RN97 1

KAERI/CM -567'/200 1

OLMjl)00 7t+3Rl 7Hg Development of a Large Proton Accelerator for Innovative Researches

sJisz4 1x- HI- CHZZY LT4-3 7H cl Development of High Power RF Source DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. KAERI/CM -567/200 1

"oLg!IIt 3 71-0&XCiil 713 Development of a Large Proton Accelerator for Innovative Researches

*E!$ z+Iq-g 71 HI-= LH E i Development of High Power RF Source .. .

SUMMARY

In accelerator field, the RF system generally means the overall system which includes all of the components to transfer the RF power generated in RF source to the accelerating cavity. Major part of the accelerator construction cost and operation cost is consumed for the RF system. In addition, the availability of the accelerator is mainly dependent on that of the RF system. KOMAC(K0rea Multipurpose Accelerator Complex) proton accelerator requires the high power RF system of which the main components are 350 MHz, 750 kW CW and 700 MHz, 1 MW CW , which makes it imperative to train the man power and to accumulate the know-how of the high power RF system. This study was performed with objective of the training of man power and accumulation of know-how of the high power RF system for the KOMAC proton accelerator. For the development of the high power RF source for CCDTL(coup1ed cavity drift tube linac), the medium power RF system using the UHF for broadcasting was integrated and with this RF system we obtained the basic design data, operation experience and code-validity test data. Based on the medium power RF system experimental data, the high power RF system for CCDTL was designed and its performed was analyzed. For the fabrication of the RF system we performed the basic cathode heating experiment and precision machining of the cavity. also the prototype klystron was designed and fabricated. For the RFQ RF system, we made the specification of the Rf system and performed the conceptual design activity.

- II - CONTENTS

1 Introduction ...... 1

2. Status of the Research Activities ...... 4 2.1 World-wide Research status ...... 4 2.2 Domestic Research status ...... 6

3. Contents and Results of the R&D Activities ...... 7 3.1 RF system design for the RFQ ...... 7 3.2 Medium power UHF klystron system ...... 9 3-2.1 Introduction ...... 9 3.2.2 Disassembly and Analysis of the klystron ...... 12 3.2.3 Electromagnet design and test ...... 17 3.2.4 System integration ...... 29 3.2.5 Experiments and results ...... 32

(A) Low power DC be- extraction test ...... 33 (B) Normal power RF extraction test ...... 36 3.3 KOMAC klystron ...... 40 3-3.1 Introduction ...... 40

* * * *- 3.3.2 Development Examples of MW CW klystron -..-** ** - -*a 45 (A) E9792 klystron ...... 45 (B) YK1303 klystron ...... 47

3.3.3 Klystron fabrication material and facilities e- -.* --e - - . *-- 49 (A) Material ...... 49 (B) fab~cationfacilities ...... 54 3.3.4 Electron gun ...... 55 (A) Electron emission ...... 55 (B) Cathode ...... 56 (1) B-type cathode ...... 57 (2) S-type cathode ...... 57 (3) M-type cathode ...... 57 (4) Mm-Wypecathode ...... 58 (5) other types of dispenser cathode ...... 59 (6) fabrication process ...... 60 (C) Space effect ...... 61 (D) Electron gun ...... 61 (E) Current Control ...... 62 (F) Electron gun design, fabrication and test ...... 63 (1) Electron gun design ...... 63 (2) Electron gun fabrication ...... 66 (3) Basic cathode heating experiment ...... 68 3.3.5 RF structure ...... 72 (A) RF & beam interaction ...... 72 (B) RF stn_lcture design and farication ...... 74 (C) Cavity cold test ...... 82 (1) Cold mode] cavity ...... 82 (2) Measurements of the cavity parameters ...... 85 3.3.6 Electromagnet ...... 89 (A) Focusing electromagnet design ...... 89 (B) Focusing electromagnet fabrication ...... 89 3.3.7 Collector ...... 94 (A) Cooling of the collector ...... 94 (B) Design and fabrication of the collector ...... 96 (C) Concept of fie energy recovery ...... 100 3.3.8 Vacuum of the collector ...... 1 06 3.3.9 Supporter structure of the klystron ...... 108 3.3.10 Performance analysis of the klystron ...... 1 09

4. Application of the R&D results ...... 112

5. References ...... 113

- iv - 41 1 &h A{ ...... 1

41 2 51 ~LH. 7lg7HSL SAC\ ...... LO 4 yI 1EJ 391 71e 7Hsk ?ij$b ...... LO 4

41 2% =+H 712 7Hg SJgk ...... 6

714) &I tlCh-iH LH~9 2.4zt 3 zT 0 ...... 7

1% RFQE ZTjit AlhEA gyI ...... 7

41 23 %$+ UHF gEtOl&Eg ...... 9 1 . A{ ...... 9 2. ~~tOlAE~ZHxjJ 9 gq ...... 12 3. 3x14 /gAl 2 2g ...... 17 4. A~AEA +g ...... 29 5. 2Z)sjit 33 4%2 3x1 32 ...... 32 71. DC 9s dd ...... 33 Lt.. s$hocz&q JTiit 9% 2% ...... 36

