Page 1 of 38 Food & Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5]. -
AVALUACIÓ DE COMPOSTOS FENÒLICS EN ALIMENTS MITJANÇANT TÈCNIQUES HPLC-DAD I UHPLC-DAD-Msn
AVALUACIÓ DE COMPOSTOS FENÒLICS EN ALIMENTS MITJANÇANT TÈCNIQUES HPLC-DAD I UHPLC-DAD-MSn Albert RIBAS AGUSTÍ Dipòsit legal: Gi. 955-2013 http://hdl.handle.net/10803/116771 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. -
Hydroxybenzoic Acid Isomers and the Cardiovascular System Bernhard HJ Juurlink1,2, Haya J Azouz1, Alaa MZ Aldalati1, Basmah MH Altinawi1 and Paul Ganguly1,3*
Juurlink et al. Nutrition Journal 2014, 13:63 http://www.nutritionj.com/content/13/1/63 REVIEW Open Access Hydroxybenzoic acid isomers and the cardiovascular system Bernhard HJ Juurlink1,2, Haya J Azouz1, Alaa MZ Aldalati1, Basmah MH AlTinawi1 and Paul Ganguly1,3* Abstract Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates’ dictum of ‘Let food be your medicine and medicine your food’ can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. -
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties Authors: Cynthia E. Lizárraga-Velázquez, Nayely Leyva-López, Crisantema Hernández, Erick Paul Gutiérrez-Grijalva, Jesús A. Salazar-Leyva, Idalia Osuna-Ruíz, Emmanuel Martínez-Montaño, Javier Arrizon, Abraham Guerrero, Asahel Benitez-Hernández, Anaguiven Ávalos-Soriano Date Submitted: 2021-06-21 Keywords: residues, green technologies, fruit, vegetable, valorization, Extraction, bioactive peptides, terpenes, phenolic compounds, phytosterols Abstract: The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules -
Molecular Docking Study on Several Benzoic Acid Derivatives Against SARS-Cov-2
molecules Article Molecular Docking Study on Several Benzoic Acid Derivatives against SARS-CoV-2 Amalia Stefaniu *, Lucia Pirvu * , Bujor Albu and Lucia Pintilie National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; [email protected] (B.A.); [email protected] (L.P.) * Correspondence: [email protected] (A.S.); [email protected] (L.P.) Academic Editors: Giovanni Ribaudo and Laura Orian Received: 15 November 2020; Accepted: 1 December 2020; Published: 10 December 2020 Abstract: Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans’ theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski’s and Weber’s rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection. Keywords: SARS-CoV-2; benzoic acid derivatives; gallic acid; molecular docking; reactivity parameters 1. Introduction Severe acute respiratory syndrome coronavirus 2 is an international health matter. Previously unheard research efforts to discover specific treatments are in progress worldwide. -
3,4-DIHYDROXYBENZOIC ACID and 3,4-DIHYDROXYBENZALDEHYDE from the FERN Trichomanes Chinense L.; ISOLATION, ANTIMICROBIAL and ANTIOXIDANT PROPERTIES
Indo. J. Chem., 2012, 12 (3), 273 - 278 273 3,4-DIHYDROXYBENZOIC ACID AND 3,4-DIHYDROXYBENZALDEHYDE FROM THE FERN Trichomanes chinense L.; ISOLATION, ANTIMICROBIAL AND ANTIOXIDANT PROPERTIES Nova Syafni, Deddi Prima Putra, and Dayar Arbain* Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, Kampus Limau Manis, Padang, 25163, West Sumatera, Indonesia Received May 1, 2012; Accepted September 5, 2012 ABSTRACT 3,4-dihydroxybenzoic acid (1) and 3,4-dihydroxybenzaldehyde (2) have been isolated from ethyl acetate fraction of methanolic fractions of leaves, stems and roots of the fern Trichomanes chinense L. (Hymenophyllaceae). These two compounds also showed significant antioxidant using DPPH and antimicrobial activities using the disc diffusion assay. Keywords: Trichomanes chinense L.; 3,4-dihydroxybenzoic acid; 3,4-dihydroxybenzaldehyde; antioxidant; antimicrobial ABSTRAK Telah diisolasi asam 3,4-dihidroksibenzoat (1) dan 3,4-dihidroksibenzaldehid (2) dari fraksi etil asetat ekstrak metanol daun, batang dan akar paku Trichomanes chinense L. (Hymenophyllaceae). Kedua senyawa ini memperlihatkan sifat antioksidan yang signifikan ketika diuji dengan metoda DPPH dan antimiokroba ketika diuji dengan metoda diffusi agar. Kata Kunci: Trichomanes chinense L.; asam 3,4-dihidroksibenzoat (1); 3,4-dihidroksibenzaldehid (2); antioksidan; antimikroba INTRODUCTION (Schizaeacee), Selaginella doederlinii Hieron, S. tamariscina (Bauv.) Spring, S. unsinata (Desv.) Spring. Based on a study on fossils particularly on that of (Sellaginellaceae) are also recorded to have medicinal Polypodiaceous family, it was considered that ferns have properties [7-8]. In continuation of our study on inhabited the earth as one of the pioneering plants since Sumatran ferns [6], chemical study, antimicrobial and the ancient time [1]. It was estimated that there were antioxidant properties of T. -
The Metabolomic-Gut-Clinical Axis of Mankai Plant-Derived Dietary Polyphenols
