NEC Microcontroller Selection Guide

Total Page:16

File Type:pdf, Size:1020Kb

NEC Microcontroller Selection Guide 78K New 8-Bit All Flash Microcontrollers May 2005 Device Memory Interfaces Timers Additional Peripherals Misc. Information Development Tools p p C 2 [V] I Size [KB] LCD Type Core CAN Pins RAM Other Board Tools* [Bytes] PWMs Supply Voltage Internal Subclock Low-Cost I/O Lines I/O Channels Features* Packages In-Circuit Converter Ext. Clock Nickname Emulation A/D / D/A A/D [Data/Adr.] Emulator / Oscillator(s) [32.768 kHz] External Bus CSIs/UARTs Part Number Part Speed [MHz] µPD78F9210 1 78K0S 1 x 8-bit, 8 MHz, 78K0S/KY1+ µPD78F9211 GR-JJG 16 2 Flash 128 14 –/– – – –/– 3 10 – – 4 x 10-bit/– 2.0 – 5.5 LVI, POC, SVF M/O 1 x 16-bit 240 kHz µPD78F9212 4 NS emulator µPD78F9221 2 128 1 x 8-bit, 8 MHz, LIN, LVI, 78K0S/KA1+ MC-5A4 20 Flash 17 –/1 – – –/– 4 10 – – 4 x 10-bit/– 2.0 – 5.5 M/O available µPD78F9222 4 256 1 x 16-bit 240 kHz POC, SVF µPD78F9232 4 1 x 8-bit, 8 MHz, LIN, LVI, 78K0S/KB1+ MC-5A4 30 Flash 256 26 –/1 – – –/– 4 10 – – 4 x 10-bit/– 2.0 – 5.5 O µPD78F9234 8 1 x 16-bit 240 kHz POC, SVF µPD78F0361 16 768 78K0 GB-UEU-A / 8 MHz, POC, WW 78K0/LE2 µPD78F0362 64 24 Flash 26 1/2 – √ –/– 7 4 x 8-bit 20 √ 20 x 4 5 x 10-bit / – 1.8 – 5.5 O GK-UET-A 1024 240 kHz SVF µPD78F0363 32 µPD78F0372 24 POC, WW, 1024 7 µPD78F0373 32 SVF µPD78F0374 48 2048 36 26 x 4 8 x 10-bit / – POC, LVI, µPD78F0375 60 3072 8 WW, SVF µPD78F0376 GC-UBT-A / 96 5120 8 MHz, 78K0/LF2 80 Flash 1/2 – √ –/– 4 x 8-bit 20 √ 1.8 – 5.5 O µPD78F0382 GK-8EU-A 24 240 kHz POC, WW, 1024 7 µPD78F0383 32 SVF QB-78K0LX2-ZZZ µPD78F0384 48 2048 28 36 x 4 – / – POC, LVI, µPD78F0385 60 3072 8 WW, SVF µPD78F0386 96 5120 POC, WW, µPD78F0393 32 1024 1/2 7 SVF µPD78F0394 48 2048 GC-8EA-A / 8 MHz, 78K0/LG2 µPD78F0395 100 60 Flash 3072 42 – √ –/– 4 x 8-bit 20 √ 40 x 4 8 x 10-bit / – 1.8 – 5.5 O GF-JBT-A 240 kHz POC, LVI, µPD78F0396 96 5120 2/2 8 WW, SVF µPD78F0397 128 7168 µPD78F0397D µPD78F0500 8 512 µPD78F0501 16 768 LVI, 4 x 8-bit, 8 MHz, 78K0/KB2 µPD78F0502 MC-5A4-A 30 24 Flash 23 1/2 – –/– 6 20 – – 4 x 10-bit/– 1.8 – 5.5 POC, M/O √ 1 x 16-bit 240 kHz µPD78F0503 1024 SVF, WW 32 µPD78F0503D µPD78F0511 16 768 µPD78F0512 24 37/41 GB-8ES 44 µPD78F0513 1024 32 4 x 8-bit, 8 MHz, LVI, POC, 78K0/KC2 µPD78F0513D Flash 37 1/2 – –/– 7 20 – 8 x 10-bit/– 1.8 – 5.5 M/O √ 1 x 16-bit 240 kHz √ SVF, WW µPD78F0514 48 2048 µPD78F0515 GA-8EU-A 48 41 60 3072 µPD78F0515D µPD78F0521 16 768 µPD78F0522 24 1024 µPD78F0523 32 QB-78K0KX2-ZZZ µPD78F0524 48 2048 4 x 8-bit, 8 MHz, LVI, POC, 78K0/KD2 GB-UET-A 52 Flash 45 1/2 – √ –/– 7 20 √ – 8 x 10-bit/– 1.8 – 5.5 M/O µPD78F0525 60 3072 1 x 16-bit 240 kHz SVF, WW µPD78F0526 96 5120 µPD78F0527 128 7168 µPD78F0527D µPD78F0531 16 768 4 x 8-bit, µPD78F0532 24 1/2 7 1024 1 x 16-bit µPD78F0533 32 GB-UEU-A / µPD78F0534 48 2048 8 MHz, LVI, POC, 78K0/KE2 GB-UBS-A / 64 Flash 55 – √ –/– 