Convergencia Y Divergencia De Series De Fourier

Total Page:16

File Type:pdf, Size:1020Kb

Convergencia Y Divergencia De Series De Fourier UNIVERSIDAD DE MURCIA Grado en Matem´aticas TRABAJO FIN DE GRADO Convergencia y Divergencia de Series de Fourier Antonio Jes´usFern´andezS´anchez Curso 2014-2015 ´Indice general Resumen I Abstract V Introducci´onhist´orica VIII 1. Primeras definiciones y preliminares a la convergencia 1 1.1. Definiciones y primeros ejemplos . 1 1.2. Convoluciones . 5 1.3. N´ucleosde sumabilidad . 8 2. Primeros resultados sobre convergencia 15 2.1. Sumabilidad C´esaro.Aplicaci´ona las series de Fourier . 15 2.1.1. Teorema de F´ejer. 15 2.1.2. Consecuencias . 16 2.2. Teor´ıade Series de Fourier en L2 ........................ 19 3. Criterios de convergencia puntual 22 3.1. N´ucleode Dirichlet . 22 3.2. Criterio de Dini . 27 3.3. Criterio de Dirichlet-Jordan . 32 4. Teorema de Marcel Riesz 35 4.1. Introducci´ony resultados previos . 35 4.2. Convergencia en Lp ................................ 38 5. Series de Fourier Divergentes 41 5.1. Contraejemplo de Du Bois Reymond . 41 5.1.1. Contraejemplo de Du Bois Reymond. Versi´onI . 41 5.1.2. Contraejemplo de Du Bois Reymond. Versi´onII . 42 5.2. Contraejemplo de Kolmogorov . 46 5.2.1. Teorema de Kronecker. 47 5.2.2. Resultados previos. 50 5.2.3. Contrajemplo. 52 6. Aplicaciones 56 6.1. La desigualdad isoperim´etrica. 56 6.2. La ecuaci´ondel calor: El s´otanode Fourier . 59 A. Espacios de Hilbert 63 i B. Un teorema de valor medio para Integrales 65 C. Teorema de interpolaci´onde Riesz-Thorin 67 D. Resultados Auxiliares 71 Bibliograf´ıa 73 ´Indice alfab´etico 74 ii Resumen El objetivo de este Trabajo Fin de Grado radica en el estudio de una herramienta del an´alisisconocida con el nombre de Series de Fourier. Principalmente, en el estudio de la convergencia y divergencia de las mismas y algunas de sus aplicaciones m´asdestacadas. Antes de pasar al desarrollo matem´aticodel trabajo propiamente hemos realizado una breve introducci´onhist´oricapara reparar en la transcendencia de las Series de Fourier en la historia de las matem´aticas.En ella citamos algunos nombres propios a los que se les atribuyen resultados de vital importancia en el estudio de las Series de Fourier. Tras esta introducci´onhist´oricapasamos propiamente al desarrollo matem´aticodel tra- bajo. En el cap´ıtulo1, introducimos la definici´onde los coeficientes de Fourier asociados a una funci´on f :[a; b] −! C 1 Z b fb(n) := f(x)e−2πinx=Ldx L a donde L = b − a, as´ıcomo la definici´onformal de su serie de Fourier 1 X f(x) ∼ fb(n)e2πinx=L n=−∞ Posteriormente en ese mismo cap´ıtulo vemos algunos ejemplos concretos de Series de Fourier as´ıcomo algunas consecuencias de dichos ejemplos. Una vez establecidos los conceptos de coeficiente de Fourier y Serie de Fourier asociada a una funci´on,continuamos dando una serie de definiciones y propiedades asociadas a las mismas que tendr´anun papel fundamental en el estudio de las Series de Fourier. Definimos aqu´ıla Convoluci´on de dos funciones en un marco adecuado y los N´ucleos de Sumabilidad. Estudiamos adem´asalgunas de sus propiedades. El problema fundamental de las Series de Fourier consiste en encontrar condiciones en f(x) que garanticen que SN f(x) −! f(x) p bien puntualmente, bien uniformemente o bien en L donde SN f denota la N−sima suma parcial de la serie de Fourier asociada a f. i Es propiamente en el cap´ıtulo 2 cuando empezamos a estudiar algunos resultados sobre convergencia. Para ello establecemos una serie de conceptos relacionados con la Sumabilidad C´esarode una serie que nos llevan a un importante resultado conocido