally required for learning motor skills, such as riding a bike, and is involved in thought processes. 9. Cranial nerve nuclei: Clusters of neurons in the brain stem. Their axons form the cranial nerves. Your brain underpins who you are. It stores your knowledge and memories, gives you the capacity for thought and emotion, and enables you to control your body. The brain is just one part of the nervous system.
    [Show full text]
  • Power Wheelchair Alternative Drive Controls in Spinal Cord Injury
    Power Wheelchair Alternative Drive Controls in Spinal Cord Injury Kristen Cezat, PT, DPT, NCS, ATP/SMS When a person with a spinal cord injury is unable to use a standard joystick on a Fact Sheet power wheelchair, an alternative drive control and location is required. Depending on the person’s level of injury and musculature that remains innervated, the more common locations of alternative drive control input devices include the head, neck, face, eyes, and tongue. A proportional drive control allows the wheelchair’s speed/direction to mirror the force/direction applied to the input device by the user, most often through a joystick. Proportional drive control options include1: • Standard Joystick: able to move in any direction at any speed. It is often the most intuitive device for adults with injuries at C5 and below. Joysticks are commonly located on either left or right arm rest but can be altered for Produced by location in midline if spasticity or contracture limits neutral shoulder/elbow alignment. • Alternative Joystick (often set at the user’s chin): joysticks vary in size and require less force and deflection to activate the joystick.1 air Drive ControlA non -Optionsproportional drive for control Clients uses commands with to turn on/offSpinal various functionsCord such as direction (forward, back, left, or right) of the wheelchair. Speed is predetermined and not variable to the strength of the command provided. Non- Injury proportional drive controls include1,2: a Special Interest • Sip-and-Puff Group of • Head Array • Head Array/Sip-and-Puff Combo Non-proportional drive controls can be either momentary or latched.
    [Show full text]
  • Electromagnetic Field and TGF-Β Enhance the Compensatory
    www.nature.com/scientificreports OPEN Electromagnetic feld and TGF‑β enhance the compensatory plasticity after sensory nerve injury in cockroach Periplaneta americana Milena Jankowska1, Angelika Klimek1, Chiara Valsecchi2, Maria Stankiewicz1, Joanna Wyszkowska1* & Justyna Rogalska1 Recovery of function after sensory nerves injury involves compensatory plasticity, which can be observed in invertebrates. The aim of the study was the evaluation of compensatory plasticity in the cockroach (Periplaneta americana) nervous system after the sensory nerve injury and assessment of the efect of electromagnetic feld exposure (EMF, 50 Hz, 7 mT) and TGF‑β on this process. The bioelectrical activities of nerves (pre‑and post‑synaptic parts of the sensory path) were recorded under wind stimulation of the cerci before and after right cercus ablation and in insects exposed to EMF and treated with TGF‑β. Ablation of the right cercus caused an increase of activity of the left presynaptic part of the sensory path. Exposure to EMF and TGF‑β induced an increase of activity in both parts of the sensory path. This suggests strengthening efects of EMF and TGF‑β on the insect ability to recognize stimuli after one cercus ablation. Data from locomotor tests proved electrophysiological results. The takeover of the function of one cercus by the second one proves the existence of compensatory plasticity in the cockroach escape system, which makes it a good model for studying compensatory plasticity. We recommend further research on EMF as a useful factor in neurorehabilitation. Injuries in the nervous system caused by acute trauma, neurodegenerative diseases or even old age are hard to reverse and represent an enormous challenge for modern medicine.
    [Show full text]
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • Student Academic Learning Services Nervous System Quiz
    Student Academic Learning Services Page 1 of 8 Nervous System Quiz 1. The term central nervous system refers to the: A) autonomic and peripheral nervous systems B) brain, spinal cord, and cranial nerves C) brain and cranial nerves D) spinal cord and spinal nerves E) brain and spinal cord 2. The peripheral nervous system consists of: A) spinal nerves only B) the brain only C) cranial nerves only D) the brain and spinal cord E) the spinal and cranial nerves 3. Which of these cells are not a type of neuroglia found in the CNS: A) astrocytes B) microglia C) Schwann cells D) ependymal cells E) oligodendrocytes 4. The Schwann cells form a myelin sheath around the: A) dendrites B) cell body C) nucleus D) axon E) nodes of Ranvier 5. The neuron processes that normally receives incoming stimuli are called: A) axons B) dendrites C) neurolemmas D) Schwann cells E) satellite cells www.durhamcollege.ca/sals Student Services Building (SSB), Room 204 905.721.2000 ext. 2491 This document last updated: 7/29/2011 Student Academic Learning Services Page 2 of 8 6. Collections of nerve cell bodies inside the PNS are called: A) ganglia B) tracts C) nerves D) nuclei E) tracts or ganglia 7. Which of the following best describes the waxy-appearing material called myelin: A) an outermembrane on a neuroglial cell B) a lipid-protein (lipoprotein) cell membrane on the outside of axons C) a mass of white lipid material that surrounds the cell body of a neuron D) a mass of white lipid material that insulates the axon of a neuron E) a mass of white lipid material that surrounds the dendrites of a neuron 8.
