Goddard Has Always Done Commercial Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EOOS Posters Abstracts
Posters Submissions – EOOS Conference 21 23 November 2018 1. Sylvie Pouliquen Ifremer [email protected] Authors: "Gille Reverdin CNRS/INSU email: [email protected] , Pierre-Yves Le Traon Ifremer & Mercator-Ocean email: [email protected]) and the Coriolis 2014-2020 steering committee." Theme: From standalone to integrated ocean and coastal observing platforms Title: Coriolis: an integrated in-situ ocean observation infrastructure for operational oceanography and ocean/climate research "The Coriolis (www.coriolis.eu.org) structure gathers efforts of seven French institutes (CNES, CNRS, IFREMER, IPEV, IRD, Météo-France, SHOM, CEREMA) to organize the in-situ component of the French operational oceanography infrastructure. The objective is to organize the data acquisition and real- time/delayed mode data processing of in-situ measurements required for operational oceanography and ocean/climate research. Coriolis is focused on a limited number of physical and biogeochemical parameters that are acquired systematically and in real time or slightly delayed mode. Coriolis follows a fully open data policy. The framework of collaboration for Coriolis was renewed in 2014 and now covers the time period of 2014 up to 2020. By signing this new agreement, the eight directors of French institutes have clearly stated their willingness to sustain and consolidate further the Coriolis in-situ infrastructure. The new framework agreement strengthens the links between research and operational oceanography. The scope is also extended to integrate the main French contributions to the global and regional in-situ observing systems: Argo, gliders, research vessels, ship of opportunities, drifting buoys, marine mammals, tidal networks and high frequency coastal observatories. -
Dod Space Technology Guide
Foreword Space-based capabilities are integral to the U.S.’s national security operational doctrines and processes. Such capa- bilities as reliable, real-time high-bandwidth communica- tions can provide an invaluable combat advantage in terms of clarity of command intentions and flexibility in the face of operational changes. Satellite-generated knowledge of enemy dispositions and movements can be and has been exploited by U.S. and allied commanders to achieve deci- sive victories. Precision navigation and weather data from space permit optimal force disposition, maneuver, decision- making, and responsiveness. At the same time, space systems focused on strategic nuclear assets have enabled the National Command Authorities to act with confidence during times of crisis, secure in their understanding of the strategic force postures. Access to space and the advantages deriving from operat- ing in space are being affected by technological progress If our Armed Forces are to be throughout the world. As in other areas of technology, the faster, more lethal, and more precise in 2020 advantages our military derives from its uses of space are than they are today, we must continue to dynamic. Current space capabilities derive from prior invest in and develop new military capabilities. decades of technology development and application. Joint Vision 2020 Future capabilities will depend on space technology programs of today. Thus, continuing investment in space technologies is needed to maintain the “full spectrum dominance” called for by Joint Vision 2010 and 2020, and to protect freedom of access to space by all law-abiding nations. Trends in the availability and directions of technology clearly suggest that the U.S. -
Guía De Instrumentos Y Métodos De Observación : Volumen IV
Guía de Instrumentos y Métodos de Observación Volumen IV – Observaciones desde el espacio Edición de 2018 TIEMPO CLIMA AGUA OMM-N° 8 Guía de Instrumentos y Métodos de Observación Volumen IV – Observaciones desde el espacio Edición de 2018 OMM-N° 8 NOTA DE LA EDICIÓN METEOTERM, base terminológica de la OMM, está disponible en la página web: http://public. wmo.int/es/recursos/meteoterm. Conviene informar al lector de que cuando copie un hipervínculo seleccionándolo del texto podrán aparecer espacios adicionales inmediatamente después de http://, https://, ftp://, mailto:, y después de las barras (/), los guiones (-), los puntos (.) y las secuencias ininterrumpidas de caracteres (letras y números). Es necesario suprimir esos espacios