41 33 KOMACS s.+\A..EE ...... 40 1. A4-S ...... 40 2. MW + CW E&~tO/&~~~l7HSL 041 ...... 45

71. E9792 sztol A E .fZ ...... 45 i-1 . ~~1303=ztoI hgg ...... 47 3. XjITk XHS s,' ghocijl ...... 49 qs ...... 49 qxq 7&hocRl ...... 54 ...... 55 fi Kt ",c p ...... 55

oxDl ...... 56 (1) B-type cathode ...... 57 (2) S-type cathode ...... 57

-v- (3) M-type cathode ...... 57 (4) MMM-tyoe cathode ...... 58

(5) 7 I Et Dispenser cathode ...... 59 (6) xjl~~~...... 60 Kt . gLk XJq gilt ...... 61 21 . XJqg ...... 61

ut . 2 xiLTT 4 ...... 62 ...... XJxtg +AI, q]+k 2 Ale4E!n 63 (1) XJxtg 341 ...... 63 (2) EJxtg qlq ...... 66

02 71% 2 ...... (3) 01 71s 68 5 . RF 73 ...... 72 71- RF & Beam interaction ...... 72

l-1- RF A;'AI 2 yl+k ...... 74 Et- Cavity cold test ...... 82 (1) Cold model cavity ...... 82 (2) Cavity HJ+ +2 ...... 85 6. 5x14 ...... 89 71- &I+ 3x14 A541 ...... 89 l-1- a+ XJ xt+i X{I%k ...... 92 7 . 3aIEI Zl ...... 94 71. SqE-1 274 ...... 94 Lt . zq E4 3 4) ",' $k ...... 96 ct . ql Ljxl 7HS ...... 100 8 . ~2/ol~~~3s ...... 106 g. EJ2t01 &gs XIX[yz ...... 108 10. 00 ...... 109

xjl 4 gt oJi17H~L~j3t~(gLgAlq ...... 112

7 5 ?c,c iic[=I 14' ...... 113

.vi . -1- -2- REQUIRED O/P POWER ACC. ENERGY FREQ. NO. OF TUBES RF POWER PER TUBE S E GTlON REQUIRED (MW) (MW)

RFQ 0.05-3 0.47 0.47 0.75 1 1

1.49 2 CCDn 20- 100 5.03 6

100-140 0.8 24.52 1 1 31

SC-LINAC 140-260 2.4 3

260- 1000 14.8 19

.._

1.4

1.3

CPllMPTP

1.2 PHILIPS

A EEV 1.1 TNOMSON

LANL APT TOSHISA 1 0 - I- - :ERN LEP(352) - KAERl KOMAC \ SLA C PEP ll(476) 0.9

0.8

0 so0 1000 1500

-3- -4- SLAC Varian Co. Eimac

KEK Tos hi ba General Physics

-5- -6- -7- Window 1 Acc. Quadrant 4

Acc. Quadrant 3

Phase shifter Window

I I Klystron Magic Tee RF Load I

Phase shiffer

Ace. Quadrant 2 Magic Tee RF Load I Ace. Quadrant 1 I I I -Window

-8- 350 MHz 700 MHz

41 E E! AI

1.3 MW CW” EEV CERN, ESRF 1.2 MW CW” EEV Argonne 0.8 MW CW” EEV CERN 1 MW CW EEV LANL(APT) 1.2 MW CW EEV LANL(APT) 1 MW CW CPI LANL(APT) 1.3 MW CW” THOMSON CERN 0.5 MW CW” THOMSON TR IS PAL - 1.2 MW CW” AFT CERN Circulator 1 MW CW AFT LANL(APT) 1.2 MW CW AFT LANL(APT)

250 kW CW EEV LANL(APT) RF Window - - 250 kW CW CPI LANL(APT)

Dielectric, Dielectric, W/G WR2300 - WR 1 500 etc. etc. - 200 kW CW AI tron ics LANL( A PT) Premier RF load Research 1 MW cw LANL(APT) 1.2 MW CW Titan Beta LANL(APT)

center frequency : 352 MHz

-9- - 10 - Parameter Typical operation value

Model no. 1AV58, NEC, Ltd. Japan

Operating frequency 599.25 MHz (574-698 MHz) r output power 15 kW CW 18 kV

Cathode current 1.93 A

Heater voltage 6V

Heater current 16 A

Driving power 10 w Power gain 32.3 dB 38 kW ton pump 1 I/s I Focusing Electromagnet r Electron gun type type Size & weight 1386 mm(l) x 406 mm (Q), 120 kg (without electromagnet)

- 11 - - 12 - Ekment 1

- 13 - Heat shield A

Cathode Heater

T

\ Conductor ring

3%3.

