Mitochondrial Neurogastrointestinal Encephalopathy Due to Mutations in RRM2B

Total Page:16

File Type:pdf, Size:1020Kb

Mitochondrial Neurogastrointestinal Encephalopathy Due to Mutations in RRM2B OBSERVATION Mitochondrial Neurogastrointestinal Encephalopathy Due to Mutations in RRM2B Aziz Shaibani, MD; Oleg A. Shchelochkov, MD; Shulin Zhang, MD, PhD; Panagiotis Katsonis, PhD; Olivier Lichtarge, MD, PhD; Lee-Jun Wong, PhD; Marwan Shinawi, MD Background: Mitochondrial neurogastrointestinal en- of our patient’s condition. Sequencing of genes associ- cephalopathy (MNGIE) is a progressive neurodegenera- ated with mitochondrial DNA depletion—POLG, PEO1, tive disorder associated with thymidine phosphorylase ANT1, SUCLG1, and SUCLA2—did not reveal deleteri- deficiency resulting in high levels of plasma thymidine ous mutations. Results of sequencing and array com- and a characteristic clinical phenotype. parative genomic hybridization of the mitochondrial DNA for point mutations and deletions in blood and muscle Objective: To investigate the molecular basis of MNGIE were negative. Sequencing of RRM2B, a gene encoding in a patient with a normal plasma thymidine level. cytosolic p53-inducible ribonucleoside reductase small subunit (RIR2B), revealed 2 pathogenic mutations, Design: Clinical, neurophysiological, and histopatho- c.329GϾA (p.R110H) and c.362GϾA (p.R121H). These logical examinations as well as molecular and genetic mutations are predicted to affect the docking interface analyses. of the RIR2B homodimer and likely result in impaired Setting: Nerve and muscle center and genetic clinic. enzyme activity. Patient: A 42-year-old woman with clinical findings Conclusions: This study expands the clinical spectrum strongly suggestive for MNGIE. of impaired RIR2B function, challenges the notion of lo- cus homogeneity of MNGIE, and sheds light on the patho- Main Outcome Measures: Clinical description of the genesis of conditions involved in the homeostasis of the disease and its novel genetic cause. mitochondrial nucleotide pool. Our findings suggest that patients with MNGIE who have normal thymidine lev- Results: Identification of mitochondrial DNA deple- els should be tested for RRM2B mutations. tion in muscle samples (approximately 12% of the con- trol mean content) prompted us to look for other causes Arch Neurol. 2009;66(8):1028-1032 ITOCHONDRIAL NEURO- notype associated with multiple mtDNA gastrointestinal en- deletions3 or mutations in POLG4 have cephalopathy(MNGIE) been reported. is an autosomal reces- Although mtDNA depletion is one of the sive disease character- characteristic molecular findings in MNGIE, Author Affiliations: Nerve and ized by gastrointestinal dysmotility, oph- mtDNA depletion is also associated with Muscle Center of Texas, M thalmoplegia, ptosis, cachexia, peripheral mutations in nuclear genes that affect mi- Houston (Dr Shaibani); 1 Departments of Medicine neuropathy, and leukoencephalopathy. It tochondrial nucleotide metabolism and (Dr Shaibani), Molecular and is caused by mutations in TYMP, a gene mtDNA replication. These genes exert their 2 Human Genetics encoding thymidine phosphorylase. De- action by either directly affecting the mtDNA (Drs Shchelochkov, Zhang, ficiency in thymidine phosphorylase leads replication fork (POLG, POLG2, and PEO1) Katsonis, Lichtarge, Wong, and to marked elevation of thymidine and de- or regulating the mitochondrial deoxy- Shinawi), Biochemistry and oxyuridine levels, resulting in imbalance nucleotide triphosphate pool (TYMP, TK2, Molecular Biology of the mitochondrial nucleotide pool. It has DGUOK, SUCLA2, SUCLG1, and ANT1).5 (Dr Lichtarge), and been hypothesized that alteration of de- Mutations in RRM2B (GenBank AB036532) Pharmacology (Dr Lichtarge) oxynucleotide triphosphate homeostasis were recently implicated in a novel mito- and Medical Genetics results in improper mitochondrial DNA chondrial depletion syndrome presenting Laboratories (Drs Zhang and Wong), Baylor College of (mtDNA) replication that in turn causes with early-onset seizures, hypotonia, diar- Medicine, Houston; and Texas mtDNA deletion, point mutations, and rhea, renal tubulopathy, lactic acidosis, and 2 6-9 Children’s Hospital, Houston depletion. Although TYMP is the only early lethality. (Drs Shchelochkov and gene known to be associated with typical Here we describe a 42-year-old woman Shinawi). MNGIE, a few cases of MNGIE-like phe- with clinical findings strongly suggestive (REPRINTED) ARCH NEUROL / VOL 66 (NO. 8), AUG 2009 WWW.ARCHNEUROL.COM 1028 ©2009 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 A B Figure 1. Axial fluid-attenuated inversion recovery, T2-weighted magnetic