20 √ – 8 x 10-bit/– 1.8 – 5.5 M/O µPD78F0535 60 3072 240 kHz SVF, WW GK-UET-A 4 x 8-bit, µPD78F0536 96 5120 2/2 8 2 x 16-bit µPD78F0537 128 7168 µPD78F0537D µPD78F0544 48 2048 µPD78F0545 60 3072 GK-8EU-A / 4 x 8-bit, 8 MHz, LVI, POC, 78K0/KF2 µPD78F0546 80 96 Flash 5120 71 3/2 – –/– 8 20 – 8 x 10-bit/– 1.8 – 5.5 O GC-UBT-A √ 2 x 16-bit 240 kHz √ SVF, WW µPD78F0547 128 7168 µPD78F0547D µPD780101 8 512 1/1 LVI, µPD780102 16 Mask 10 2.7 – 5.5 POC, CM, µPD780103 768 1/2 24 LIN µPD78F0103Mx 3 x 8-bit, 78K0/KB1(+) MC-5A4 30 22 – – –/– 5 240 kHz – – 4 x 10-bit/– M/O µPD78F0101H 8 512 1/1 1 x 16-bit µPD78F0102H 16 Flash LIN, POC, 16 2.0 – 5.5 SVF, 768 1/2 µPD78F0103H 24 LVI, CM µPD780111 8 512 µPD780112 16 Mask 2.7 – 5.5 POC, µPD780113 24 10 LVI, CM, µPD780114 1024 LIN 32 4 x 8-bit, 78K0/KC1(+) µPD78F0114Mx GB-8ES 44 32 1/2 – – –/– 7 240 kHz – 8 x 10-bit/– M/O 1 x 16-bit √ µPD78F0112H 16 512 µPD78F0113H 24 Flash 2.0 –5.5 CM, 16 LIN, LVI, µPD78F0114H 1024 32 POC, SVF µPD78F0114HD µPD780121 8 512 µPD780122 16 Mask CM, LIN µPD780123 24 10 2.7 – 5.5 LVI, POC µPD780124 1024 32 4 x 8-bit, 78K0/KD1(+) µPD78F0124Mx GB-8ET 52 39 1/2 – – –/– 7 240 kHz – 8 x 10-bit/– M/O 1 x 16-bit √ µPD78F0122H 16 512 µPD78F0123H 24 Flash CM, LIN 16 2.0 – 5.5 LVI, POC, µPD78F0124H 1024 32 SVF µPD78F0124HD µPD780131 8 4 x 8-bit, 512 1/2 7 µPD780132 16 1 x 16-bit LIN, POC, µPD780133 24 LVI, CM 1024 µPD780134 GB-8EU / 32 QB-78K0KX1H-ZZZ GC-8BS / Mask µPD780136 GK-9ET 48 POC, LVI, CM, 2048 µPD780138 60 LIN, MC, RCF 10 2.7 – 5.5 M/O 4 x 8-bit, 2/2 8 2 x 16-bit POC, LVI, CM, µPD78F0134Mx 32 1024 LIN 78K0/KE1(+) 64 51 – – –/– 240 kHz √ – 8 x 10-bit/– POC, LVI, CM, µPD78F0138Mx 60 2048 LIN, MC, RCF GB-8EU / 4 x 8-bit, µPD78F0132H GC-8BS / 16 Flash 512 1/2 7 POC, LVI, 1 x 16-bit GK-9ET CM, LIN, µPD78F0133H 24 1024 SVF µPD78F0134H 32 16 2.0 – 5.5 M/O µPD78F0136H 48 4 x 8-bit, µPD78F0138H 2/2 8 2x 16-bit POC, LVI, CM, 2048 LIN, MC, RCF, 60 µPD78F0138HD SVF µPD780143 24 4 x 8-bit, 1024 2/2 7 µPD780144 32 1 x 16-bit Mask LIN, POC, µPD780146 48 10 2.7 – 5.5 LVI, CM µPD780148 GC-8BT / 78K0/KF1(+) 80 60 67 – – 8/16 240 kHz √ – 8 x 10-bit/– M/O µPD78F0148Mx GK-9EU 4 x 8-bit 2048 3/2 8 µPD78F0146H 48 2 x 16-bit Flash SVF, POC, µPD78F0148H 16 2.0 – 5.5 LVI, CM, 60 µPD78F0148HD LIN, MC 3 x 8-bit, 1 x 16-bit, LVI, POC, Motor Control II µPD78F0714 GK-9ET 64 32 Flash 1024 51 1/1 – – –/– 6 20 240 kHz – 8 x 10-bit/– 3.3 – 5.5 M/O QB-780714-ZZZ 3 x 10-bit √ SVF for inverter µPD78F0871 32 2048 4 x 8-bit, 78K0/FC1(+) µPD78F0872 GB-8ES 44 48 Flash 33 1/2 1 – –/– 8 16 240 kHz √ – 8 x 10-bit/– 3.3 – 5.5 M/O 3072 1 x 16-bit µPD78F0873 60 CM, LIN, µPD78F0874 GB-8EU / 48 4 x 8-bit, QB-78K0FX1-ZZZ 78K0/FE1(+) 64 Flash 3072 51 2/2 1 – –/– 8 16 240 kHz – 12 x 10-bit/– 3.3 – 5.5 LVI, POC, M/O µPD78F0875 √ GK-9ET 60 1 x 16-bit SVF GC-8BT / 4 x 8-bit, 78K0/FF1(+) µPD78F0876 80 60 Flash 3072 67 2/2 1 – –/– 8 16 240 kHz – 16 