Effects of Different Drying Methods on Untargeted Phenolic Metabolites

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Different Drying Methods on Untargeted Phenolic Metabolites molecules Article Effects of Different Drying Methods on Untargeted Phenolic Metabolites, and Antioxidant Activity in Chinese Cabbage (Brassica rapa L. subsp. chinensis) and Nightshade (Solanum retroflexum Dun.) Millicent G. Managa 1, Yasmina Sultanbawa 2 and Dharini Sivakumar 1,* 1 Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West 0001, South Africa; [email protected] 2 Australian Research Council (ARC), Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, QLD 4108 Brisbane, Australia; [email protected] * Correspondence: [email protected]; Tel.: +27-012-382-5303 or +27-012-382-5302 Received: 31 January 2020; Accepted: 9 March 2020; Published: 13 March 2020 Abstract: Chinese cabbage (Brassica rapa L. subsp. chinensis) and Nightshade (Solanum retroflexum are popular traditional leafy vegetables consumed predominantly by rural Africans. Sun drying is adopted as a traditional method of postharvest preservation to store theses leaves during off seasons. The influence of different types of postharvest processing treatments, such as conventional oven drying, solar cabinet drying, sun drying and freeze drying, on the changes on colour properties and antioxidant components were investigated. Freeze-drying retained the ascorbic acid content, antioxidant activities, total chlorophyll content, green colour by reducing the colour difference (DE). With regard to Chinese cabbage and Nightshade leaves, sun and microwave drying respectively had the most negative impact on all the identified phenolic compounds. The OPLS-DA and the UPLC–QTOF/MS and chemometric approach showed kaempferol-3-O-sophoroside, kaempferol-3-sophorotrioside-7-glucoside and hydroxyoctadecenedioic acid as the markers responsible for the separation of sun-dried samples from the other drying treatments in Chinese cabbage. Sinapoyl malate was not detected in sun-dried samples. Caffeoylmalic acid was identified as the marker compound to separate the other drying treatments from the microwave dried samples of Nightshade leaves. Trihydroxyoctadecadiene derivative and hydroxyoctadecanedioic acid were detected in microwaved samples. Due to the cost effectiveness, solar dryer cabinet treatment was recommended for drying both vegetables. The proximate analysis of solar dried functional powder of Chinese cabbage and Nightshade vegetables demonstrated higher contents of protein and dietary fibre. Keywords: Traditional African leafy vegetables; poly phenols; chlorogenic acid; kaempferol glycosides; antioxidants; postharvest processing 1. Introduction Chinese cabbage (Brassica rapa L. subsp. chinensis) and Nightshade (Solanum retroflexum Dun) are popular vegetables among rural and peri-urban households in Southern Africa. The Ca, Fe, 1 1 glucosinolates and β-carotene contents were reported as 1020 g kg− FW, 26 g 36 kg− FW and 1 1 26 g 36 kg− DW respectively, and the kempferol content varied from 0.2002 to 0.25 g kg− on dry weight basis [1,2]. In addition, the raw leaves of Brassica rapa L. subsp. Chinensis contain kaempferol-sophoroside-O-hexoside, kaempferol-dihexoside, kaempferol-sophoroside, kaempferol hexoside, ferulic acid and myrectin-O-arabinoside. Sinigrin was reported as the highest glucosinolate Molecules 2020, 25, 1326; doi:10.3390/molecules25061326 www.mdpi.com/journal/molecules Molecules 2020, 25, 1326 2 of 23 in freshly harvested Chinese cabbage [3]. The Nightshade leaves contained higher levels of 1 1 1 Ca (199 g 100 g− ), Mg (92 g 100 g− ), and Fe (7.2 g 100 g− ) compared to raw spinach [4] and the following phenolic compounds, neochlorogenic, chlorogenic, and caffeoylmalic acid, kaempferol O-rhamnosyl hexoside and rutin [3]. Since, the growing alertness of functional compounds found in the fruits and vegetables and their beneficial health effects in recent years has pointed to the fact that increased inclusion of fruits and vegetables is essential in our daily diets [5]. Traditional African leafy vegetables are well known for the contribution of both micronutrients