resonance images of the brain showing symmetric, hyperintense, nonenhancing lesions in the basal ganglia (arrows) (A) and patchy signals throughout the white matter (arrows) (B). for MNGIE but whose plasma thymidine level was nor- showed mild elevation of the levels of total protein, IgG, mal. Further analysis showed severe mtDNA depletion myelin basic protein, and lactate. Funduscopic evaluation, in muscle tissue, and sequencing analysis revealed 2 patho- echocardiography, and needle electromyography results were genic mutations in the RRM2B gene. normal. Nerve conduction studies revealed normal sural potentials, generalized motor slowing (32-37 m/s), and pro- longed distal latencies consistent with demyelinating neu- METHODS ropathy. Brain magnetic resonance imaging showed increased T2-weighted signal in the basal ganglia and patchy CLINICAL PRESENTATION T2-weighted signals throughout the periventricular and sub- cortical white matter (Figure 1). The muscle biopsy revealed A 42-year-old woman of mixed African American and Latin Ameri- mild variation of fiber size (Figure 2A), increased endo- can descent was referred to us for evaluation of ophthalmople- mysial connective tissue, rare ragged red fibers on modified gia, ptosis, gastrointestinal dysmotility, cachexia, peripheral neu- Gomori trichrome stain (Figure 2B), and numerous ragged ropathy, and brain magnetic resonance imaging changes blue fibers on succinate dehydrogenase reaction (Figure 2C). (Figure 1). She was in good health until age 30 years, when she The overall findings were consistent with mitochondrial developed recurrent and severe episodes of nausea and vomiting myopathy and mild neurogenic atrophy with reinnervation. due to gastrointestinal dysmotility. In the same year, she was hos- The activity of the respiratory chain complexes in muscle was pitalized with systemic bacterial infection and received intrave- within the normal range (data not shown). nous gentamicin sulfate, which was followed by the develop- ment of sensorineural hearing loss. Owing to her gastrointestinal problems, she lost significant weight; in fact, she weighed 30 kg ANALYSES (body mass index [calculated as weight in kilograms divided by height in meters squared], 12.5) a year before her presentation Spectrophotometric analysis of the respiratory chain com- to us. Since age 37 years, she had progressive restriction of eye plexes was performed according to previously described pro- movements, ptosis, micronystagmus, dysarthria, unsteady gait, tocols.10 The coding exons and the immediate flanking in- generalized muscle weakness, and loss of deep tendon reflexes. tronic sequences of RRM2B, POLG1, ANT1, PEO1, SUCLG1, Her sensorium was preserved. Her family history was negative and SUCLA2 were amplified by polymerase chain reaction and for similarly affected relatives. sequenced in the forward and reverse directions using auto- Her initial diagnostic evaluation revealed normal levels of mated fluorescence dideoxy-sequencing methods. The poten- plasma thymidine (100 mmol/L; reference range, Ͻ150 tial effects of mutants on the protein structure were estimated mmol/L), serum aminotransferases, creatine phosphokinase, by comparing the local environments of mutants11 among the and plasma amino acids as well as a normal acylcarnitine pro- homologs of the ribonucleoside reductase small subunit (RIR2B) file. Her plasma lactate level was mildly elevated (27.9 mg/dL protein family. Nuclear DNA and mtDNA copy numbers were [to convert to millimoles per liter, multiply by 0.111]; refer- determined by real-time quantitative polymerase chain reac- ence range, 1.8-18.0 mg/dL). Cerebrospinal fluid analysis tion according to a previously validated protocol.12 (REPRINTED) ARCH NEUROL / VOL 66 (NO. 8), AUG 2009 WWW.ARCHNEUROL.COM 1029 ©2009 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 A B C Figure 2. Muscle biopsy suggestive of mitochondrial dysfunction. A, Decreased cytochrome-c oxidase staining (original magnification ϫ100). B, Modified Gomori trichrome staining showing a ragged red fiber (original magnification ϫ400). Mild variation in fiber size is seen. C, Succinate dehydrogenase staining showing multiple ragged blue fibers (original magnification ϫ40). These findings were suggestive of the mitochondrial dysfunction. Other findings included rare denervated fibers and several small fiber-type groups (data not shown). quencing and deletions by array comparative genomic S112 V115 Q113 hybridization. A homoplasmic unclassified missense vari- V117 Q116 E114 ant, m.15077GϾA (E111K, CytB), was detected and pre- P118 viously reported in the Polysite database (http://www F111 .genpat.uu.se/mtDB/) with a frequency of 2702:2 (A:G). A homoplasmic variant, m.16017TϾC, in transfer RNA E119 R186 located at the first base of the stem region of the amino A120 acid acceptor arm was detected. The clinical conse- R121 S181 quences of these nucleotide changes are unknown but C122 likely represent