x 10-bit/– 3.3 – 5.5 M/O GK-9EU 1 x 16-bit √ Instructions: *CM = Clock monitor SG = Sound generator LIN = Advanced, LIN-capable UART SMC = Stepper motor controller Use the Development Tools, Packages and Pins columns to find tools LVI = Low-voltage indicator SVF = Single-voltage flash, (secure) self-programming information on reverse page. POC = Power-on-clear (advanced power-on reset) WW = Window watchdog RC = RC oscillator RCF = ROM correction feature Low-cost tools (see reverse side) M = M-Station Evaluation Kit p = Refer to tables below for pin counts and O = MINICUBE supported. Use device with OCD package availability. for development. √ = yes – = no NS Emulator = Traditional full-function ICE (√) = optional Package Types Pins 16 20 30 44 48 52 Package GR-JJG MC-5A4 MC-5A4 GB-8ES-A GB-8ES GA-8EU-A GB-UET-A GB-8ET SSOP SSOP SSOP LQFP LQFP LQFP Type (mm2) 225 mil 300 mil 300 mil (10 x 10) (7 x 7) (10 x 10) Pins 64 80 100 Package GB-UEU-A GK-UET-A GK-9ET GB-8EU GC-8BS GB-UBS-A GC-UBT-A GC-8BT GK-8EU-A GK-9EU GC-8EA-A GF-JBT-A LQFP LQFP TQFP LQFP QFP LQFP TQFP LQFP QFP Type (mm2) (10 x 10) (12 x 12) (12 x 12) (14 x 14) (14 x 14) (12 x 12) (12 x 12) (14 x 14) (14 x 20) www.necelam.com Development Tools for 78K New 8-Bit All Flash Microcontrollers May 2005 Pin/ Device Subseries Motor Control II 78K0/Fx1 78K0/Kx1+ 78K0/Kx2 78K0/Lx2 Package IECUBE QB-780714 QB-78K0FX1 QB-78K0KX1H QB-78K0KX2 QB-78K0LX2 Exchange adapter QB-100GC-EA-03T ID78K0-QB ICE connector QB-100GC-YQ-01T Target connector QB-100GC-NQ-01T 100GC Mount adapter – – – – QB-100GC-HQ-01T Space adapter QB-100GC-YS-01T Check pin adapter QB-144-CA-01 Extension probe QB-144-EP-01S Exchange adapter QB-100GF-EA-03T ICE connector QB-100GF-YQ-01T Target connector QB-100GF-NQ-01T 100GF Mount adapter – – – – QB-100GF-HQ-01T Space adapter QB-100GF-YS-01T Check pin adapter QB-144-CA-01 Extension probe QB-144-EP-01S QB-80GC-EA-04T* Exchange adapter QB-80GC-EA-01T QB-80GC-EA-01T QB-80GC-EA-01T QB-80GC-EA-05T ICE connector QB-80GC-YQ-01T QB-80GC-YQ-01T QB-80GC-YQ-01T QB-80GC-YQ-01T Target connector QB-80GC-NQ-01T QB-80GC-NQ-01T QB-80GC-NQ-01T QB-80GC-NQ-01T 80GC – Mount adapter QB-80GC-HQ-01T QB-80GC-HQ-01T QB-80GC-HQ-01T QB-80GC-HQ-01T Space adapter QB-80GC-YS-01T QB-80GC-YS-01T QB-80GC-YS-01T QB-80GC-YS-01T Check pin adapter QB-144-CA-01 QB-144-CA-01 QB-144-CA-01 QB-144-CA-01 Extension probe QB-80-EP-01T QB-80-EP-01T QB-80-EP-01T QB-144-EP-01S QB-80GK-EA-04T* Exchange adapter QB-80GK-EA-01T QB-80GK-EA-01T QB-80GK-EA-01T QB-80GK-EA-05T ICE connector QB-80GK-YQ-01T QB-80GK-YQ-01T QB-80GK-YQ-01T QB-80GK-YQ-01T Target connector QB-80GK-NQ-01T QB-80GK-NQ-01T QB-80GK-NQ-01T QB-80GK-NQ-01T 80GK – Mount adapter QB-80GK-HQ-01T QB-80GK-HQ-01T QB-80GK-HQ-01T QB-80GK-HQ-01T Space adapter QB-80GK-YS-01T QB-80GK-YS-01T QB-80GK-YS-01T QB-80GK-YS-01T Check pin adapter QB-144-CA-01 QB-144-CA-01 QB-144-CA-01 QB-144-CA-01 