and functional compounds to the diets of African consumers [6]. Therefore, traditional African leafy vegetables can be included in diet diversification strategy for the sub-Saharan African population to combat the hidden hunger [7]. Generally African leafy vegetables are consumed as soups, or relishes as side dishes with the main meal the carbohydrate staples. Research reports have shown that African vegetables are an abundant source of non-nutritive phytochemicals and their biological activities have been associated with many health benefits, such as anti-diabetic or obesity effects [8]. For example, moringa leaves (Moringa oleifera), rich in flavonoid aglycons quercetin and kaempferol in methanolic extract, showed a significant antidiabetic and antioxidant activity [8]. Leaf extracts of Amaranthus spinosus demonstrated anti-tumour properties opposing liver, breast and colorectal cancer cells [9]. Production of African leafy vegetables in Southern African region is encouraged at home garden or commercial level because they contribute positively towards food production and security due to their draught tolerance [5]. The highly perishable nature of the African leafy vegetables limits their marketability therefore most are dried in shade or under sun as a method adopted for preservation during the off season to remove moisture from the vegetable and to increase shelf life by preventing microbial decay without adding any preservatives [10]. The postharvest drying process and the type of methods adopted can result in changes in functional compounds and physical properties of green leafy vegetables [11]. Furthermore, postharvest drying provides an opportunity to earn a higher income from traditional vegetable functional food. The global functional foods market size is estimated to increase in 2025 to US $275.77, specifically due to the increasing consumer demand for nutritional and fortifying food additives [12]. Amaranthus hybridus, dried at 40 ◦C for 12 h, increased fibre content to 7% and β carotene and vitamin C were decreased at levels of 19.4% and 13.9% respectively [13]. Traditionally adopted sun drying has many drawbacks mainly because it is difficult to control large quantities, to achieve homogenous quality standards and to implement food safety guidelines; also, little is known about the impact of different drying methods on the phenolic compounds, antioxidant activity and ant nutritive compounds in Chinese cabbage and Nightshade leafy vegetables. However, the type of drying method adopted to dry the vegetables for the use of functional ingredients for the development of value-added product must be standardised. Consequently, the objective of this study was to instigate the impact of different drying methods, such as sun drying, shade drying, drying in a solar cabinet dryer, hot air oven and freeze drying methods, on the changes in i) colour properties, ii) changes in lipophilic pigments, iii) phenolic metabolite components, iv) ascorbic acid and v) antioxidant property in Chinese cabbage and Nightshade leafy vegetables. 2. Results and Discussion 2.1. Colour Changes and Lipophilic Pigments Table1A,B illustrate the colour changes that took place during di fferent types of postharvest drying in Chinese cabbage and Nightshade leaves respectively. The following colour coordinates were used to express the colour changes. Light intensity (L*), colour coordinate a* relates to red and green, colour coordinate b* relates to yellow colour, h◦ = arc tangent b*/a* represents a basic colour like red (~29◦), orange (~45◦) or yellow (~70◦), DE-colour difference, the variation in colour compared to the original sample using the following formulae given in Section 3.4. Molecules 2020, 25, 1326 3 of 23 Freeze-dried powers of both types of leaves showed significantly highest L* (luminosity), b*, h◦ values and the lowest a* value, whilst the oven drying showed the opposite effect by showing significantly reduced L*, h◦ values and highest a* value (Table1A,B). On the contrary during hot air (oven) and freeze drying of cabbages (Brassica oleracea L. variety Capitata L.), no differences in brightness (L*) value was reported [14].However, the increase in b* value during postharvest dehydration treatments compared to the fresh leaves observed in Chinese cabbage (Table1A) and Night shade leaves (Table1B) are possibly due to the interference of intercellular air trapped on the greenness of the chlorophyll as explained previously by Rajkumar et al., [14] and confirms their findings. The purchasing power of consumers is determined by the colour (quality) of the products [15]. Thus, the DE value plays a crucial role in relating exact colour changes in dried products; if DE is less than 1.0 it means the colour differences cannot be noticeable [16]. In this study, Chinese cabbage and Nightshade leaves subjected to different drying treatments exceeded the DE value 1.0, and the DE value of the freeze-dried samples showed the lowest (Chinese cabbage, DE = 2.79; Night shade DE = 3.18) values than the samples from other drying treatments. Conversely, the samples from the oven drying method showed the highest DE value (Chinese cabbage, DE = 25.93; Nightshade DE = 14.66). The greater DE values indicated lighter leaves than the fresh and freeze-dried samples. Table 1. Effect of drying treatments on colour changes in Chinese cabbage and Nightshade leaves. (A) Effect of Drying Treatments on Colour Changes in Chinese Cabbage
Recommended publications
  • AVALUACIÓ DE COMPOSTOS FENÒLICS EN ALIMENTS MITJANÇANT TÈCNIQUES HPLC-DAD I UHPLC-DAD-Msn
    AVALUACIÓ DE COMPOSTOS FENÒLICS EN ALIMENTS MITJANÇANT TÈCNIQUES HPLC-DAD I UHPLC-DAD-MSn Albert RIBAS AGUSTÍ Dipòsit legal: Gi. 955-2013 http://hdl.handle.net/10803/116771 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora.
    [Show full text]
  • Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties
    Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties Authors: Cynthia E. Lizárraga-Velázquez, Nayely Leyva-López, Crisantema Hernández, Erick Paul Gutiérrez-Grijalva, Jesús A. Salazar-Leyva, Idalia Osuna-Ruíz, Emmanuel Martínez-Montaño, Javier Arrizon, Abraham Guerrero, Asahel Benitez-Hernández, Anaguiven Ávalos-Soriano Date Submitted: 2021-06-21 Keywords: residues, green technologies, fruit, vegetable, valorization, Extraction, bioactive peptides, terpenes, phenolic compounds, phytosterols Abstract: The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules
    [Show full text]
  • Production of Native Plants for Seed, Biomass, and Natural Products A
    Production of native plants for seed, biomass, and natural products A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Katrina Franziska Freund Saxhaug IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Craig C. Sheaffer, advisor March 2020 © Katrina Franziska Freund Saxhaug 2019 Acknowledgements The research presented in this document would not have been possible without the love and support of countless mentors, colleague, friends and family. Foremost, I am forever grateful to my advisor, Dr. Craig Sheaffer, whose direction, support, understanding, and unending generosity made it possible for me to complete my doctorate. I am also eternally thankful for my unofficial co-advisor, Dr. Adrian Hegeman, for his kindness, intellectual brilliance, and support throughout my degree program. I am also incredibly grateful to Dr. Susan Galatowitsch and Dr. Clay Carter for their guidance, wisdom, and constructive and insightful commentaries. Though not on my committee, Dr. Jacob Jungers was incredibly generous with his time, advice, and support in all aspects of this research. While a doctoral student, I was supported by grants from the Minnesota Department of Agriculture through the AGRI Crop Research Grant Program and the Specialty Crop Block Grant Program. Additional support came through the Minnesota Institute for Sustainable Agriculture gift fund, graciously provided by Leanna Forcier. Further support was provided by the University of Minnesota, including the Hueg-Harrison Graduate Fellowship, the Mark and Jean Schroepfer Fellowship, the Nancy Jo Ehlke Fellowship, and Annie’s Sustainable Agriculture Scholarship. The Sustainable Cropping Systems Lab, under the direction of Dr Craig Sheaffer, and the Plant Metabolomics Lab, under the direction of Dr.