Recommended publications
  • Remodeling Adipose Tissue Through in Silico Modulation of Fat Storage For
    Chénard et al. BMC Systems Biology (2017) 11:60 DOI 10.1186/s12918-017-0438-9 RESEARCHARTICLE Open Access Remodeling adipose tissue through in silico modulation of fat storage for the prevention of type 2 diabetes Thierry Chénard2, Frédéric Guénard3, Marie-Claude Vohl3,4, André Carpentier5, André Tchernof4,6 and Rafael J. Najmanovich1* Abstract Background: Type 2 diabetes is one of the leading non-infectious diseases worldwide and closely relates to excess adipose tissue accumulation as seen in obesity. Specifically, hypertrophic expansion of adipose tissues is related to increased cardiometabolic risk leading to type 2 diabetes. Studying mechanisms underlying adipocyte hypertrophy could lead to the identification of potential targets for the treatment of these conditions. Results: We present iTC1390adip, a highly curated metabolic network of the human adipocyte presenting various improvements over the previously published iAdipocytes1809. iTC1390adip contains 1390 genes, 4519 reactions and 3664 metabolites. We validated the network obtaining 92.6% accuracy by comparing experimental gene essentiality in various cell lines to our predictions of biomass production. Using flux balance analysis under various test conditions, we predict the effect of gene deletion on both lipid droplet and biomass production, resulting in the identification of 27 genes that could reduce adipocyte hypertrophy. We also used expression data from visceral and subcutaneous adipose tissues to compare the effect of single gene deletions between adipocytes from each
    [Show full text]
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Nitroxide-Mediated Polymerization
    Chapter 7 Nitroxide-Mediated Polymerization 7.1 Introduction Controlled radical polymerization (CRP) under radical initiation conditions belongs to priority areas in the development of the synthetic chemistry of polymers of the last years [1–16]. Nitroxide-mediated polymerization (NMP) was invented by Solomon [1, 13]. Since this discovery, nitroxide-mediated radical polymerization is a power- ful method to synthesize well-defined macromolecular architectures with precisely controlled topologies, compositions, microstructures, and functionalities [3–5]. The most common mechanisms for reversible activation in polymerization reactions are schematically illustrated in Scheme 7.1. Persistent radical effect (PRE) occurs when two radicals are generated at the same time, at the same rate, and one is more persistent than the other, the self-termination reactions are lowered, leading to an unusually high selectivity for the cross-coupling reaction [10]. The effect has been investigated for the preparation of macromolecules with a narrow molar mass distribution through radical polymerization. Nitroxide-mediated polymerization is widely applied in industrial polymer syn- theses as a method for production of large-tonnage polymers and is employed to manufacture new pigments, sealants, emulsion stabilizers, and block copolymers, etc., with a various set of properties. NMP has also paved an avenue for complex macromolecular architectures (statistical, block, graft) in the fields of nanoscience and nanotechnology [5, 9, 12] and references cited therein. A brief summary of NMP developments in both the patent and open literature during the period of the early Scheme 7.1 Mechanisms for reversible activation in polymerization reactions [6] © Springer Nature Switzerland AG 2020 161 G. I. Likhtenshtein, Nitroxides, Springer Series in Materials Science 292, https://doi.org/10.1007/978-3-030-34822-9_7 162 7 Nitroxide-Mediated Polymerization 1980–2000 was presented in [11].
    [Show full text]
  • Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol
    Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol Danie¨lle M. P. H. J. Boesten1*., Alvin Berger2.¤, Peter de Cock3, Hua Dong4, Bruce D. Hammock4, Gertjan J. M. den Hartog1, Aalt Bast1 1 Department of Toxicology, Maastricht University, Maastricht, The Netherlands, 2 Global Food Research, Cargill, Wayzata, Minnesota, United States of America, 3 Cargill RandD Center Europe, Vilvoorde, Belgium, 4 Department of Entomology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America Abstract Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets.