como Teorema de F´ejer, 2.1.3, del cual podremos extraer varias consecuencias relacionadas con las series de Fourier. Algunas de vital importancia, como el Lema de Riemann- Lebesgue, 2.1.8, que afirma que 1 Si f 2 L (T) entonces se verifica que l´ım jfb(n)j = 0 jnj!1 o el Teorema de unicidad de la Serie de Fourier asociada a una funci´on,2.1.7. Adem´as,obtenemos los primeros resultados sobre convergencia uniforme de las Series de Fourier. En este mismo cap´ıtulose realiza tambi´enel estudio de la Teor´ıade Series de Fou- rier en L2. Para ello, nos serviremos de importantes resultados de An´alisisFuncional estudiados en el Grado que citamos en el Ap´endiceA. Establecemos aqu´ıya un importan- te resultado de convergencia, 2.2.2, que afirma lo siguiente: 2 Si f 2 L (T) la serie de Fourier asociada a la funci´on f converge a f en k · k2 Pasamos ahora, en el cap´ıtulo3, a estudiar diferentes criterios de convergencia pun- tual sobre las series de Fourier. Para ello, antes de pasar al estudio de la convergencia propiamente, tendremos que definir y desarrollar las propiedades del llamado N´ucleo de Dirichlet. Se trata de polinomios trigonom´etricosque vienen dados por la siguiente expresi´on: N X inx DN (x) = e n=−N y que permiten escribir las sumas parciales de una Serie de Fourier como convoluci´on N X inx SN f(x) = fb(n)e = f ∗ DN (x) n=−N Cabe tambi´endestacar que el n´ucleode Dirichlet no es un n´ucleode sumabilidad y por tanto no pueden aplicarse los resultados generales del tema 1. La convergencia de SN f(x) a f(x) es una cuesti´onm´asfina que requiere hip´otesisadicionales de suavidad en la funci´on f. Llegamos entonces a los criterios de convergencia puntual propiamente. Por un lado, tenemos el Criterio de Dini del cu´aldamos dos versiones diferentes en los teoremas 3.2.1 y 3.2.7 y extraemos algunas consecuencias. B´asicamente el criterio de Dini dice: jf(x − t) − f(x )j Sea f 2 L1( ), si la funci´on 0 0 es integrable en un entorno de x T jtj 0 entonces la serie de Fourier de f evaluada en el punto x0 converge a f(x0) Notamos que las hip´otesisdel criterio de Dini se cumplen si f es derivable, e incluso con hip´otesism´asd´ebiles. Por ejemplo la Serie de Fourier de f(x) = pjxj es convergente en x = 0 y sin embargo, pjxj no es derivable en dicho punto. Por otro lado, aparece el Criterio de Dirichlet-Jordan, cuya versi´onm´asgeneral, afir- ma: ii 1 Sea f 2 L (T), si f es de variaci´onacotada entonces para todo punto x0 2 T se verifica f(x+) + f(x−) que la serie de Fourier asociada a f evaluada en x converge a 0 0 0 2 Notamos que las hip´otesisdel criterio de Dirichlet-Jordan no tienen relaci´oncon la derivabilidad ni con la suavidad de la funci´on.Por consiguiente, es posible encontrar funciones para las cu´alesno sirva con aplicar el Criterio de Dini para la demostraci´onde la convergencia puntual y sin embargo el Criterio de Dirichlet-Jordan s´ı,y de igual forma, existir´anfunciones para las cuales no podamos aplicar el Criterio de Dirichlet-Jordan y s´ıel de Dini. Por ejemplo, a la funci´on 1 f(x) = 1 log jxj no le podemos aplicar el Criterio de Dini en x0 = 0 y sin embargo, el Criterio de Dirichlet- Jordan nos garantiza la convergencia de la Serie de Fourier en dicho punto. Para m´as informaci´on,vease el ejemplo 3.3.4. Seguidamente, en el cap´ıtulo4, continuamos con el estudio de la convergencia de las series de Fourier. Enunciamos y demostramos aqu´ıun importante resultado conocido como Teorema de Marcel Riesz que afirma: p Sea 1 < p < 1, si f 2 L (T) entonces SN f converge a f en k · kp Para la demostraci´onde este resultado hemos de enunciar y demostrar una serie de lemas previos, que