    [Show full text]
  • Characterization of Phenolic Compounds in Highly-Consumed Vegetable Matrices by Using Advanced Analytical Techniques
    UNIVERSITY OF GRANADA FACULTY OF SCIENCES Department of Analytical Chemistry Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” Functional Food Research and Development Center (CIDAF) DOCTORAL THESIS CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES CARACTERIZACIÓN DE COMPUESTOS FENÓLICOS EN MATRICES VEGETALES MEDIANTE TÉCNICAS ANALTICALAS AVANZADAS Presented by IBRAHIM M. ABU REIDAH Submitted for a Doctoral degree in Chemistry GRANADA, 2013 Editor: Editorial de la Universidad de Granada Autor: Ibrahim M. Abu Reidah D.L.: GR 1899-2013 ISBN: 978-84-9028-591-6 This doctoral thesis has been conducted through financing from the Ministry of Foregin Affairs of Spain & The Spanish Agency Of International Cooperation for Development (MAEC-AECID) scholarship and funds from the Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” (Department of Analytical Chemistry, University of Granada) and Functional Food Research and Development Center (CIDAF) from different projects, contracts and grants from the central and autonomic administrations and research plan of the University of Granada. CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES By IBRAHIM M. ABU REIDAH Granada, 2013 Signed by Dr. Alberto Fernández-Gutiérrez Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. Antonio Segura Carretero Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. David Arráez-Román Assistant Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Submitted for a Doctoral Degree in Chemistry Signed by Ibrahim M.
    [Show full text]
  • Quality Assesment of Urtica Dioica L. Samples Collected from Different Locations of Turkey
    Turk J Pharm Sci 11(2), 223-230, 2014 Short communication Quality Assesment of Urtica dioica L. Samples Collected from Different Locations of Turkey Sanem HO§BA§, Mustafa ASLAN*, Ekrem SEZİK Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, 06330 Ankara, TURKEY Urtica dioica L. (Urticacea) is widely distributed throughout the temperate regions of the world. Leaves of the plant recommended not only for the complaints associated with rheumatoid arthritis, cardiovascular diseases and diabetes but also have antiviral, antioxidant, anti-inflammatory activities. It is also used as traditional medicine as panacea in Turkey. Despite, U. dioica leaf is monographed in European Pharmacopeia as “Nettle Leaf - Urtica folium” and standardized by liquid chromatography for its chlorogenic acid content; aerial parts of plants are sold instead of leaves at the herbal shops for medical purposes in Turkey. The objective of our study is to determine quality of samples and compare the chlorogenic acid amount in aerial parts and leaves collected from different localities of Anatolia. Extraction procedure was employed according to European Pharmacopeia 6.0. /?-Coumaric acid was used as internal standart. RP-HPLC was performed in order to determine chlorogenic acid amounts. The leaf samples collected from Düzce, Maraş, Isik Mountain and Palandöken Mountain has possesed highest chlorogenic acid amounts 1.91±0.0003%, 1.156±0.0019%, 0.67±0.00068%, 0.63±0.0024% respectively. However amount of chlorogenic acid in aerial parts of same samples has been found 1.047±0.0007%, 0.751±0.0033%, 0.31±0.0085%, 0.488±0.0051% respectively. Results indicate that in all samples, chlorogenic acid content has been found higher in leaves than aerial parts.