A)$ 4. Cathode Assembly

- 14- hi3 5. Assembly

l-13 6. Beam line

- 15 -

- 17 - - 18 - Resonant (Uncorrected) Cavity no. frequency (MHz) R'Q ,Shunt impedance (Mohm) 1 I 580.249 I 375.6 I 11.73 I 2 600.196 369.9 11.87 3 597.986 377.1 12.09 4 583.448 378.0 11.91

- 19 - Magnetic flux density (Gauss)

- 20 - EGN: 3.056 CYCLE= 29 B(Z) GAUSS 300

250

200

72 150

100

50

I

- 21 - Time 2.0 0 0.5 < 16.581

0.0 1.0 T/4 0.5 < 16.76)

0.0 1.0

0.5

8.0

A 1.0 3T/4 ".E 8.5 r: 17.25) E B. 0 0 58 2 (cm) -7g 10. profile

- 22 - 2,8

2.8

- 23 - Bucking 39 156 9 0.325 126.7 2.9 3%#1 51 0 9 2.043 796.3 18.4 32 #2 465 9 1.863 726 16.8 32 #3 465 9 1.863 726 16.8 32 #4 51 0 9 2.043 796.3 18.4 39 #5 456 9 1.878 732 16.9

- 24 - Bobbin : STS316 Connector Epoxy molded coil

Side view

1 Bucking 3% 1 0.33 1 0.43 1 -30.3 2.04 2.00 2.0 39 #2 1.86 1.68 9.7

1 -86 1.68 9.7

2.04 1.96 3.9

- 25 - - 26 - Magnetic flux density (Gauss)

I 4 4 h, GJ 0 0 0 0 0 0 0 8

I I i I

I 40.21-

151 3 .D

L

- 28 - %Dummy Load

1. Oscillator : 570-7ix( iwtz 5-7 Collectar ccroling : 38000 liter/min 2. Solid State : 570-70OohfIz, 1OW 6. Circulator 3. Circulator 7. Directional Coupler 4. Directional Coupler 8. DmyLoad : l5kWRF Power Dissipation 5. Klystron : IAVS8 574-6Ygh3IIi 9. Supporting Structure Input : 1OW ??'-type conriection 10. Cooling Device Output : 15kW WX-77D 11. Ion pump P/S 5-1 Cathode HS : 18.5kVdc, 2.2Adc 12. Electromagnet 5-2 Heater PJs : 6.3V, 16A 13. RF connector output WX-77D 5-3 Accel. Electrode PfS : l'lkvdc, SmAdc 14. Second Cavity connection 5-4 Electromagnet Pfs : 13OVdc, 15Adc 15. Output coaxial buckle 5-5 Electron gun coding : 1500 liter/mk 16. Bolts for air flow intercepting plates 5-6 Body and hbgnet coaling : 38000 litedmin 17. Power meter gE Spectrum Analyzer

- 29 - 16

15.95

15.9

~ 696.0 . P ' 15.85 3 z rg ' 15.8 5 s - 15.75 , 15.7

692.0 i- -__-- -L--I 15.55 0 700 200 300 400 500 Time (minute)

1g 15. Solid state amplifier4 TxH 9 8q wqL 70

12

10

8

6

4

2

0 550 600 650 700 750 800 Frequency (MHz)

- 30 - g2E 434 769 5 kV,-Id, modulation anode $$q BF 13.7 kV, 0.2 mA 0)E).

MAGNET COIL r COLLECTOR

~lHEATER

- 31 - - 32 - $4

2000.9.25- 9.29

2000.10.9

2000.1 1.7-8

2000.1 2.21-22

2001 .I .3-4

2001.1.18-20 . 700 MHzqlA-1 full power RF SS d?Y

- 33 - 70

60

50

40

30

20 h IO

0 20

- 34 - -. .. -

60 a 50 LE 40

30

20

70

0 -.I 5 70 15 20 Cathode voltage (kV)

i I a& d;

...... -

0 20

.. -_

- 35 - Magnetic flux density (G)

Radial distance (x0.5 mm)

Mod. Anode voltage : 13 kV 48 Anode voltage : 18 kV Beam current : 1.88 A

Mod. Anode voltage : 13 kV 48 Anode voltage : 18 kV Beam current: 50 rnA

24 40 72 96 1Ze ldi 168 192 ZlG

- 36 - - 37 - ......

1.6 ____.. . ~~~ - - . .. 100 90 I .4 80 g 1.2 E 70 0 SI 0 60 50

40 Q 30 5 0.4 d cp 20 0.2 10

0 -_i. - -.-Ap.-.- i ------_I - ..J...... 0 4 6 8 IO 12 14 16 Anode to cathode voltage (kV)

...... __._ .. -. .

...... - ... ~-

0

8' I

6 r.

4 e

I e

4 6 8 10 12 14 16 Anode to cathode voltage (kv)

~......