Extension probe QB-80-EP-01T QB-80-EP-01T QB-80-EP-01T QB-144-EP-01S Exchange adapter QB-64GA-EA-01T ICE connector QB-64GA-YQ-01T Target connector QB-64GA-NQ-01T 64GA Mount adapter – – – QB-64GA-HQ-01T – Mandatory Space adapter QB-64GA-YS-01T Optional Check pin adapter QB-144-CA-01 Included in delivery Extension probe QB-80-EP-01T Exchange adapter QB-64GB-EA-03T QB-64GB-EA-01T QB-64GB-EA-04T QB-64GB-EA-07T ICE connector QB-64GB-YQ-01T QB-64GB-YQ-01T QB-64GB-YQ-01T QB-64GB-YQ-01T Target connector QB-64GB-NQ-01T QB-64GB-NQ-01T QB-64GB-NQ-01T QB-64GB-NQ-01T 64GB Mount adapter – QB-64GB-HQ-01T QB-64GB-HQ-01T QB-64GB-HQ-01T QB-64GB-HQ-01T Space adapter QB-64GB-YS-01T QB-64GB-YS-01T QB-64GB-YS-01T QB-64GB-YS-01T Check pin adapter QB-144-CA-01 QB-144-CA-01 QB-144-CA-01 QB-144-CA-01 Extension probe QB-80-EP-01T QB-80-EP-01T QB-80-EP-01T QB-144-EP-01S Exchange adapter QB-64GC-EA-01T QB-64GC-EA-03T ICE connector QB-64GC-YQ-01T QB-64GC-YQ-01T Target connector QB-64GC-NQ-01T QB-64GC-NQ-02T In-Circuit Emulation
Recommended publications
  • 08-02-2021 Agenda Packet.Pdf
    AGENDA DELANO CITY COUNCIL REGULAR MEETING August 2, 2021 DELANO CITY HALL, 1015 – 11th Avenue 5:30 P.M. IN ACCORDANCE WITH THE GOVERNOR NEWSOM’S EXECUTIVE ORDER #N-08-21, THIS MEETING WILL BE CONDUCTED FULLY VIA TELECONFERENCE, DUE TO THE CURRENT RESTRICTIONS BY SAID ORDER AND CENTERS FOR DISEASES CONTROL AND PREVENTION (CDC) GUIDELINES. THE PUBLIC WILL HAVE ACCESS TO CALL IN, LISTEN TO THE MEETING AND PROVIDE PUBLIC COMMENT. IN ACCORDANCE WITH GOVERNOR NEWSOM’S EXECUTIVE ORDER N-08-21, THERE WILL NOT BE A PHYSICAL LOCATION FROM WHICH THE PUBLIC MAY ATTEND. IN ORDER TO CALL INTO TH E MEETING PLEASE SEE THE DIRECTIONS BELOW. CALL TO ORDER INVOCATION FLAG SALUTE ROLL CALL PRESENTATIONS AND AWARDS Featured Pet – Tabitha PUBLIC COMMENT: The public may address the Council on items which do not appear on the agenda. The Council cannot respond nor take action on items that do not appear on the agenda but may refer the item to staff for further study or for placement on a future agenda. Comments are limited to 3 minutes for each person and 15 minutes on each subject. Please state your name and address for the record. CONSENT AGENDA: The Consent Agenda consists of items that in staff’s opinion are routine and non-controversial. These items are approved in one motion unless a Councilmember or member of the public removes a particular item. 1) Authorization to waive the reading of any ordinance in its entirety and consenting to the reading of such ordinances by title only 2) Warrant Register in the amount of $3,044,398.54 3) Minutes of regular City Council Meeting of July 19, 2021 4) Acceptance and Approval of the City of Delano Quarterly Investment Report 5) Resolution adopting the 2020-2021 Kern Multi-Jurisdiction Hazard Mitigation Plan (MJHMP) 6) Approval of agreement with Youth Educational Sports, Inc.