nutrients Article The Metabolomic-Gut-Clinical Axis of Mankai Plant-Derived Dietary Polyphenols Anat Yaskolka Meir 1 , Kieran Tuohy 2, Martin von Bergen 3, Rosa Krajmalnik-Brown 4, Uwe Heinig 5, Hila Zelicha 1, Gal Tsaban 1 , Ehud Rinott 1, Alon Kaplan 1, Asaph Aharoni 5, Lydia Zeibich 6, Debbie Chang 6, Blake Dirks 6, Camilla Diotallevi 2,7, Panagiotis Arapitsas 2 , Urska Vrhovsek 2, Uta Ceglarek 8, Sven-Bastiaan Haange 3 , Ulrike Rolle-Kampczyk 3 , Beatrice Engelmann 3, Miri Lapidot 9, Monica Colt 9, Qi Sun 10,11,12 and Iris Shai 1,10,* 1 Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; [email protected] (A.Y.M.); [email protected] (H.Z.); [email protected] (G.T.); [email protected] (E.R.); [email protected] (A.K.) 2 Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach, 1, San Michele all’Adige, 38098 Trento, Italy; [email protected] (K.T.); [email protected] (C.D.); [email protected] (P.A.); [email protected] (U.V.) 3 Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318 Leipzig, Germany; [email protected] (M.v.B.); [email protected] (S.-B.H.); [email protected] (U.R.-K.); [email protected] (B.E.) 4 Biodesign Center for Health through Microbiomes, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA; [email protected] 5 Department of Plant and Environmental Sciences, -
Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods
antioxidants Article Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods Berta Alcalde, Mercè Granados and Javier Saurina * Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; [email protected] (B.A.); [email protected] (M.G.) * Correspondence: [email protected]; Tel.: +34-93-403-4873 Received: 16 October 2019; Accepted: 30 October 2019; Published: 31 October 2019 Abstract: This paper evaluates the antioxidant ability of polyphenols as a function of their chemical structures. Several common food indexes including Folin-Ciocalteau (FC), ferric reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity (TEAC) assays were applied to selected polyphenols that differ in the number and position of hydroxyl groups. Voltammetric assays with screen-printed carbon electrodes were also recorded in the range of 0.2 to 0.9 V (vs. Ag/AgCl − reference electrode) to investigate the oxidation behavior of these substances. Poor correlations among assays were obtained, meaning that the behavior of each compound varies in response to the different methods. However, we undertook a comprehensive study based on principal component analysis that evidenced clear patterns relating the structures of several compounds and their antioxidant activities. Keywords: antioxidant index; differential pulse voltammetry; polyphenols; index correlation; structure-activity 1. Introduction Epidemiological studies have shown that antioxidant molecules such as polyphenols may help in the prevention of cardiovascular and neurological diseases, cancer and aging-related disorders [1–4]. Antioxidants act against excessively high levels of free radicals, the harmful products of aerobic metabolism that can produce oxidative damage in the organism [5]. -
Sample Temperature of 0°C
Substituent Effects on Benzoic Acid Activity Joe Lammert* and Tom Herrin* Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65201 Email: [email protected]; [email protected] Introduction Materials and Methods Scheme 1 illustrates the synthesis of 2,5-dihydroxybenzoic acid by phenylester cleavage of 2-hydroxy-5-acetoxybenzoic acid. The starting material is reacted with sodium hydroxide and hydrogen peroxide in aqueous solution. A detailed description of this synthesis is provided in the appendix. Scheme 1. Synthesis of 2,5-dihydroxybenzoic acid. The synthesis of 2,6-dihydroxybenzoic acid is outlined in Scheme 2. 2,6-Dihydroxy- benzoic acid is prepared by carboxylation of 1,3-dihydroxybenzene and a detailed description of this synthesis is provided in the appendix. Scheme 2. Synthesis of 2,6-dihydroxybenzoic acid. The pKa values of the three disubstituted benzoic acids were determined by the capillary zone electrophoresis method. All analyses were made on a Hewlett-Packard Model G1600A 3DCE system equipped with diode array detector. A fused silica capillary i.d. 50 ixm was from Agilent Technologies. The effective and total lengths of the capillary were 645 mm and 560 mm, respectively. Injection was made hydrostatically at 30 mbar for 10 s and detection was by indirect UV at 254 nm. The applied separation voltage was 30 kV (anode at detection side) and the current varied between 19 to 9 IxA as a response to changes in pH and ionic strength. The temperature was 25° C. Water was the solvent used in the experimental determination of all of these pKa values. -
Phd Thesis. 2017 Seaweed Bioactivity