- 38 - _.------__ - - __- - - - - I 4 Electronic efficiency s Gain 1

50

3 .- 40 d od $ 30 i i z i ._E 6 20 0) 4 .-0 E 0 5 IO 0 B

0 L 12 14 16 Anode to cathode voltage (kV)

.-. __ ___ - ..- - 2g 24.

_.

1.4

1.2

4 I'

4

0.2

0 -6 -4 -2 0 2 4 Signal generator output rf power (dBm)

- 39 - - 40 - Electron Beam Input Cavity Intermediate Cavity 0 u tp u t C a vity

Oil Tank [ 1. Electron Gun I Heater PIS L j- I 1 RF Input 1 2. RF Structure \ Energy RF Output J Recovery - System r c Magnet PIS 3. Focusing Magnet 1 \ Magnet Cooling

Radiation Shielding 4. Collector 0 1)

- 41 - NO. OF EFFICI COLLE WEIGHT1 TOTAL NANUFAC MODEL FREO POWER VOLTAGE1 -ENCY CTOR -NRER (MHr) (kW) C::::NT CAVITIES (x) ICOOLING 1 1 1 1 (WIA) I (2NO HAR.: 61 181014.98 CPVMPTP 84

YK1353 67 +

PHILIPS TRISTAN

PEP II

2wo14.2 EEV 0.8 i-

USE HOMSON

USE I L.;; TOSHIBA 125013.45 - PROTO SLAC I

Required Output Power 1.2 Mw 1NMI 1MW Heater Voltage 22.8 V 22.8 V 21.2 v I Heater Current 11 22.8A I 23.8A I 19A ~~

1 Main Focus Current I 6.4A 1 12.8A ~ I ~ ~ 17A I Main FocusVoltage 1 227V I 141 V I 120V Output Focus Current 8.2 A 12.8 A 22 A Output Focus Voltage 123V 91 v 120 v Beam Voltage 94.1 kV 95.1 kV 92 kV Beam Current 19.63 A 16.28 A 16.6 A Mod. Anode Voltage 51.8 kV 51.52 kV 78 kV Mod. Anode Current 0.4 mA 0.15 mA 1.4mA Drive Power 93 w 75 w 12.3 W Output Power Efficiency Body Power I Output Cavity Power 11 3.3 kW 1 6.2 kW I 8.6 kW

- 42 - (b)

12. (a) EEV 350 MHz, 1.2 MW CW SZtolhEE (b) CPI 700 MHz, 1 MW CW SZ)*]&%g

- 43 - Parameter Value Parameter Value

Operating frequency (MHz) 700 Power gain (dB) - 40

Output RF power (kW) 1,000 Number of cavities (Incl. 2nd harm.) I 6 I Max. beam voltage (kV) 100 Drift tube radius (mm) I 30 Max. beam current (A) Beam radius (mm) I -20

Electron gun type triode

Efficiency (%)

POlSSONlOPERA - Magnetic flux density profile

OUTPUT EGNlOPERA - Beam profile I - Beam radius FCI I MAGIC Code a - Energy profile - Beam slope a - RF current profile - Current density profile - Power flow profile - Pd vs Pout profile - fd vs Pout profile 1D Simulation Code uu I I I I SUPERFlSHlOPERA - Cavity parameter

- 44 - ~..... , ...:...... ,...... :.. ... :::..:-::-= ..

- 45 - - 46 - 0 Anode : Chromium Oxide Coating - Cu Sputtering 3El 0 Negative Anode Current Spike 0 Cathode : S-type -> Ir Coating (M-type) - Ba Evaporation ZEl 0 A{(E!t+ : XIS gdg

- 47 - 0 Cathode : B-type -> Ir Coating (M-type) - Ba Evaporation 94 0 Anode E€ : 300 - 400°C %XI - Ba 21 CuOl gaq &g

0 Cathode : B-type -> Ir Coating (M-type) - Ba Evaporation Sf”d

0 sqq : 3721 XI= -sox 01 0 Positive Anode Current Spike - Back Streaming -!4k7c;! -SS= 01 & Side Band Oscillation 0 gg 67H -> 57H 0 Drift tube & Anode : Shaping

- 48 - - 49 - Material Use I Notes

- Drift Tube, Cavity, Collector - Certified OFHC Cu (Polishing) - , RF Input - OFE Cu(C1ass l), OFHC Cu FCopper - Magnet Coil - OFHC CU

- Brazing Filler - OFE CU, OFHC CU, CU+AU

- Supporting Structure - 304 Series Stainless Stee - Heat Shield Housing - 304 Series - Electrical Connector - 304 Series (Polishing)

- Heat Feed Thru - A1203 I Ceramic - Ceramic Seal - A1203 (Metalizing, Plating, Coating I - Window - A1203 (Metalizing, Plating, Coating Dispenser - Cathode - M-type Cathode I Molybdenum . Heat Shield - - I Lead . Radiation Shielding I