    [Show full text]
  • Distribution and Stereochemistry of Hydroxycinnamoylmalic Acids and of Free Malic Acids in Papaveraceae and Fumariaceae Sabine C
    Distribution and Stereochemistry of Hydroxycinnamoylmalic Acids and of Free Malic Acids in Papaveraceae and Fumariaceae Sabine C. Boeggea, Adolf Nahrstedta, Michael Linscheidb and Walter Niggeb a Institut für Pharmazeutische Biologie und Phytochemie. Hittorfstr. 56, D-48149 Münster, Bundesrepublik Deutschland b ISAS Institut für Spektrochemie und angewandte Spektroskopie, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Bundesrepublik Deutschland Z. Naturforsch. 50c, 608-615 (1995); received July 3/July 24. 1995 Hydroxycinnamoylmalic Acids, Optical Rotation, Papaveraceae, Fumariaceae, Chemotaxonomy The distribution of hydroxycinnamoylmalic acids (HCM acids) in 25 species and 2 subspe­ cies of Papaveraceae and Fumariaceae representing 14 genera was investigated by HPLC and subsequent diode array detection (DAD). In case of similar chromatographic and UV- spectrometric behavior of HCM acids and other hydroxycinnamic acid derivatives liquid chromatography-thermospray/mass spectrometry (LC-TSP/MS) was used for positive identi­ fication. Ten of the species were found to contain caffeoyl-, /?-coumaroyl-. and feruloylmalic acid whereas Chelidonium majus only showed the presence of caffeoylmalic acid. Sinapoyl- malic acid could not be detected. The quantitative determination by HPLC at 330 nm yielded the highest content of caffeoylmalic acid for Fumciria officinalis and F. capreolata, and the lowest for Chelidonium majus. Isolated HCM acids showed positive optical rotation for mem­ bers of the Papaveraceae and negative values for members of the Fumariaceae. This points to an esterification of hydroxycinnamic acids with (-)-L-malic acid for the Papaveraceae and with (+)-D-malic acid for the Fumariaceae. For plants containing HCM acids the contents of free l - and D-malic acid were determined enzymatically Yields of L-malic acid were higher for Papaveraceae than for Fumariaceae; D-malic acid was detectable only in traces for all investigated species.
    [Show full text]
  • Thesis Phd DEGREE of GRENOBLE UNIVERSITY Laura Amandine
    Thesis Submitted to obtain the PhD DEGREE OF GRENOBLE UNIVERSITY Speciality : Structural Biology and Nanobiology Ministerial decree : 7th August 2006 Presented by Laura Amandine LALLEMAND Thesis directed by Sean Mc SWEENEY and co-directed by Andrew Mc CARTHY prepared in the Structural Biology Group of ESRF (European Synchrotron Radiation Facility) in the Doctoral School of Chemistry and Life Sciences Structural and biochemical characterisation of enzymes involved in chlorogenic acid biosynthesis Nicotiana tabacum 4-coumarate CoA ligase (4CL) Coffea canephora hydroxycinnamoyl-CoA quinate/ shikimate hydroxycinnamoyltranferases (HCT, HQT) Dissertation defended on March, 21st 2011 , in front of a jury composed of : Dr. Nushin AGHAJARI Reviewer Dr. Anne IMBERTY President Pr. Catherine LAPIERRE Reviewer Dr. Andrew Mc CARTHY Thesis director Dr. James Mc CARTHY Member Dr. Sean Mc SWEENEY Thesis director THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Biologie structurale et nanobiologie Arrêté ministériel : 7 août 2006 Présentée par Laura Amandine LALLEMAND Thèse dirigée par Sean McSWEENEY et co-dirigée par Andrew McCARTHY préparée au sein du Groupe de Biologie Structurale de l'ESRF (Installation Européenne de Rayonnement Synchrotron) dans l'École Doctorale Chimie et Sciences du Vivant Caractérisation structurale et biochimique d'enzymes impliquées dans la biosynthèse des acides chlorogéniques Nicotiana tabacum 4-coumarate CoA ligase (4CL) Coffea canephora hydroxycinnamoyl-CoA quinate/shikimate hydroxycinnamoyltranférases (HCT, HQT) Thèse soutenue publiquement le 21 Mars 2011 , devant le jury composé de : Mme, Nushin, AGHAJARI Rapporteur Mme, Anne, IMBERTY Président du Jury Mme, Catherine, LAPIERRE Rapporteur M., Andrew, McCARTHY Directeur de thèse M., James, McCARTHY Membre M., Sean, McSWEENEY Directeur de thèse Acknowledgments This project was supported by a doctoral fellowship co-financed by Nestlé Research and the European Synchrotron Research Facility (ESRF).