    [Show full text]
  • 8-Bit All Flash 78K0 Microcontrollers 78K0S
    For further information, please contact: NEC Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/ [America] [Europe] [Asia & Oceania] NEC Electronics America, Inc. NEC Electronics (Europe) GmbH NEC Electronics (China) Co., Ltd 8-bit All Flash 2880 Scott Blvd. Arcadiastrasse 10 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian Santa Clara, CA 95050-2554, U.S.A. 40472 Düsseldorf, Germany District, Beijing 100083, P.R.China Tel: 408-588-6000 Tel: 0211-65030 Tel: 010-8235-1155 800-366-9782 http://www.eu.necel.com/ http://www.cn.necel.com/ http://www.am.necel.com/ Hanover Office Shanghai Branch Podbielskistrasse 166 B Room 2509-2510, Bank of ChinaTower, 30177 Hannover 200Y incheng Road Central, Tel: 0 511 33 40 2-0 Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 Munich Office http://www.cn.necel.com/ Werner-Eckert-Strasse 9 81829 München Shenzhen Branch Tel: 0 89 92 10 03-0 Unit 01, 39/F, Excellence Times Square Building, Stuttgart Office No. 4068 Yi Tian Road, Futian District, Shenzhen, Industriestrasse 3 P.R.China P.C:518048 70565 Stuttgart Tel:0755-8282-9800 Tel: 0 711 99 01 0-0 http://www.cn.necel.com/ United Kingdom Branch NEC Electronics Hong Kong Ltd. Cygnus House, Sunrise Parkway Unit 1601-1613, 16/F., Tower 2, Grand Century Place, Linford Wood, Milton Keynes 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong MK14 6NP, U.K. Tel: 2886-9318 Tel: 01908-691-133 http://www.hk.necel.com/ Succursale Française 9, rue Paul Dautier, B.P.
    [Show full text]
  • Familias De Microcontroladores
    INTRODUCCION Un microcontrolador es un circuito integrado tiene en su interior todas las características de un computador, es decir, programa y circuitos periféricos para CPU, RAM, una memoria de entrada y salida. Muy regularmente los microcontroladores poseen además convertidores análogo - digital, temporizadores, contadores y un sistema para permitir la comunicación en serie y en paralelo. Se pueden crear muchas aplicaciones con los microcontroladores. Estas aplicaciones de los microcontroladores son ilimitadas, entre ellas podemos mencionar: sistemas de alarmas, iluminación, paneles publicitarios, etc. Controles automáticos para la Industria en general. Entre ellos control de motores DC/AC y motores de paso a paso, control de máquinas, control de temperatura, tiempo; adquisición de datos mediante sensores, etc. HISTORIA El primer microprocesador fue el Intel 4004 de 4 bits, lanzado en 1971, seguido por el Intel 8008 y otros más capaces. Sin embargo, ambos procesadores requieren circuitos adicionales para implementar un sistema de trabajo, elevando el costo del sistema total. Los ingenieros de Texas Instruments Gary Boone y Michael Cochran lograron crear el primer microcontrolador, TMS 1000, en 1971; fue comercializado en 1974. Combina memoria ROM, memoria RAM, microprocesador y reloj en un chip y estaba destinada a los sistemas embebidos.2 Debido en parte a la existencia del TMS 1000,3 Intel desarrolló un sistema de ordenador en un chip optimizado para aplicaciones de control, el Intel 8048, que comenzó a comercializarse en 1977.3 Combina memoria RAM y ROM en el mismo chip y puede encontrarse en más de mil millones de teclados de compatible IBM PC, y otras numerosas aplicaciones. El en ese momento presidente de Intel, Luke J.