de la dirección URL copiada. La dirección URL correcta aparece cuando se pone el cursor sobre el enlace o cuando se hace clic en el enlace y luego se copia en el navegador. OMM-N° 8 © Organización Meteorológica Mundial, 2018 La OMM se reserva el derecho de publicación en forma impresa, electrónica o de otro tipo y en cualquier idioma. Pueden reproducirse pasajes breves de las publicaciones de la OMM sin autorización siempre que se indique claramente la fuente completa. La correspondencia editorial, así como todas las solicitudes para publicar, reproducir o traducir la presente publicación parcial o totalmente deberán dirigirse al: Presidente de la Junta de Publicaciones Organización Meteorológica Mundial (OMM) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 Case postale No 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Genève 2, Suiza Correo electrónico: [email protected] ISBN 978-92-63-30008-9 NOTA Las denominaciones empleadas en las publicaciones de la OMM y la forma en que aparecen presentados los datos que contienen no entrañan, de parte de la Organización, juicio alguno sobre la condición jurídica de ninguno de los países, territorios, ciudades o zonas citados o de sus autoridades, ni respecto de la delimitación de sus fronteras o límites. -
Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation . -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
The Space-Based Global Observing System in 2010 (GOS-2010)
WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available. -
Suborbital Platforms and Range Services (SPARS)
Suborbital Capabilities for Science & Technology Small Missions Workshop @ Johns Hopkins University June 10, 2019 Mike Hitch, Giovanni Rosanova Goddard Space Introduction Flight Center AGENDAWASP OPIS ▪ Purpose ▪ History & Importance of Suborbital Carriers to Science ▪ Suborbital Platforms ▪ Sounding Rockets ▪ Balloons (brief) ▪ Aircraft ▪ SmallSats ▪ WFF Engineering ▪ Q & A P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 2 Goddard Space Purpose of the Meeting Flight Center Define theWASP OPISutility of Suborbital Carriers & “Small” Missions ▪ Sounding rockets, balloons and aircraft (manned and unmanned) provide a unique capability to scientists and engineers to: ▪ Allow PIs to enhance and advance technology readiness levels of instruments and components for very low relative cost ▪ Provide PIs actual science flight opportunities as a “piggy-back” on a planned mission flight at low relative cost ▪ Increase experience for young and mid-career scientists and engineers by allowing them to get their “feet wet” on a suborbital mission prior to tackling the much larger and more complex orbital endeavors ▪ The Suborbital/Smallsat Platforms And Range Services (SPARS) Line Of Business (LOB) can facilitate prospective PIs with taking advantage of potential suborbital flight opportunities P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 3 Goddard Space Value of Suborbital Research – What’s Different? Flight Center WASP OPIS Different Risk/Mission Assurance Strategy • Payloads are recovered and refurbished. • Re-flights are inexpensive (<$1M for a balloon or sounding rocket vs >$10M - 100M for a ELV) • Instrumentation can be simple and have a large science impact! • Frequent flight opportunities (e.g. “piggyback”) • Development of precursor instrument concepts and mature TRLs • While Suborbital missions fully comply with all Agency Safety policies, the program is designed to take Higher Programmatic Risk – Lower cost – Faster migration of new technology – Smaller more focused efforts, enable Tiger Team/incubator experiences. -
Aeronautical, Spacecraft, and Launch Vehicle Examples
The Value of Identifying and Recovering Lost GN&C Lessons Learned: Aeronautical, Spacecraft, and Launch Vehicle Examples Cornelius J. Qennehy 1 NASA Engineering and Safety Center (NESC) Steve Labbe2 NASA Johnson Space Center, Houston, TX, 77058 · Kenneth L. Lebsock3 Orbital Sciences Corporation, Technical Services Division, Greenbelt, MD 20770 Within the broad aerospace community the importance of identifying, documenting and widely sharing lessons learned during system development, flight test, operational or research programs/projects is broadly acknowledged. Documenting and sharing lessons learned helps managers and engineers to minimize project risk and improve performance of their systems. Often significant lessons learned on a project fail to