    [Show full text]
  • Progressive External Ophthalmoplegia and Vision and Hearing Loss in a Patient with Mutations in POLG2 and OPA1
    OBSERVATION Progressive External Ophthalmoplegia and Vision and Hearing Loss in a Patient With Mutations in POLG2 and OPA1 Silvio Ferraris, MD; Susanna Clark, PhD; Emanuela Garelli, PhD; Guido Davidzon, MD; Steven A. Moore, MD, PhD; Randy H. Kardon, MD, PhD; Rachelle J. Bienstock, PhD; Matthew J. Longley, PhD; Michelangelo Mancuso, MD; Purificación Gutiérrez Ríos, MS; Michio Hirano, MD; William C. Copeland, PhD; Salvatore DiMauro, MD Objective: To describe the clinical features, muscle mitochondrial DNA showed multiple deletions. The re- pathological characteristics, and molecular studies of a sults of screening for mutations in the nuclear genes asso- patient with a mutation in the gene encoding the acces- ciated with PEO and multiple mitochondrial DNA dele- sory subunit (p55) of polymerase ␥ (POLG2) and a mu- tions, including those in POLG (polymerase ␥ gene), ANT1 tation in the OPA1 gene. (gene encoding adenine nucleotide translocator 1), and PEO1, were negative, but sequencing of POLG2 revealed a Design: Clinical examination and morphological, bio- G1247C mutation in exon 7, resulting in the substitution chemical, and molecular analyses. of a highly conserved glycine with an alanine at codon 416 (G416A). Because biochemical analysis of the mutant pro- Setting: Tertiary care university hospitals and molecu- tein showed no alteration in chromatographic properties lar genetics and scientific computing laboratory. and normal ability to protect the catalytic subunit from N-ethylmaleimide, we also sequenced the OPA1 gene and Patient: A 42-year-old man experienced hearing loss, identified a novel heterozygous mutation (Y582C). progressive external ophthalmoplegia (PEO), loss of cen- tral vision, macrocytic anemia, and hypogonadism. His family history was negative for neurological disease, and Conclusion: Although we initially focused on the mu- his serum lactate level was normal.
    [Show full text]
  • Ribonucleotide Reductase Subunit M2B Deficiency Leads To
    Am J Transl Res 2018;10(11):3635-3649 www.ajtr.org /ISSN:1943-8141/AJTR0084684 Original Article Ribonucleotide reductase subunit M2B deficiency leads to mitochondrial permeability transition pore opening and is associated with aggressive clinicopathologic manifestations of breast cancer Lijun Xue1*, Xiyong Liu2,6*, Qinchuan Wang3,4, Charlie Q Liu3, Yunru Chen3, Wei Jia5, Ronhong Hsie6, Yifan Chen8, Frank Luh2,6, Shu Zheng7, Yun Yen2,6,8 1Department of Pathology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA; 2Sino-American Cancer Foundation, California Cancer Institute, Temple, CA 91780, USA; 3Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; 4Surgical Oncology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; 5Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; 6TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan, ROC; 7Cancer Institute, Zhejiang University, Hangzhou 310009, Zhejiang, China; 8PhD Program of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan, ROC. *Co-first authors. Received August 27, 2018; Accepted October 19, 2018; Epub November 15, 2018; Published November 30, 2018 Abstract: Ribonucleotide reductase small subunit M2B (RRM2B) plays an essential role in maintaining mitochon- drial homeostasis. Mitochondrial permeability transition pore (MPTP) is a key regulator of mitochondrial homeo- stasis. MPTP contributes to cell death and is crucial in cancer progression. RRM2B’s relation to MPTP is not well known, and the role of RRM2B in cancer progression is controversial. Here, our aim was to study the role of RRM2B in regulating MPTP and the association between RRM2B and clinicopathological manifestations in breast cancer.