    [Show full text]
  • Renesas Microcomputer All Flash 78K Microcontroller
    Renesas Microcomputer All Flash 78K Renesas Microcomputer Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes: 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or All Flash 78K technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Microcontroller 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
    [Show full text]
  • The Anatomy of the ARM Cortex-M0+ Processor
    The Anatomy of the ARM Cortex-M0+ Processor Joseph Yiu Embedded Technology Specialist 1 What is the Cortex-M0+ Processor? . 2009 – ARM® Cortex™-M0 processor released . Low gate count . High performance . Easy to use . Debug features . 2012 – Cortex-M0+ processor released . Same instruction set . Supports all existing features of Cortex-M0 . New features . Higher energy efficiency . Ready for future applications 2 What’s new? . Even better power efficiency . Clean sheet design – 2 stage pipeline . Better performance at the same frequency . Unprivileged execution level . 8 region Memory Protection Unit (MPU) . Faster I/O accesses . Vector table relocation . Low cost trace solution available . Various silicon integration features (e.g.16-bit flash support) 3 Why a New Design? Energy is the Key . Embedded products need even longer battery life . Need to have lower active power . But not compromise on performance . Low power control applications . Need to have faster I/O capability . But not higher operating frequency . Smarter designs . Need more sophisticated features . But not bigger silicon 4 Overview of the Cortex-M0+ Processor . Processor . ARMv6-M architecture . Easy to use, C friendly . Cortex-M series compatibility . Nested Vectored Interrupt Controller (NVIC) . Flexible interrupt handling . WIC support . Memory Protection Unit (MPU) . Debug from just 2 pins 5 Compact Instruction Set . Only 56 Instructions . 100% compatible with existing Cortex-M0 processor . Mostly 16-bit instructions . All instructions operate on the 32-bit registers . Option for single cycle 32x32 Maximum reuse of multiply Upwardexisting compatibility tools to andthe ARM Cortexecosystem-M3/Cortex -M4 6 Interrupt Handling . Nested Vectored Interrupt Cortex-M0+ Controller (NVIC) NMI NVIC Core .
    [Show full text]
  • Rodney B. Bonser
    Rodney B. Bonser Embedded System Programming and Engineering: System Level Firmware Design Application Firmware Programming Hardware Test Firmware C and Assembly Language Programming Real-Time Operating System (RTOS) Programming and Integration Embedded Linux Applications Nucleus Plus, CMX I/O Drivers Tensilica Xtensa, ARM, Motorola 68XXX Software State Machines GDB and IDE Debugging Codewright, CodeWarrior PERL and C Software Utilities State & Task Diagramming Firmware Documentation EXPERIENCE Please Note: My expertise varies among the following tasks. Please inquire about experience with a particular skill or task. ALLERO Design Meadow Vista, CA 1/02 - Present Consulting Engineer Software: Embedded Linux on single board computer platform Temperature and humidity sensor monitoring PERL and C daemons & utilities Hardware: Portable preamp / amp for electric guitar Luxxon Corporation Mountain View, CA 12/00 - 1/02 Senior Firmware Engineer Firmware for the LUX2 Multimedia Processor chip Firmware: Member of the system level firmware design team Assembly and C language for Tensilica Xtensa RISC processor Programming under the Nucleus Plus RTOS Video / Audio synchronization Test and design verification firmware for the chip audio subsystem Debugging with GDB CodeWright IDE Software: PERL and C utilities Documentation: Firmware descriptions State & task relationship diagrams Wireless Link, Inc. Milpitas, CA 3/99 - 5/00 Consultant Engineering for cellular telephone products Firmware: Assembly and C language for ARM RISC processor Ported Nucleus Plus RTOS to ARM-based platform Simulated RTOS port under ARMulator (ARM processor simulator) CodeWarrior IDE Assembly and C language for NEC 78K IV microprocessor Multiple tasks running under CMX RTOS Remote programming of firmware into FLASH memory Software state machine for Telephone ringing Hook detection Tone generation DTMF detection and decoding CodeWright IDE Hardware: Level shifter board for serial communication Documentation: Firmware descriptions State & task relationship diagrams Schematic Vista Labs, Inc.
    [Show full text]
  • MIPS, HPS, Two-Level Branch Prediction, and Compressed Code RISC Processor
    Awards ................................................................................................................................................................ Common Bonds: MIPS, HPS, Two-Level Branch Prediction, and Compressed Code RISC Processor ONUR MUTLU ETH Zurich RICH BELGARD ......We are continuing our series of of performance optimization on the com- sions made in the MIPS project that retrospectives for the 10 papers that piler and keep the hardware design sim- passed the test of time. The retrospective received the first set of MICRO Test of ple. The compiler is responsible for touches on the design tradeoffs made to Time (“ToT”) Awards in December generating and scheduling simple instruc- couple the hardware and the software, 2014.1,2 This issue features four retro- tions, which require little translation in the MIPS project’s effect on the later spectives written for six of the award- hardware to generate control signals to development of “fabless” semiconductor winning papers. We briefly introduce control the datapath components, which companies, and the use of benchmarks these papers and retrospectives and in turn keeps the hardware design simple. as a method for evaluating end-to-end hope that you will enjoy reading them as Thus, the instructions and hardware both performance of a system as, among much as we have. If anything ties these remain simple, whereas the compiler others, contributions of the MIPS project works together, it is the innovation they becomes much more important (and that have stood the test of time. delivered by taking a strong position in likely complex) because it must schedule the RISC/CISC debates of their decade. instructions well to ensure correct and High-Performance Systems We hope the IEEE Micro audience, espe- high-performance use of a simple pipe- The second retrospective addresses three cially younger generations, will find the line.
