Prepared for submission to JCAP Constraining Ultralight Axions with Galaxy Surveys A. Laguë,a;b;c;1 J. R. Bond,b R. Hložek,a;c K. K. Rogers,c D. J. E. Marsh,d and D. Grine aDavid A. Dunlap Department of Astronomy & Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4, Canada bCanadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George St., Toronto, ON, M5S 3H8, Canada cDunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4, Canada dInstitut für Astrophysik, Georg-August Universität, Friedrich-Hund-Platz 1, Göttingen, Germany eDepartment of Physics and Astronomy, Haverford College, Haverford, PA 19041, USA E-mail:
[email protected] Abstract. Ultralight axions and other bosons are dark matter candidates present in many high energy physics theories beyond the Standard Model. In particular, the string axiverse postulates the existence of up to (100) light scalar bosons constituting the dark sector. Considering a mixture of axions andO cold dark matter, we obtain upper bounds for the axion 2 −31 −26 relic density Ωah < 0:004 for axions of mass 10 eV ma 10 eV at 95% confidence. ≤ ≤ We also improve existing constraints by a factor of over 4.5 and 2.1 for axion masses of 10−25 eV and 10−32 eV, respectively. We use the Fourier-space galaxy clustering statistics from the Baryon Oscillation Spectroscopic Survey (BOSS) and demonstrate how galaxy surveys break important degeneracies in the axion parameter space compared to the cosmic microwave background (CMB). We test the validity of the effective field theory of large-scale structure approach to mixed ultralight axion dark matter by making our own mock galaxy catalogs and find an anisotropic ultralight axion signature in the galaxy quadrupole.