    [Show full text]
  • Gout Et Al Ultra-Mutation Targets Germline Alleles in an Infant Leukemia Recapitulation of Human Germline Coding Variation in An
    bioRxiv preprint doi: https://doi.org/10.1101/248690; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Gout et al Ultra-mutation targets germline alleles in an infant leukemia 1 Recapitulation of human germline coding variation in an ultra-mutated infant leukemia 2 Alexander M Gout1, Rishi S Kotecha2,3,4, Parwinder Kaur5,6, Ana Abad1, Bree Foley7, Kim W 3 Carter8, Catherine H Cole3, Charles Bond9, Ursula R Kees2, Jason Waithman7,*, Mark N 4 Cruickshank1* 5 1Cancer Genomics and Epigenetics Laboratory, Telethon Kids Cancer Centre, Telethon Kids 6 Institute, University of Western Australia, Perth, Australia. 7 2Leukaemia and Cancer Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids 8 Institute, Perth, Australia. 9 3Department of Haematology and Oncology, Princess Margaret Hospital for Children, Perth, 10 Australia. 11 4School of Medicine, University of Western Australia, Perth, Australia. 12 5Personalised Medicine Centre for Children, Telethon Kids Institute, Australia. 13 6Centre for Plant Genetics & Breeding, UWA School of Agriculture & Environment. 14 7Cancer Immunology Unit, Telethon Kids Institute, Perth, Australia. 15 8McCusker Charitable Foundation Bioinformatics Centre, Telethon Kids Institute, Perth, 16 Australia. 17 9School of Molecular Sciences, The University of Western Australia, Perth, Australia. 18 19 * These authors contributed equally to this work. Correspondence and requests for 20 materials should be addressed to J.W. ([email protected]) or to M.N.C.
    [Show full text]
  • WO 2016/115632 Al 28 July 2016 (28.07.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/115632 Al 28 July 2016 (28.07.2016) W P O P C T (51) International Patent Classification: (72) Inventors: TARNOPOLSKY, Mark; 309-397 King C12N 5/ 0 (2006.01) C12N 15/53 (2006.01) Street West, Dundas, Ontario L9H 1W9 (CA). SAFDAR, A61K 35/12 (2015.01) C12N 15/54 (2006.01) Adeel; c/o McMaster University, 1200 Main Street West, A61K 9/51 (2006.01) C12N 15/55 (2006.01) Hamilton, Ontario L8N 3Z5 (CA). C12N 15/11 (2006.01) C12N 15/85 (2006.01) (74) Agent: TANDAN, Susan; Gowling WLG (Canada) LLP, C12N 15/12 (2006.01) C12N 5/071 (2010.01) One Main Street West, Hamilton, Ontario L8P 4Z5 (CA). (21) International Application Number: (81) Designated States indicated, PCT/CA20 16/050046 (unless otherwise for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 2 1 January 2016 (21 .01 .2016) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/105,967 2 1 January 2015 (21.01.2015) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/1 12,940 6 February 2015 (06.02.2015) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Mitochondrial DNA Mutations Cause Various Diseases
    2013 Neurobiology of Disease in Children Symposium: Mitochondrial Disease, October 30, 2013 Defects of Mitochondrial DNA Replication William C. Copeland Laboratory of Molecular Genetics Mitochondrial DNA mutations cause various diseases * Alpers Disease * Leigh Disease or Syndrome * Barth syndrome * LHON * Beta-oxidation Defects * LIC (Lethal Infantile Cardiomyopathy) * Carnitine-Acyl-Carnitine * Luft Disease Deficiency * MAD * Carnitine Deficiency * MCAD * Co-Enzyme Q10 Deficiency * MELAS * Complex I Deficiency * MERRF * Complex II Deficiency * Mitochondrial Cytopathy * Complex III Deficiency * Mitochondrial DNA Depletion * Complex IV Deficiency * Mitochondrial Encephalopathy * Complex V Deficiency * Mitochondrial Myopathy * COX Deficiency * MNGIE * CPEO * NARP * CPT I Deficiency * Pearson Syndrome * CPT II Deficiency * Pyruvate Carboxylase Deficiency * Glutaric Aciduria Type II * Pyruvate Dehydrogenase Deficiency * KSS * Respiratory Chain * Lactic Acidosis * SCAD * LCAD * SCHAD * LCHAD * VLCAD Origins of mtDNA mutations Damage to DNA •Environmental factors •Endogenous oxidative stress Spontaneous errors •DNA replication •Translesion synthesis •DNA repair re-synthesis Mitochondrial DNA replication p32 - RNaseH 16 Human DNA Polymerases Polymerase Family Chromosome Mol. Wt. (kDa) Function/Comments α (alpha) B Xq21.3-q22.1 165 Initiates replication β (beta) X 8p12-p11 39 BER, other functions γ (gamma) A 15q25 140 Mitochondrial replication & repair δ (delta) B 19q13.3-.4 125 Replication, BER, NER, MMR ε (epsilon) B 12q24.3 255 Replication, checkpoint
    [Show full text]
  • Remodeling Adipose Tissue Through in Silico Modulation of Fat Storage For