    [Show full text]
  • TTL and CMOS Logic 74 Series
    TTL and CMOS logic 74 Series TTL and CMOS logic 74 Series ! Datasheets ¡¡ CLICK HERE for the TTL and CMOS logic listings! CLICK HERE for links to other useful datasheet sites! This page contains links to datasheets for all the IC's used in my projects, click the part number to read the datasheet. Some of these I scanned myself, others are located on others' pages or the manufacturer's website. If there are any broken links tell me. To read these datasheets you need to install Adobe Acrobat if you haven't already done so. The scanned datasheets are sometimes easiest to read if you select "Actual Size" in Adobe Acrobat's "View" menu. A number of these parts are obsolete, and several more will probably become obsolete very soon. I have saved local copies of all of the datasheets linked here, so that they will be preserved if the manufacturers decide to remove the datasheets from their websites. In this case I will replace the URL with a local link. If you find any broken links, let me know. Many IC's are made by multiple manufacturers, and there have been many rounds of mergers, aquisitions and consolidations in the semiconductor industry. Therefore the manufacturers listed here are not necessarily the ones whose IC's I used, but in all cases chips from a different manufacturer should be interchangeable. In general 74nn chips and 74LSnn chips can also be interchanged, I simply used what was available to me at the time. Part Description Manufacturer Size Notes ¡¡ ¡¡ ¡¡ ¡¡ ¡¡ http://www.datasheet4u.com/TTL/TTL.html (1 z 22)1.10.2007 17:46:45
    [Show full text]
  • Z86e04/E08 1 Cmos Z8 Otp Microcontrollers
    PRELIMINARY PRODUCT SPECIFICATION 1 Z86E04/E08 1 CMOS Z8 OTP MICROCONTROLLERS PRODUCT DEVICES Part Oscillator Operating Operating ROM Number Type VCC Temperature (KB) Package Z86E0412PEC Crystal 4.5V–5.5V –40°C/105°C 1 18-Pin DIP Z86E0412PSC1866 Crystal 4.5V–5.5V 0°C/70°C 1 18-Pin DIP Z86E0412PSC1903 RC 4.5V–5.5V 0°C/70°C 1 18-Pin DIP Z86E0412PEC1903 RC 4.5V–5.5V –40°C/105°C 1 18-Pin DIP Z86E0412SEC Crystal 4.5V–5.5V –40°C/105°C 1 18-Pin SOIC Z86E0412SSC1866 Crystal 4.5V–5.5V 0°C/70°C 1 18-Pin SOIC Z86E0412SSC1903 RC 4.5V–5.5V 0°C/70°C 1 18-Pin SOIC Z86E0412SEC1903 RC 4.5V–5.5V –40°C/105°C 1 18-Pin SOIC Z86E0812PEC Crystal 4.5V–5.5V –40°C/105°C 2 18-Pin DIP Z86E0812PSC1866 Crystal 4.5V–5.5V 0°C/70°C 2 18-Pin DIP Z86E0812PSC1903 RC 4.5V–5.5V 0°C/70°C 2 18-Pin DIP Z86E0812PEC1903 RC 4.5V–5.5V –40°C/105°C 2 18-Pin DIP Z86E0812SEC Crystal 4.5V–5.5V –40°C/105°C 2 18-Pin SOIC Z86E0812SSC1866 Crystal 4.5V–5.5V 0°C/70°C 2 18-Pin SOIC Z86E0812SSC1903 RC 4.5V–5.5V 0°C/70°C 2 18-Pin SOIC Z86E0812SEC1903 RC 4.5V–5.5V –40°C/105°C 2 18-Pin SOIC Several key product features of the extensive family of Zilog Z86E04/E08 CMOS OTP microcontrollers are presented in the above table.