    [Show full text]
  • Chicoric Acid: Chemistry, Distribution, and Production
    REVIEW ARTICLE published: 31 December 2013 doi: 10.3389/fchem.2013.00040 Chicoric acid: chemistry, distribution, and production Jungmin Lee 1* and Carolyn F. Scagel 2 1 United States Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Unit Worksite, Parma, ID, USA 2 United States Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR, USA Edited by: Though chicoric acid was first identified in 1958, it was largely ignored until recent popular Matteo Balderacchi, Università media coverage cited potential health beneficial properties from consuming food and Cattolica del Sacro Cuore, Italy dietary supplements containing this compound. To date, plants from at least 63 genera Reviewed by: and species have been found to contain chicoric acid, and while the compound is used Massimiliano Valentini, Agricultural Research Council, Italy as a processing quality indicator, it may also have useful health benefits. This review of Giorgia Sarais, University of Cagliari, chicoric acid summarizes research findings and highlights gaps in research knowledge Italy for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid *Correspondence: identification, and quantification methods, biosynthesis, processing improvements to Jungmin Lee, United States increase chicoric acid retention, and potential areas for future research are discussed. Department of Agriculture, Agricultural Research Service, Keywords: phenolics, polyphenolics, cichoric acid, caffeic acid derivative, dicaffeoyltartaric acid, hydroxycinnamic Horticultural Crops Research Unit acid, phenolic acid Worksite, 29603 U of I Ln, Parma, ID 83660, USA e-mail: [email protected]; [email protected] INTRODUCTION or signaling molecules (Harborne, 1979; Gallagher et al., 2010; Recent US consumer interest in boosting their dietary intake Mandal et al., 2010).
    [Show full text]
  • Reference Substances for Herbal Products Our Services
    Reference Substances for Herbal Products Our Services As one of the leading manufacturers internationally, PhytoLab offers a broad portfolio of over 1,000 extensively documented herbal reference substances. Our product range reflects the whole diversity of natural product chemistry – from A for Anthocy- ans to X for Xanthones, PhytoLab offers you numerous representatives of all classes of natural substances phyproof® Reference Substances are Primary Reference Substances as defined by the European Pharmacopoeia and other international organizations. phyproof® Reference Substances are delivered at no extra cost together with: a data sheet with general information including the structural formula, molecular formula, molecular weight, CAS registry number, as well as the recommended storage conditions, handling instructions, and general safety information a certificate of analysis usually including* a description of general properties a list of the identity tests the substance passed a certified absolute content considering chromatographic purity as well as content of water, residual solvents and inorganic impurities * Very few exceptions apply to phyproof® Reference Substances available in limited quantities only. For detailed information on the analytical documentation delivered with each reference substance please visit our webshop at http://phyproof.phytolab.de or contact our reference substance team. Material safety data sheets (MSDS) are automatically provided with hazardous substances and are available for all other phyproof® Reference Substances upon request. Furthermore, the exact eight with two decimals is given on the label of each phyproof® Reference Substance vial, thus allowing the preparation of well-defined standard solutions without losing any valuable material. For marketing authorization purposes we deliver phyproof® Reference Substances upon request with full documentation (CTD module 3.2.S.5 /3.2.P.6) including the following data and information: NMR ( 1H and 13C) incl.