    Chénard et al. BMC Systems Biology (2017) 11:60 DOI 10.1186/s12918-017-0438-9 RESEARCHARTICLE Open Access Remodeling adipose tissue through in silico modulation of fat storage for the prevention of type 2 diabetes Thierry Chénard2, Frédéric Guénard3, Marie-Claude Vohl3,4, André Carpentier5, André Tchernof4,6 and Rafael J. Najmanovich1* Abstract Background: Type 2 diabetes is one of the leading non-infectious diseases worldwide and closely relates to excess adipose tissue accumulation as seen in obesity. Specifically, hypertrophic expansion of adipose tissues is related to increased cardiometabolic risk leading to type 2 diabetes. Studying mechanisms underlying adipocyte hypertrophy could lead to the identification of potential targets for the treatment of these conditions. Results: We present iTC1390adip, a highly curated metabolic network of the human adipocyte presenting various improvements over the previously published iAdipocytes1809. iTC1390adip contains 1390 genes, 4519 reactions and 3664 metabolites. We validated the network obtaining 92.6% accuracy by comparing experimental gene essentiality in various cell lines to our predictions of biomass production. Using flux balance analysis under various test conditions, we predict the effect of gene deletion on both lipid droplet and biomass production, resulting in the identification of 27 genes that could reduce adipocyte hypertrophy. We also used expression data from visceral and subcutaneous adipose tissues to compare the effect of single gene deletions between adipocytes from each
    [Show full text]
  • Mitochondrial Hepatopathies Etiology and Genetics the Hepatocyte Mitochondrion Can Function Both As a Cause and As a Target of Liver Injury
    Mitochondrial Hepatopathies Etiology and Genetics The hepatocyte mitochondrion can function both as a cause and as a target of liver injury. Most mitochondrial hepatopathies involve defects in the mitochondrial respiratory chain enzyme complexes (Figure 1). Resultant dysfunction of mitochondria yields deficient oxidative phosphorylation (OXPHOS), increased generation of reactive oxygen species (ROS), accumulation of hepatocyte lipid, impairment of other metabolic pathways and activation of both apoptotic and necrotic pathways of cellular death. Figure 1: Since the mitochondria are under dual control of nuclear DNA and mitochondrial DNA (mtDNA), mutations in genes of both classes have been associated with inherited mitochondrial myopathies, encephalopathies, and hepatopathies. Autosomal nuclear gene defects affect a variety of mitochondrial processes such as protein assembly, mtDNA synthesis and replication (e.g., deoxyguanosine kinase [dGUOK]) and DNA polymerase gamma [POLG]), and transport of nucleotides or metals. MPV17 (function unknown) and RRM2B (encoding the cytosolic p53-inducible ribonucleotide reductase small subunit) are two genes recently identified as also causing mtDNA depletion syndrome and liver failure, as has TWINKLE, TRMU, and SUCLG1. Most children with mitochondrial hepatopathies have identified or presumed mutations in these nuclear genes, rather than mtDNA genes. A classification of primary mitochondrial hepatopathies involving energy metabolism is presented in Table 1. Drug interference with mtDNA replication is now recognized as a cause of acquired mtDNA depletion that can result in liver failure, lactic acidosis, and myopathy in human immunodeficiency virus infected patients and, previously, in hepatitis B virus patients treated with nucleoside reverse transcriptase inhibitors. Current estimates suggest a minimum prevalence of all mitochondrial diseases of 11.5 cases per 100,000 individuals, or 1 in 8500 of the general population.
    [Show full text]
  • Arsenic Hexoxide Has Differential Effects on Cell Proliferation And
    www.nature.com/scientificreports OPEN Arsenic hexoxide has diferential efects on cell proliferation and genome‑wide gene expression in human primary mammary epithelial and MCF7 cells Donguk Kim1,7, Na Yeon Park2,7, Keunsoo Kang3, Stuart K. Calderwood4, Dong‑Hyung Cho2, Ill Ju Bae5* & Heeyoun Bunch1,6* Arsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer efects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA‑sequencing and bioinformatics analyses, diferentially expressed genes in signifcantly afected biological pathways in these cell types were validated by real‑time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly diferential efects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without afecting the growth of HUMEC in a dose‑dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are signifcantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6‑treated MCF7 cells.
    [Show full text]