desarrollamos en el cap´ıtulo,y utilizar tambi´enun importante resultado de an´alisisconocido como Teorema de Interpolaci´onde Riesz-Thorin. El desarrollo de este resultado lo hemos realizado en el ap´endiceC y juntando ambas cosas, hemos sido capaces de demostrar dicho resultado. Damos por concluido aqu´ıel estudio de la convergencia de las Series de Fourier, aunque cabe nombrar tambi´enen este resumen el Teorema de Carleson-Hunt pues es ´estela culminaci´ondel estudio de la convergencia de las Series de Fourier. Dicho teorema afirma que: p Sea 1 < p ≤ 1, si f 2 L (T) entonces SN f converge a f en casi todo punto. El estudio de este teorema se escapa a los contenidos de este trabajo y su prueba se puede ver por ejemplo en [10] que est´aintegramente dedicado a ella. Pasamos ahora a estudiar algunas series de Fourier Divergentes. En el Cap´ıtulo 5 abordamos por un lado el Contraejemplo de Du Bois Reymond que afirma que Existe una funci´on f 2 Cper(T) cuya serie de Fourier diverge en un punto. En 5.1.1 damos una demostraci´onno constructiva de dicho contraejemplo basada en el uso del Teorema de Banach-Steinhauss y en 5.1.2 damos una demostraci´onconstructiva de dicho contraejemplo, mediante un ejemplo expl´ıcitode una funci´oncontinua y 2π-peri´odica cuya serie de Fourier diverge en x = 0. Por otro lado, en este mismo cap´ıtulo,en el tercer apartado abordamos el Contraejemplo de Kolmogorov que afirma que 1 Existe una funci´on f 2 L (T) cuya serie de Fourier diverge en casi todo punto. La demostraci´onde este contraejemplo requerir´auna serie de desarrollos previos que rea- lizamos en el propio cap´ıtuloentre los que cabe destacar el Teorema de Kronecker, teorema 5.2.2.
Recommended publications
  • Fabio Tonini –
    Fabio Tonini Personal Data Date of Birth May 16, 1984 Citzenship Italy Current Position Since Researcher (RTDA) at University of Florence November 2018 Positions Held October 2018 Scholarship at Scuola Normale Superiore of Pisa October 2015 Post Doc at the Freie University of Berlin - September 2018 April 2013 - Post Doc at the Humboldt University of Berlin September 2015 January 2012 Scholarship at Scuola Normale Superiore of Pisa - January 2013 January 2009 Ph.D. student at Scuola Normale Superiore of Pisa under the supervision of - January Prof. Angelo Vistoli 2012 Italian National Scientific Habilitation (ASN) May 2021 - Professore II fascia May 2030 Education May 2013 Ph.D. at Scuola Normale Superiore of Pisa December Diploma at Scuola Normale Superiore of Pisa 2008 September Master’s Degree in Pure Mathematics, University of Pisa, with honors 2008 July 2006 Bachelor’s Degree in Pure Mathematics, University of Pisa, with honors Universitá degli Studi di Firenze, Dipartimento di Matematica e Informatica ’Ulisse Dini’, Viale Morgagni, 67/a, Firenze, 50134 Italy B fabio.tonini@unifi.it • Í people.dimai.unifi.it/tonini/ PhD’s Thesis Title Stacks of ramified Galois covers defended the 2 May 2013 pdf online link Advisor Angelo Vistoli Master’s Thesis Title Rivestimenti di Gorenstein (Gorenstein covers) pdf online link Advisor Angelo Vistoli Research Interests { Algebraic Geometry { Algebraic stacks, Moduli theory { Action of algebraic groups and Galois covers { Representation theory { Algebraic fundamental groups and gerbes Memberships { GNSAGA, INdAM, Gruppo Nazionale per le Strutture Algebriche, Geomet- riche e le loro Applicazioni Teaching Experience 2020/21 Course Title: Matematica e statistica, First year at “Scienze Farmaceutiche”, University of Florence 2020/21 Course Title: Matematica con elementi di Statistica, First year at “Scienze Naturali”, University of Florence.