    [Show full text]
  • Pharmacokinetic Properties of Biomass-Extracted Substances Isolated by Green Solvents
    PEER-REVIEWED BRIEF COMMUNICATION bioresources.com Pharmacokinetic Properties of Biomass-extracted Substances Isolated by Green Solvents Michal Jablonsky,a,* Ales Haz,a Zuzana Burcova,b Frantisek Kreps,b and Jozef Jablonsky c,d According to the literature, approximately 41 nutraceutical compounds have been isolated from different types of biomass using green solvents. It is important to collect information on the pharmacokinetic properties of the nutraceutical substances from biomass isolated according to the published papers. The pharmacokinetic properties of the bioactive substances extracted by green solvents, such as the molecular weight, logP, AlogP, H-bond acceptor, H-bond donor, total polar surface area, atom molar refractivity, number of rotatable bonds, number of atoms, rotatable bond count, number of rigid bonds, number of atom rings, and number of H-bonds, were calculated with a drug-likeness tool. In practical terms, the original and most well-known Lipinski’s Rule of Five (Ro5) was applied to 28 substances, namely 3-hydroxytyrosol; apigenin; artemisinin; bergapten; bilobalide; biochanin A; caffeic Acid; caffeoylmalic acid; catechins; cinnamic acid; curcumin; daidzei; daidzin; epicatechin; gallic acid; genistein; ginkgolide A; ginkgolide B; levofloxacin; luteolin; naringenin; p-coumaric acid; protocatechuic acid; psoralen; quercetin; trans-ferulic acid; tyrosol, and vanillin. Keywords: Green solvents; Deep eutectic solvents; Pharmacokinetic properties; Nutraceutical compounds Contact information: a: Institute of Natural and Synthetic Polymer, Department of Wood, Pulp, and Paper; Slovak University of Technology, Radlinského 9, Bratislava, 812 37, Slovak Republic; b: Institute of Food Science and Nutrition, Department of Food Science and Technology, Slovak University of Technology, Radlinského 9, Bratislava, 812 37, Slovak Republic; c: Central Military Hospital SNP Ruzomberok - Teaching Hospital, Gen.
    [Show full text]
  • Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties
    processes Review Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties Cynthia E. Lizárraga-Velázquez 1, Nayely Leyva-López 1,2 , Crisantema Hernández 1,* , Erick Paul Gutiérrez-Grijalva 3 , Jesús A. Salazar-Leyva 4 , Idalia Osuna-Ruíz 4 , Emmanuel Martínez-Montaño 5 , Javier Arrizon 6, Abraham Guerrero 1,2 , Asahel Benitez-Hernández 7 and Anaguiven Ávalos-Soriano 1,2 1 Centro de Investigación en Alimentación y Desarrollo, A.C., Av. Sábalo Cerritos S/N, S/C, Mazatlán C.P. 82112, Sinaloa, Mexico; [email protected] (C.E.L.-V.); [email protected] (N.L.-L.); [email protected] (A.G.); [email protected] (A.Á.-S.) 2 Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Av. Sábalo Cerritos S/N, S/C, Mazatlán C.P. 82112, Sinaloa, Mexico 3 Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán C.P. 80110, Sinaloa, Mexico; [email protected] 4 Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa, Carretera Mazatlán-Higueras km 3, Mazatlán C.P. 82199, Sinaloa, Mexico; [email protected] (J.A.S.-L.); [email protected] (I.O.-R.) 5 Cátedras CONACYT-Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa, Carretera Mazatlán-Higueras km 3, Mazatlán C.P. 82199, Sinaloa, Mexico; [email protected] 6 Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Unidad Zapopan, Camino Arenero 1227, El Bajio, Zapopan 45019, Jalisco, Mexico; [email protected] 7 Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Av.
    [Show full text]
  • Page 1 of 38 Food & Function
    Food & Function Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/foodfunction Page 1 of 38 Food & Function 1 Assessment of the distribution of phenolic compounds and contribution to the 2 antioxidant activity in Tunisian figs leaves, fruits, skins and pulps using mass 3 spectrometry-based analysis. 4 5 Sonda Ammar, a,b María del Mar Contreras, a,c, * Olfa Belguith-Hadrich, b Antonio Segura- 6 Carretero,a,c Mohamed Bouaziz b* 7 aResearch and Development Functional Food Centre (CIDAF), Bioregión Building, Health 8 Science Technological Park, Avenida del Conocimiento 37, 18016, Granada, Spain. 9 bLaboratoire d’Électrochimie et Environnement, École Nationale d’Ingénieurs de Sfax BP 10 “1173” 3038, Université de Sfax, Tunisia.
    [Show full text]