    [Show full text]
  • Renesas Mpus & Mcus 78K MCU Selection Guide
    Renesas MPUs & MCUs 78K MCU Selection Guide www.renesas.com 2012.12 8-bit Single-Chip MCUs 78K0 and 78K0S MCUs Device Memory Clock I/O Bus Timer Serial Interface OCD Peripheral Functions Other ash fl C Commercial 2 C Applications Product name 2 I CSI CAN A/D converter IEBus name UART CSI, I CPU core I/O ports 8-bit timer ROM type UART, CSI UART, ΔΣ 16-bit timer Watch timer Watch Other timers PWM output External bus reception function (data/address) ROM size [KB] Other functions Watchdog timer Watchdog Multiplier/divider frequency [MHz] Emulation board RAM size [bytes] Real-time counter In-circuit emulator 8-bit A/D converter converter 8-bit D/A On-chip debugging Single voltage Maximum operating 10-bit A/D converter Package (size [mm]) UART supporting LIN UART [bits × bits, bits ÷ bits] On-chip oscillator [Hz] Subclock (32.768 kHz) 16-bit CSI with automatic transmission/ LCD [segments × commons] Power supply voltage [V] UART supporting LIN, CSI UART 78K0S/KU1+ μPD78F9200 1 Flash √ 128 10 8 M, − 8 −/− 11 −−−1 16 bits × 1, −−−−−−−−−−− − −4 −− −POC (2.1 V ± 0.1 V), 2.0 to 5.5 10-SSOP QB-MINI2 240 k 8 bits × 1 LVI (5.72) (MINICUBE2) μPD78F9201 2 78K0S QB-78K0SKX1 μPD78F9202 4 (IECUBE) μPD78F9500 1 − 8 bits × 1 − μPD78F9501 2 μPD78F9502 4 78K0S/KY1+ μPD78F9210 1 Flash √ 128 10 8 M, − 14 −/− 11 −−−1 16 bits × 1, −−−−−−−−−−− − −4 −− −POC (2.1 V ± 0.1 V), 2.0 to 5.5 16-SSOP 240 k 8 bits × 1 LVI Thickness: 1.44 mm, μPD78F9211 2 (5.72) 1.5 mm (4.4 × 5) μPD78F9212 4 16-WLBGA (2 × 2.3) 16-SDIP General Purpose (All Flash) (7.62) μPD78F9510 1 − 16-SSOP
    [Show full text]
  • Cortex M7 Instruction Set
    Cortex m7 instruction set Continue ARM Cortex-M0 and Microcontroller Cortex-M3 of NXP and Silicon Labs (Energy Micro) die from microcontrol STM32F100C4T6B IC.24 MHz ARM Cortex-M3 with 16 KB of flash memory, 4 KB of RAM. Manufactured by STMicroelectronics. ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by Arm Holdings. These cores are optimized for low-cost and energy efficient microcontrollers that have been introduced into tens of billions of consumer devices. The cores consist of Cortex-M0, Cortex-M0, Cortex-M1, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23, Cortex-M33, Cortex-M35P, Cortex-M55. The cores of Cortex-M4/M7/M33/M35P/M55 have a silicon version of FPU, and when incorporated into silicon, these nuclei are sometimes referred to as Cortex-Mx with FPU or Cortex-MxF, where x is the main number. 2004 Cortex-M3 2007 Cortex-M1 2009 Cortex-M0 2010 Cortex-M4 2012 Cortex-M0' 2014 Cortex-M7 2016 Cortex- M7 2016 Cortex-M0-M4 2014 Cortex-M7 2016 Cortex-M4 M2 3 2016 Cortex-M33 2018 Cortex-M35P 2020 Cortex-M See also: ARM Architecture and ARM Cortex-M Cores are ARM Cores, which are designed to be used in microcontrollers, ASICs, ASSPs, FPGAs, and SoCs. Cortex-M cores are commonly used as dedicated microcontrollers, but are also hidden inside SoC chips as power control controllers, i/O controllers, system controllers, touch screen controllers, smart battery controllers, and sensor controllers. While 8-bit microcontrollers have been very popular in the past, Cortex-M has slowly chipped away at the 8-bit market as prices for low-end Cortex-M chips have moved down.
    [Show full text]
  • [Upgrade to Revision] CS+ Integrated Development
    RENESAS TOOL NEWS [Upgrade to revision] R20TS0724EJ0100 Rev.1.00 CS+ Integrated Development Environment V8.06.00 Jul. 16, 2021 Overview We will be revising the CS+ integrated development environment from V8.05.00 to V8.06.00. 1. Version to Be Updated ➢ CubeSuite+ Common Programs: V1.00.00 to V1.03.00 and V2.00.00 to V2.02.00 ➢ CS+ Common Programs: V3.00.00 to V3.03.00, V4.00.00 to V4.03.00, V5.00.00, V6.00.00 to V6.01.00, V7.00.00, V8.00.01, V8.01.00 to V8.05.00 For how to confirm which version you currently have, refer to the following URL. https://www.renesas.com/cs+_ver 2. Topics of Revision Description The function described below has been added and enhanced in CS+ for CC. - Improvement of the MCU search function for dialog boxes such as the Create New Project dialog box (applicable MCUs: RH850 family, RX family, and RL78 family) The function was improved so that if a microcontroller name containing a detailed package code is entered in the microcontroller search box for the following dialog boxes, the microcontroller name containing package code"x" is hit: Create Project dialog box, Project Convert Setting dialog box, or Change Microcontroller dialog box Example: When "R5F51105AAF" is entered in the microcontroller search box, R5F51105AxFK is hit. 3. Items Revised 3.1 CS+ Common Programs (with building, debugging, analysis, and other capabilities) - The common programs of CS+ for CC (for RX, RH850, and RL78) have been updated from V8.05.00 to V8.06.00.
    [Show full text]