    [Show full text]
  • A Historical Outline of the Theorem of Implicit Nctions
    Divulgaciones Matem acute-a t icas Vol period 10 No period 2 open parenthesis 2002 closing parenthesis commannoindent pp periodDivulgaciones 171 endash 180 Matem $ nacutefag $ t icas Vol . 10No . 2 ( 2002 ) , pp . 171 −− 180 A .... Historical .... Outline .... of the .... Theorem .... of nnoindentImplicit ..A F-un h nctions f i l l H i s t o r i c a l n h f i l l Outline n h f i l l o f the n h f i l l Theorem n h f i l l o f Un Bosquejo Hist acute-o rico del Teorema de las Funciones Impl dotlessi-acute citas n centerlineGiovanni Mingarif I m pScarpello l i c i t nquad open parenthesis$ F−u $ giovannimingari n c t i o n s g at l ibero period it closing parenthesis Daniele Ritelli dr itelli at e c onomia period unibo period it n centerlineDipartimentofUn di Matematica BosquejoDivulgaciones per Hist Matem le Scienzea´ $ tn icasacute Economiche Vol .f 10og No$ .e 2 Sociali( rico 2002 )delcomma , pp . Teorema 171 { 180 de las Funciones Impl $ nBolognaacutefn ItalyimathgA$ c Historical i t a s g Outline of the Theorem Abstract n centerline f Giovanniof Mingari Scarpello ( giovannimingari $ @ $ l ibero . it ) g In this article a historical outline ofImplicit the implicit functionsF theory− u nctions is presented startingUn from Bosquejo the wiewpoint Hist ofo´ Descartesrico del Teorema algebraic geometry de las Funciones Impl ´{ citas n centerline f Daniele Ritelli dr itelli $@$ e c onomia . unibo . it g open parenthesisGiovanni 1 637 closing Mingari parenthesis Scarpello and Leibniz ( giovannimingari open parenthesis 1 676@ l or ibero 1 677 closing .
    [Show full text]
  • HOMOTECIA Nº 6-15 Junio 2017
    HOMOTECIA Nº 6 – Año 15 Martes, 1º de Junio de 2017 1 Entre las expectativas futuras que se tienen sobre un docente en formación, está el considerar como indicativo de que logrará realizarse como tal, cuando evidencia confianza en lo que hace, cuando cree en sí mismo y no deja que su tiempo transcurra sin pro pósitos y sin significado. Estos son los principios que deberán pautar el ejercicio de su magisterio si aspira tener éxito en su labor, lo cual mostrará mediante su afán por dar lo bueno dentro de sí, por hacer lo mejor posible, por comprometerse con el porvenir de quienes confiadamente pondrán en sus manos la misión de enseñarles. Pero la responsabilidad implícita en este proceso lo debería llevar a considerar seriamente algunos GIACINTO MORERA (1856 – 1907 ) aspectos. Obtener una acreditación para enseñar no es un pergamino para exhib ir con petulancia ante familiares y Nació el 18 de julio de 1856 en Novara, y murió el 8 de febrero de 1907, en Turín; amistades. En otras palabras, viviendo en el mundo educativo, es ambas localidades en Italia. asumir que se produjo un cambio significativo en la manera de Matemático que hizo contribuciones a la dinámica. participar en este: pasó de ser guiado para ahora guiar. No es que no necesite que se le orie nte como profesional de la docencia, esto es algo que sucederá obligatoriamente a nivel organizacional, Giacinto Morera , hijo de un acaudalado hombre de pero el hecho es que adquirirá una responsabilidad mucho mayor negocios, se graduó en ingeniería y matemáticas en la porque así como sus preceptores universitarios tuvieron el compromiso de formarlo y const ruirlo cultural y Universidad de Turín, Italia, habiendo asistido a los académicamente, él tendrá el mismo compromiso de hacerlo con cursos por Enrico D'Ovidio, Angelo Genocchi y sus discípulos, sea cual sea el nivel docente donde se desempeñe.