- 50 - DTM .Polishing Machine .Surface Roughness Fneasurement Systam .D irn ensioI: iil A ctirra cy M ea su rem sn t S y E te XI .Hydrogen Brazing Furnace

.Fi-ie Spo: Welder

~---*-.* Clean Room

- 51 - Terminology I Definition 1 Notes

- Copper that in the annealed condition has a- ASTM B224 High Conductivity minimum electrical conductivity of 100 % IACS as (1996) Copper required in Specifications B5, 81 15 and 8170

- Electrolytic copper produced substantially free of - ASTM F68 cuprous oxide and containing no more than 10 ppm (1993) Oxygen-Free ’ oxygen, as determined by metallographic examination at Copper 75X under polarized light, and manufactured without the use of metallic or metalloidal deoxidizers

- Oxygen-Free Grade1 as defined Oxygen-Free, - ASTM F68 except that the oxygen content must be 5 ppm (1993) minimum - High purity, high conductivity oxygen-free copper - ASTM B224 OFE(0xygen-Free normally intended for electronic applications. The copper (1 996) Electronic) Copper has high resistance to hydrogen embrittlernent, as determined in Specification 8170. The copper in the annealed condition has a minimum electrical conductivity of 101 YO IACS

- Samples shall be classified by comparison to plate 1 - ASTM F68 OFE Copper which is available from ASTM Headquarters ( 1993) Class 1 - Degree of contamination in copper microstructure

- Chemical Composition (Yo) Fe:0.0005, S:0.0025, Ag:0.0010, Ni:0.0006, Sb:0.0005, OFHC Copper - Brand As:0.0003, Se:0.0002, Te:0.0001, Pb:0.0006, Sn:0.0002, Mn:0.00005, Bi:0.0001, 02:0.0002, Cu:Bal

- Chemical Composition (ppm) Certified OFHC Cd:

4CS : The international Electrotechnical Commission defined in 1913 the International nnealed Copper Standard (IACS) according to which a copper , one meter long, ‘eighing one gram, has a resistance of 0.15328 Ohm at 20 “c when the density of the spper is 8.89 g/cc (0.017241 ~152m).

- 52 - 15. $+q] A\+q+ Brazing filler Metal

Liquidus Solidus No. Composition.wt.% .c .F .f Applications I Pt 1773.5 3224 Used for brazing molybdenum and tung- loo sten components subjected to high temperatures. 2 Pd 100 554 2829 I554 2829 Lower in cost than Pt-wed for molyb- denum and tungsten brazes where higher M.P. of PI is unnecessary. 3 Pd 8-AU 92 240 2664 I200 2192 Non-oxidizable low vapor pressure-wets molybdenum and tungsten. 4 CO35-Pd 65 235 2255 I230 2246 Lowest vapor pressure in its melting range -wets molybdenum and lungsfen-for cathode structures. 5 Au 100 1063 1945 I063 I945 Useful for low-temperature dirusion seals -wets tungsten. 6 Ni 3-Au 35-Cu Bal I030 1832 loo0 1832 Excellent wetting and Row on Kovar. cop- per, nickel and steel., 1 In 3-Au 20-Cu Bal 1025 1877 915 1787 Properties similar to and used as substi- tute for more costly 35Y; Au-65% Cu alloy. 8 AU 35-CU 65 I010 1850 990 I832 For copper. Kovar. nickel brazes. 9 AU 37.5-CU 62.5 Io05 1841 985 I805 For copper. Kovar. nickel. IO Au 40-Cu 60 lo00 1832 980 I796 Lower melting point than above. II AU 50-CU 50 970 1778 95 5 1751 For copper. Kovar. nickel brazes where lower melting range dictates its use in place of more economical 350: Au- . 65% Cu alloy. I2 Ag I00 960.5 1761 %0.5 1761 Non-oxidizable-used where a very duc- tile braze alloy is indicated.

' 13 Ni 18-Au 82 950 I742 950 1742 Will "wet" tungsten and molybdenum as well as copper. Kovar. nickel. stainless steel-excellent flow. 14 Ni 3-Cu 15.5-Au Bal 925 I691 910 1670 Very low vapor pressure. excellent wetting and flow. For secondary brazes on Kovar structures. I5 CU20-AU 80 9 IO 1670 908 I666 Owing to the tendency of this alloy to be- come brittle when cooled slowly from the molten state, NO. 14 alloy is gen- erilly preferred. 16 Ag 5-Cu 20-Au Bal 895 I643 88 5 1625 For secondary brazes on parts joined with higher melting point alloys such as No. 6. No. 7. etc. 17 845 I553 835 1535 A low-melting-point high-gold-content alloy having very short melting range. Used for intermediate brazes between higher melting alloys like No. 6 and the lower-melting No. 19. 18 Ni 0.75-Cu 28.1- 795 I463 780 1436 Better wetting and filleting characteristics Ag Bal than the eutectic alloy of silver and copper. 19 CU28-Ag 72 779 1435 719 1435 The eutectic alloy of silver and copper. . Excellent flow. low melting. higher va- por pressure than gold alloys. 20 In IO-CU 27-Ag Bal 730 I345 685 1211 Used for brazing prrls on which a silver- copper eutectic braze has previously been made. 21 In I 5-CU 24-Ag Bal 705 1301 630 1166 Lower liquidus than No. 20-used simi- Iarlv. 'Adapted from the list of Wutern Gold and Platinum Company. klmont. Calif.