get captured even though they are well known 'tribal knowledge" amongst the project team members. The physical act of actually writing down and documenting these lessons learned for the next generation of NASA GN&C engineers fails to happen on some projects for various reasons. In this paper we will first review the importance of capturing lessons learned and then wlll discuss reasons why some lessons are not documented. A simple proven approach called 'Pause and Learn' will be highlighted as a proven low-impact method of organizational learning that could foster the timely capture of critical lessons learned. Lastly some examples of "lost"GN&C lessons learned from the aeronautics, spacecraft and launch vehicle domains are briefly highlighted. In the context of this paper "lost" refers to lessons that have not achieved broad visibility within the NASA-wide GN&C CoP because they are either undocumented, masked or poorly documented in the NASA Lessons Learned Information System (LLIS). -
In This Issue
Vol. 38 No.12, September 2013 Editor: Jos Heyman FBIS In this issue: Satellite Update 4 Cancelled projects: Conestoga 5 News Ardusat 3 Arirang-5 7 Dnepr 1 7 Dream Chaser 7 Eutelsat and Satmex 2 Fermi 7 Gsat-14 7 HTV-4 3 iBall 3 Kepler 4 Orion 7 PicoDragon 3 Proton M 2 RCM 2 Russian EVAs 2 SARah 4 SGDC-1 4 SPRINT A 4 TechEdSat-3 3 WGS-6 4 HTV-4 Unpressurised Logistics Carrier with STP-H4 TIROS SPACE INFORMATION Eutelsat and Satmex 86 Barnevelder Bend, Southern River WA 6110, Australia Tel + 61 8 9398 1322 Eutelsat has acquired Mexico’s Satmex, a major communicaions satellite operator in the Latin (e-mail: [email protected]) American region. o o The Tiros Space Information (TSI) - News Bulletin is published to promote the scientific exploration and Satmex has currently three satellites in orbit at 113 W (Satmex-6), 114.9 W (Satmex-5) and commercial application of space through the dissemination of current news and historical facts. 116.8 oW (Satmex-8) and it can be expected that, once the acquisition has been completed, In doing so, Tiros Space Information continues the traditions of the Western Australian Branch of the these satellites will be renamed as part of the Eutelsat family. In addition Satmex has the Astronautical Society of Australia (1973-1975) and the Astronautical Society of Western Australia (ASWA) Satmex-7 and -9 satellites on order from Boeing. It is not clear whether these satellites will (1975-2006). remain on order. The News Bulletin can be received worldwide by e-mail subscription only. -
A History of Appalachia
University of Kentucky UKnowledge Appalachian Studies Arts and Humanities 2-28-2001 A History of Appalachia Richard B. Drake Click here to let us know how access to this document benefits ou.y Thanks to the University of Kentucky Libraries and the University Press of Kentucky, this book is freely available to current faculty, students, and staff at the University of Kentucky. Find other University of Kentucky Books at uknowledge.uky.edu/upk. For more information, please contact UKnowledge at [email protected]. Recommended Citation Drake, Richard B., "A History of Appalachia" (2001). Appalachian Studies. 23. https://uknowledge.uky.edu/upk_appalachian_studies/23 R IC H ARD B . D RA K E A History of Appalachia A of History Appalachia RICHARD B. DRAKE THE UNIVERSITY PRESS OF KENTUCKY Publication of this volume was made possible in part by grants from the E.O. Robinson Mountain Fund and the National Endowment for the Humanities. Copyright © 2001 by The University Press of Kentucky Paperback edition 2003 Scholarly publisher for the Commonwealth, serving Bellarmine University, Berea College, Centre College of Kenhlcky Eastern Kentucky University, The Filson Historical Society, Georgetown College, Kentucky Historical Society, Kentucky State University, Morehead State University, Murray State University, Northern Kentucky University, Transylvania University, University of Kentucky, University of Louisville, and Western Kentucky University. All rights reserved. Editorial and Sales Offices: The University Press of Kentucky 663 South Limestone Street, Lexington, Kentucky 40508-4008 www.kentuckypress.com 12 11 10 09 08 8 7 6 5 4 Library of Congress Cataloging-in-Publication Data Drake, Richard B., 1925- A history of Appalachia / Richard B. -
GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists. -
Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.