    [Show full text]
  • Continuous Nowhere Differentiable Functions
    2003:320 CIV MASTER’S THESIS Continuous Nowhere Differentiable Functions JOHAN THIM MASTER OF SCIENCE PROGRAMME Department of Mathematics 2003:320 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 03/320 - - SE Continuous Nowhere Differentiable Functions Johan Thim December 2003 Master Thesis Supervisor: Lech Maligranda Department of Mathematics Abstract In the early nineteenth century, most mathematicians believed that a contin- uous function has derivative at a significant set of points. A. M. Amp`ereeven tried to give a theoretical justification for this (within the limitations of the definitions of his time) in his paper from 1806. In a presentation before the Berlin Academy on July 18, 1872 Karl Weierstrass shocked the mathematical community by proving this conjecture to be false. He presented a function which was continuous everywhere but differentiable nowhere. The function in question was defined by ∞ X W (x) = ak cos(bkπx), k=0 where a is a real number with 0 < a < 1, b is an odd integer and ab > 1+3π/2. This example was first published by du Bois-Reymond in 1875. Weierstrass also mentioned Riemann, who apparently had used a similar construction (which was unpublished) in his own lectures as early as 1861. However, neither Weierstrass’ nor Riemann’s function was the first such construction. The earliest known example is due to Czech mathematician Bernard Bolzano, who in the years around 1830 (published in 1922 after being discovered a few years earlier) exhibited a continuous function which was nowhere differen- tiable. Around 1860, the Swiss mathematician Charles Cell´erieralso discov- ered (independently) an example which unfortunately wasn’t published until 1890 (posthumously).
    [Show full text]
  • On History of Epsilontics
    ANTIQUITATES MATHEMATICAE Vol. 10(1) 2016, p. xx–zz doi: 10.14708/am.v10i0.805 Galina Ivanovna Sinkevich∗ (St. Petersburg) On History of Epsilontics Abstract. This is a review of genesis of − δ language in works of mathematicians of the 19th century. It shows that although the sym- bols and δ were initially introduced in 1823 by Cauchy, no functional relationship for δ as a function of was ever ever specied by Cauchy. It was only in 1861 that the epsilon-delta method manifested itself to the full in Weierstrass denition of a limit. The article gives various interpretations of these issues later provided by mathematicians. This article presents the text [Sinkevich, 2012d] of the same author which is slightly redone and translated into English. 2010 Mathematics Subject Classication: 01A50; 01A55; 01A60. Key words and phrases: History of mathematics, analysis, continu- ity, Lagrange, Ampére, Cauchy, Bolzano, Heine, Cantor, Weierstrass, Lebesgue, Dini.. It is mere feedback-style ahistory to read Cauchy (and contemporaries such as Bernard Bolzano) as if they had read Weierstrass already. On the contrary, their own pre-Weierstrassian muddles need historical reconstruction. [Grattan-Guinness 2004, p. 176]. Since the early antiquity the concept of continuity was described throgh the notions of time, motion, divisibility, contact1 . The ideas about functional accuracy came with the extension of mathematical interpretation to natural-science observations. Physical and geometrical notions of continuity became insucient, ultimately ∗ Galina Ivanovna Sinkeviq 1The 'continuous' is a subdivision of the contiguous: things are called continuous when the touching limits of each become one and the same and are, as the word implies, contained in each other: continuity is impossible if these extremities are two.