- 53 - g % LH 8 - f;B 2q : -1 m(@)x -4 m(L) - g.Ic,c gE -550°C - g.^,t71LI : - 200 Vacuum Baking Furnace - Zlq (Inside Tube) -10 -lo torr - EM (Outside Tube) -10 -6 torr - Pumping (Inside Tube) : Cry0 or Ion pump - Pumping (Outside Tube) : Diffusion pump --IT=O 040401 : - 1 m(Q) x -4 m(L) Hydrogen Brazing Furnace - Z.",t 23: 1,100-1,200 "C - Rotary pumping system - Z%/ s!z : 1,100-1,200 "C Vacuum Induction Furnace - : -low8 torr in hot condition - Pumping : Cry0 or Ion pump

- 54 - 3€ 17.

-~ 1219mm(W)x814mm(H)x 1829mm(D), 1455°C (3)S? SY

1000mm(D.x1200mm(H), 1200°C (3)H1S.E 413 Vacuum brazing furnace 250mm@ x500mm (H),1200 'C KAERl

400mmQ x 500m m (H) I PAL

I 300mm@x300mm(H),1300°C I KITECH 400mmO xSOOmrn(H), 1200 "C PAL ~~ ~ I Hydrogen brazing furnace lOOmm(W)x 1 10mm(H)xl 00mm(D) KITECH LHa : 182mm@, 1000°C (30 kW), loe7 torr PAL Vacuum induction furnace LH7d : 30mm@, 30 mm(H), 15 kW, torr KITECH I Vacuum baking furnace 1 Cieaning facility - I PAL Surface roughness - I KITECH, KBSl - 1 SNU, KITECH measurement system

- 55 - (9 : gsi+ k : Boltzmann

- 56 - - Cavity Reservoir Dispenser Cathode : L, MK, MK Coated, CPD, CPD Coated or alloy

- Impregnated Dispenser Cathode : B, S, M, MMM, CD(Alloy), Scandate

01% Zsq Impregnated Dispenser Cathode71 GS AIgq.2 ?m. (1). B-type Cathode

B-type Cathode% 1953g American Philips Co. q1.ll.l.t 71f3Sl d,Oq 3ZH

2Z Microwave Tubeq] $3) Ab%qLL %El. 71% &’]4]& A-type Cathodes si?]sL?qCf%Ab EdAg Matrix41 Baq A1 qQ-$$g%%(Impregnation) A14 gg+s 2.2-2.3 eVS $+%Et. 3741 CaOg 37i8Iq “-2s

2.1 eW)x] 2F30pf BaO : CaO : A1203 $ 5 : 3 : 2 (Mole Fraction :

- 57 - IB-tyPe M-type (Os-Ru) Heater Power 100 Percent 83 Percent Cathode S5 1040 “C 975 “C Ba Evaporation Rate 100 Percent - 25 Percent

- 58 - ( 5). 71E) Dispenser Cathode

CD Cathode+ B- type Cathode41 % ~534Osg Co-Deposi tiong “01 2, Scandate Cathode+ gd3 Matrixg BaO, CaO, A1203 0144]

h “E .0 3

Temperature(OC)

Xg 32. Dispenser Cathode4 $ZpF 8% q5qq 87$1[81

- 59 - current density (A/cm2)

(6). 413 3% Impregnated Dispenser Cathode4 g-24 9 4125 3301 3@ 3441 LFE)

LF ?SI-.

Blending base powder (high-purity W or W-lr powders : 2-14 pm)

Sealing blended power in rubber moulds I and isostatically pressing at - 140~10~N/m2 I

Sintering billets in a hydrogen atmosphere at 2500 "C for several inin.(- 30min.) \ 1 4 Plastic infiltration, machining, plastic removal & Impregnation 1 4 Cleaning

Xg 34. Impregnated Dispenser Cathode4 4135 %%

- 60 - - 61 - Modified Pierce Electrode Pierce Electrode

- 62 - - 63 - Radial distance (mm)

la fa 248 ail 328 3a 4m Axial distance (mm)

- 64 - - 65 - - 66 - 23 40. Spectra-Mat %+ Assembly

e

- 67 - - 68 - 1 Thoriated

Thoriated tungsten disc forming tool

14. Cathode forming tool

- 69 - - 70 - - 71 - Cathode @ 800°C Cathode @ 900°C Cathode @ 950°C

. Cathode @ 1000°C Heating Power Off and Natural Cooling

- 72 - - 73 - 2% 42. 5-Cavi ty Staggered Tuning[9]