UNIVERSITY OF COPENH AGEN FACULTY OF SCIENCE PhD Thesis. 2017 Nazikussabah Zaharudin Seaweed bioactivity Effects on glucose liberation Supervisors: Lars Ove Dragsted & Dan Stærk Delivered on: November 2017 Institutnavn: Idræt og Ernæring Name of department: Department of Nutrition, Exercise & Sports Forfatter(e): Nazikussabah Zaharudin Titel og evt. undertitel: Sundhedsmæssige virkninger af tang – Effekt på frigivelse af glukose Title / Subtitle: Seaweed bioactivity- Effects on glucose liberation Emnebeskrivelse: PhD afhandling indenfor human ernæring. Vejleder: Lars Ove Dragsted Afleveret den: November 2017 Antal tegn: XXX 2 PREFACE This dissertation is submitted for the degree of Doctor of Philosophy at the University of Copenhagen. The research was conducted under the supervision of Professor Lars Ove Dragsted and Professor Dan Stærk. The study was conducted at the Department of Nutrition, Exercise & Sports in collaboration with Department of Drug Design and Pharmacology as well as Department of Plant and Environmental Sciences, University of Copenhagen. This thesis presents the results from in vitro studies on inhibition of α-amylase and α- glucosidase by some edible seaweeds and the effect of selected edible seaweeds on the postprandial blood glucose and insulin levels following a starch load in a human meal study. This dissertation contains several parts including the introduction and background on hyperglycaemia and seaweeds, the aims of the research project, material and methods, results (included papers), discussion, conclusion, and perspectives. The data from the thesis work has been gathered in 3 manuscripts included in the present thesis. Part of this study has been submitted in the following publications: Paper 1 Zaharudin, N., Salmaen, A.A., Dragsted, L.O. -
Production of Native Plants for Seed, Biomass, and Natural Products A
Production of native plants for seed, biomass, and natural products A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Katrina Franziska Freund Saxhaug IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Craig C. Sheaffer, advisor March 2020 © Katrina Franziska Freund Saxhaug 2019 Acknowledgements The research presented in this document would not have been possible without the love and support of countless mentors, colleague, friends and family. Foremost, I am forever grateful to my advisor, Dr. Craig Sheaffer, whose direction, support, understanding, and unending generosity made it possible for me to complete my doctorate. I am also eternally thankful for my unofficial co-advisor, Dr. Adrian Hegeman, for his kindness, intellectual brilliance, and support throughout my degree program. I am also incredibly grateful to Dr. Susan Galatowitsch and Dr. Clay Carter for their guidance, wisdom, and constructive and insightful commentaries. Though not on my committee, Dr. Jacob Jungers was incredibly generous with his time, advice, and support in all aspects of this research. While a doctoral student, I was supported by grants from the Minnesota Department of Agriculture through the AGRI Crop Research Grant Program and the Specialty Crop Block Grant Program. Additional support came through the Minnesota Institute for Sustainable Agriculture gift fund, graciously provided by Leanna Forcier. Further support was provided by the University of Minnesota, including the Hueg-Harrison Graduate Fellowship, the Mark and Jean Schroepfer Fellowship, the Nancy Jo Ehlke Fellowship, and Annie’s Sustainable Agriculture Scholarship. The Sustainable Cropping Systems Lab, under the direction of Dr Craig Sheaffer, and the Plant Metabolomics Lab, under the direction of Dr. -
Characterization of Phenolic Compounds in Highly-Consumed Vegetable Matrices by Using Advanced Analytical Techniques
UNIVERSITY OF GRANADA FACULTY OF SCIENCES Department of Analytical Chemistry Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” Functional Food Research and Development Center (CIDAF) DOCTORAL THESIS CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES CARACTERIZACIÓN DE COMPUESTOS FENÓLICOS EN MATRICES VEGETALES MEDIANTE TÉCNICAS ANALTICALAS AVANZADAS Presented by IBRAHIM M. ABU REIDAH Submitted for a Doctoral degree in Chemistry GRANADA, 2013 Editor: Editorial de la Universidad de Granada Autor: Ibrahim M. Abu Reidah D.L.: GR 1899-2013 ISBN: 978-84-9028-591-6 This doctoral thesis has been conducted through financing from the Ministry of Foregin Affairs of Spain & The Spanish Agency Of International Cooperation for Development (MAEC-AECID) scholarship and funds from the Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” (Department of Analytical Chemistry, University of Granada) and Functional Food Research and Development Center (CIDAF) from different projects, contracts and grants from the central and autonomic administrations and research plan of the University of Granada. CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES By IBRAHIM M. ABU REIDAH Granada, 2013 Signed by Dr. Alberto Fernández-Gutiérrez Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. Antonio Segura Carretero Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. David Arráez-Román Assistant Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Submitted for a Doctoral Degree in Chemistry Signed by Ibrahim M.