    [Show full text]
  • Chapter 8 Nervous System
    Chapter 8 Nervous System I. Functions A. Sensory Input – stimuli interpreted as touch, taste, temperature, smell, sound, blood pressure, and body position. B. Integration – CNS processes sensory input and initiates responses categorizing into immediate response, memory, or ignore C. Homeostasis – maintains through sensory input and integration by stimulating or inhibiting other systems D. Mental Activity – consciousness, memory, thinking E. Control of Muscles & Glands – controls skeletal muscle and helps control/regulate smooth muscle, cardiac muscle, and glands II. Divisions of the Nervous system – 2 anatomical/main divisions A. CNS (Central Nervous System) – consists of the brain and spinal cord B. PNS (Peripheral Nervous System) – consists of ganglia and nerves outside the brain and spinal cord – has 2 subdivisions 1. Sensory Division (Afferent) – conducts action potentials from PNS toward the CNS (by way of the sensory neurons) for evaluation 2. Motor Division (Efferent) – conducts action potentials from CNS toward the PNS (by way of the motor neurons) creating a response from an effector organ – has 2 subdivisions a. Somatic Motor System – controls skeletal muscle only b. Autonomic System – controls/effects smooth muscle, cardiac muscle, and glands – 2 branches • Sympathetic – accelerator “fight or flight” • Parasympathetic – brake “resting and digesting” * 4 Types of Effector Organs: skeletal muscle, smooth muscle, cardiac muscle, and glands. III. Cells of the Nervous System A. Neurons – receive stimuli and transmit action potentials
    [Show full text]
  • Medical Terminology Abbreviations Medical Terminology Abbreviations
    34 MEDICAL TERMINOLOGY ABBREVIATIONS MEDICAL TERMINOLOGY ABBREVIATIONS The following list contains some of the most common abbreviations found in medical records. Please note that in medical terminology, the capitalization of letters bears significance as to the meaning of certain terms, and is often used to distinguish terms with similar acronyms. @—at A & P—anatomy and physiology ab—abortion abd—abdominal ABG—arterial blood gas a.c.—before meals ac & cl—acetest and clinitest ACLS—advanced cardiac life support AD—right ear ADL—activities of daily living ad lib—as desired adm—admission afeb—afebrile, no fever AFB—acid-fast bacillus AKA—above the knee alb—albumin alt dieb—alternate days (every other day) am—morning AMA—against medical advice amal—amalgam amb—ambulate, walk AMI—acute myocardial infarction amt—amount ANS—automatic nervous system ant—anterior AOx3—alert and oriented to person, time, and place Ap—apical AP—apical pulse approx—approximately aq—aqueous ARDS—acute respiratory distress syndrome AS—left ear ASA—aspirin asap (ASAP)—as soon as possible as tol—as tolerated ATD—admission, transfer, discharge AU—both ears Ax—axillary BE—barium enema bid—twice a day bil, bilateral—both sides BK—below knee BKA—below the knee amputation bl—blood bl wk—blood work BLS—basic life support BM—bowel movement BOW—bag of waters B/P—blood pressure bpm—beats per minute BR—bed rest MEDICAL TERMINOLOGY ABBREVIATIONS 35 BRP—bathroom privileges BS—breath sounds BSI—body substance isolation BSO—bilateral salpingo-oophorectomy BUN—blood, urea, nitrogen
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • A Brief Introduction Into the Peripheral Nervous System
    A Brief Introduction into the Peripheral Nervous System Bianca Flores, PhD Candidate, Neuroscience Tuesday, October 15th, 2019 Brief overview: • What are you hoping to learn? • Subdivisions of the peripheral nervous system (PNS) • Physiology • Diseases associated with PNS • Special topics (current research at Vanderbilt) Brief question- • Is there a location in our body that does not have neurons (signals being sent to move or sense)? The body’s nervous system is made up of two parts: The Peripheral Nervous System (PNS) is divided into two parts PNS: Sensory components: • Nociception • Proprioception • Mechanoreception • Thermoception Parasympathetic vs Sympathetic PNS • Includes everything outside of the brain and spinal cord • Is divided into motor and sensory subsets • Controls the “rest and relax” and “flight or fight” responses PNS: Physiology & Anatomy Dorsal Root ganglion are sensory body of the PNS Anatomy of the PNS- Dorsal Root Ganglion How the PNS sends signals to the CNS Nerve impulses carry electrical signals Myelin sheath on surrounds to the nerve to contribute to signal propagation Myelin sheath on surrounds to the nerve to contribute to signal propagation Nerve impulses carry electrical signals PNS Physiology and Anatomy • Dorsal root ganglion are the sensory bodies of the PNS • The Ventral root is responsible for motor movement • Myelin Sheath is imperative to proper nerve function Diseases associated with the PNS: Peripheral Neuropathy What is peripheral neuropathy? Peripheral Neuropathy: -Damage to peripheral nerves
    [Show full text]