- 74 - 0. -

Q

d.

cavity gz a b C d cathodeZFE+g( 7-14 1 104.6 50.0 30.4 44.9 233.0 2 109.0 55.0 35.1 45.1 51 5.0 3 46.8 21 .o 12.0 12.0 670.0 4 98.8 57.6 34.0 34.0 883.0 5 107.7 65.0 43.2 23.5 1,508.0 6 145.3 55.0 51.6 44.1 1,814.0

- 75 - - 76 - 1 ExternaLCavity 1 1 Cerayic Tube 1 I /

1 RF Shield S,al 1

- 77 - I It I

- ?a - - 79 - Supporting Flange (Stainless Steel)

Tuning Nut - ,Penultimate cavity

2ndHarmonic cavity

-,. Drift Tube

- 80 - X 21. Cavityq]Ajq power dissipation

cavity shunt impedance [Mohm] Peak voltage [ kV] Power dissipation [W] 1st 2.2 3.61 6 2nd 2.3 9.47 38.8 3rd 1.1 10.16 97.6 4th 2.5 13.25 69.9 5t h 3.3 44.1a 587.4 - ~ -~~~~ ~~ 6th 3.6 127.01 4445.2

- 81 - .X 22. Cold test-$+ reentrant cavity

Aluminum 6061 frequency 700.11182 MHz 7893.13

I R/Q 1 1624.273 ohm 1

- 82 - Klystron Cold Test Cavity vith Bore Tube Extension(ha1f) Freq = 700.1 12

I I I I si 1 0.4-0.8 I 0.58 I 0.63 1 Fe < 0.7 0.32 0.34 cu 0.15 -0.40 0.16 0.1 8 I Mn I < 0.15 I 0.02 I 0.02 I 1 Mg I 0.8-1.2 I 0.89 I 0.92 1 0.04 -0.35 0.25 < 0.15 0.05 0.04 C - 0.014 0.006

- 83 -. - 84 - 72.6

65.0

550

45.0

35.0

25.0

15.0

5.0

-5.0

-15.0

-23.8

0 50 100 150 200 250

- a5 - S11 measurement

Y dB

Parameter

-5 ca-1>2 1 p= Irl =10 G (8) z=2010gp= lolog[ 3lX 10 10 +zlY 10 101 (9)

- 86 - - 87 - PC for-step / motor coniroi

,Step motor CH 1

Cor

- 89 - REWIRED BEAM OPTlCS MAGNETIC FIELO

WAC€ BETTER OPTICS CHARGE SENSITIVE 70 1.3- 1.6 8b ADJUSTMENTS FLOW

t STIFF BEAM 6060 TRANSMISSION CONFINED - INSENSITIVE TO 2DO-25ab f LW OPE RATING PARAMETERS HIGHEST WEIGHT. MAGNET POWER - MAGNETC FLUX LINE

- 90 - -.

A : Cathode

F:5thcavity - - - G : Output cavity .. .--

A FG 0 50' 500 I50 200 250

- 91 - cod # of turn length [rnl resistance [ohm] voltage drop [VI MMF [A turn]

Bucking 306 393 1.21 I 7.27 1836 M1 506 703 2.1 7 13.01 3036 M2 506 703 2.1 7 13.01 3036 M3 506. 703 2.1 7 13.01 3036 M4 506 703 2.1 7 13.01 3036 M5 506 703 2.1 7 13.01 3036

M6 506 703 2.17 I 13.01 3036

M7 506 703 2.17 I 13.01 3036 M8 506 703 2.1 7 13.01 3036

M9 506 ~ "_703 2.17~- ~ " "-13.01 3036 M10 506 703 2.1 7 13.01 3036 M11 506 703 2.1 7 13.01 3036 M12 625 884 2.73 16.36 3750 M13 1050 1584 4.89 29.31 6300 total 10594 32.68 196.06

- 92 - - 93 - - Convect ion Cool ing : - 100 W RF Power

- Conduction Cooling : -100 W RF Power

- Forced Air Cooling : - kW

- Vapor Phase and Heat Pipe Cooling : -50 kW

- 94 - - 95 - No LNucleate I Partial Full + boiling boiling- film film boiling I- I boiling

I 7-

3.g 52. Liquid cooling curve

- 96 - 0.1 8

016 E 2 014 Y, 2. 012 m- 3 01 c s 008 a 006 -J ' 004 a 0 02

0 180 190 200 210 220 230 240 250 260 270 280 290 300 Distance from the anode [cm]

parameter value1 peak dissipation

coolant velocity 1.5 m/s

~ -_ ~ temperature increase on the collector <150"C temperature increase in the coolant - 20 "C 1 volume flow rate 1500 I/min 1 flow condition turbulent 1 inner jacket radius 10 cm collector length -1m

- 97 - .WSYS 5.5.1 AUG 28 2501 20: 19 :oo NOOAL SQLUTICN STEP= 3 SUB =1 TEMP IAVG) RSPS=O Powe rGr aphics EFACET=l .9VRES=Mat SW =293 SMX =437.543

I

- 98 - - 99 - - 100 - 2g 56. Depressed Collector 7fl95

- 101 - 1.0 pP A 1.4

- 102 - 3% 58. Multistage Depressed Collector 719s

- 103 - 7 - U

System Electron

- 104 - - 105 - 0 Roughing pump - Model : DS1002 Dual Stage Rotary Vane Pump - Manufacturer : Varian - Nominal pumping speed : 31 cfm - Ultimate total pressure : 2810-3 mbar @IHigh vacuum pump

- Model : V2OOOHT Turbo molecular pump, water cooling

- Manufacturer : Varian - Pumping speed [l/s] : N2,1950 He,2000 H2,1500 - Ultimate total pressure : 7.5210-11 torr - Rotational speed : 33000 rpm - Startup time :. 10 min

- 106 - @ Ion pump

- Model : Vaclon8 Ion pump for electron device (2EA)

- Manufacturer : Varian

- Pumping speed [l/s] : 8

A)$ 28. Turbo molecular pump

~)?l29. Ion pump

- 107 - - 108 - Tiilk3 3.0 (RFclock Z 2.5 2.0 0 1.5 C 24.26) 1.0

3.0 2.5 Tf4 2.0 1.5 C 24.51) 1.0 0.5 0.0 3.0 2.5 2T*4 2.0 1.5 t 24.75) 1.B 0.5

- 3.0 8 2.5 3T~4 v 2.0 1.5 i 29.8%) 1.0 €3.5 0.0 0 50 1m 150 z [cm)

- 109 - W-Cu rre nt

2.8 ,I I1 I 11 11 I1

1.5 u -.. 2 1.0 H 0.5

0.0 0 s8 100 20k3 Z (em) Power Flow 2.0

0 3 1.5 0 H ii 1.8 f 0.5

0.0 0 %3 1630 150 2BF) 258 z Icm)

Parameter Value Driving frequency 700 MHz Driving power I Anode voltage I 95 kV Modulating anode voltage 51 kV Beam current

- 110 - 7200

s Iooo 'Sg B 600 3 400 ,s 3 O 200

- 111 -

~ - 112 - [l] Shigeru Isagawa, et al., Proc. EPAC92 p. 1206 [2] Shigeru Isagawa, et al., Proc. EPAC94 p. 1912 [3] E. G. Schweppe, et al., Proc. EPAC92 p.1215 [4] Shigeru Isagawa, et al., Proc. EPAC94 p 1915 [5] J. L. Cronin, IEE Proc. Vol. 128, Pt.1, No.1, Feb., 1981 [6] A. S. Gilmour, Jr., "Microwave Tubes", Artech House, 1986 [7] R. E. Collin, "Foundations for Microwave Engineering", McGraw-Hill Inc. 1992 [8] Armand Staprans, et al., Proc. IEEE, Vo1.61, No.3, March, 1973 [91 Kai Masuda, et al., Fusion Technology, Vol.30, 805, 1996 [lo] W. H. Kohl, "Handbook of Materials and Techniques for Vacuum Devices", AIP Press, 1967 [ll] M. J. Smith, et al., "Power Klystrons 'Today", RSP LTD. , 1995 [12] E. L. Ginzton, "Microwave Measurements", McGraw-Hi 11 Inc., 1957 [13] W. B. Herrmannsfeldt, "EGUN-An Electron Optics and Gun Design Program", SLAC-Report-331, 1988 [ 141 ANSYS User's Manual [15] A. Roth, "Vacuum Technology", Elsevier Science Publishers, 1990 [16] J. R. Lamarsh, "Introduction to Nuclear Engineering", Addison-Wesley Pub1 ishing Company. 1983

- 113 -

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Spansoring Org. ~ Report No. I I Stamdard Report No. INIS Subject Code Report No.

Title/ Development of High Power RF Source Subtitle

Chung K. H., (KAPRA)

Lee K. O., Shin H. M., Chung I. Y., (KAPRA) Kim D. 1. (Inha Univ.), Noh S. J. (Dankook Univ.), KO S. K (Ulsan Univ.), Lee H. J. (Cheju Univ.), Choi W. H. (KAIST)

Publication Place

Page 114 p.

Note

Classified Report Type - Class Document Performing Contract No. Organization bstract (15-20 Line) I This study was performed with objective to design and develop the KOMAC proton xelerator RF system. For the development of the high power RF source for CCDTL(coup1ed ivity drift tube linac), the medium power RF system using the UHF klystron for roadcasting was integrated and with this RF system we obtained the basic design data, ieration experience and code-validity test data. Based on the medium power RF system rperimental data, the high power RF system for CCDTL was designed and its performed as analyzed.

Subject Keywords KOMAC, RF, RFQ, Klystron, RF Source