    [Show full text]
  • Sunti Delle Conferenze
    Sunti delle Conferenze Analisi complessa a Pisa, 1860-1900 UMBERTO BOTTAZZINI (Università di Milano) Nel 1859 Enrico Betti inaugura gli studi di analisi complessa a Pisa (e di fatto in Italia) pubblicando la traduzione italiana della Inauguraldissertation (1851) di Riemann. L’incontro con il grande matematico conosciuto l’anno prima a Göttingen segna una svolta nella carriera scientifica di Betti, che fa dell’analisi complessa l’oggetto delle sue lezioni e delle sue pubblicazioni (1860/61 e 1862) che incontrano l’approvazione di Riemann, durante il suo soggiorno in Italia. Nella conferenza saranno discussi i contributi all’analisi complessa di Betti, Dini e Bianchi. Ulisse Dini raccolse l’eredità del maestro dapprima in articoli (1870/71, 1871/73, 1881) che suscitano l’interesse della comunità internazionale, e poi in lezioni litografate (1890) che hanno offerto a Luigi Bianchi il modello e il riferimento iniziale per le sue celebri lezioni sulla teoria delle funzioni di variabile complessa in due volumi, apparse prima in versione litografata (1898/99) e poi a stampa in diverse edizioni. Il periodo romano di Luigi Cremona: tra Statica Grafica e Geometria Algebrica, la Biblioteca Nazionale, i Lincei, il Senato ALDO BRIGAGLIA (Università di Palermo) Il periodo romano (1873 – 1903) è considerato il meno produttivo, dal punto di vista scientifico, della vita di Luigi Cremona. Un periodo quasi unicamente dedicato agli aspetti politico – istituzionali della sua attività. Senza voler capovolgere questo giudizio consolidato, anzi sottolineando
    [Show full text]
  • Ph. D. Programme in Mathematics
    Ph.D School in Mathematics Department of Mathematics, Pisa University, Pisa, Italy Coordinator: Sergio Spagnolo History In Italy, before the year 1980 there was only one university degree awarded, namely, the "laurea". After a study of four years, the students had to write a dessertation consisting of an original work, the "tesi di laurea": which required about an year of work, and there were no postgraduate studies as such, except for the “Perfezionamento” of the Scuola Normale Superiore of Pisa and the courses of the "Alta Matematica" at Rome. At the beginning of the 80's the “Dottorato di Ricerca” was officially established by law. About ten Ph.D. programmes in Mathematics were set up, mainly at some of the major Italian Universities (Roma I, Roma II, Milano, Torino, Bologna, Padova, Pisa, Firenze, Trento, Messina, Napoli). Some of the “peripherical” universities joined with these major centers to co-sponsor the Ph. D. degree as associate Universities. In addition, one should also consider the somewhat special Ph. D. programmes of the Scuola Normale, the Institute of Alta Matematica, and the SISSA at Trieste. The Ph. D. programme in Mathematics of Pisa, which included also the Universities of Bari, Parma, Lecce and Ferrara as associated Universities, was established in the year 1983. The institutional structure of all the programmes was partially centralized, for instance all the theses had to be defended before a national panel of examiners, in Rome, while organization of courses and periodical evaluations were left to the single universities. At the end of nineties, a new national legislation under the title “Autonomy of the Universities” was introduced, which allowed, in particular, each University to institute and manage financially its own Ph.
    [Show full text]
  • On the Role Played by the Work of Ulisse Dini on Implicit Function
    On the role played by the work of Ulisse Dini on implicit function theory in the modern differential geometry foundations: the case of the structure of a differentiable manifold, 1 Giuseppe Iurato Department of Physics, University of Palermo, IT Department of Mathematics and Computer Science, University of Palermo, IT 1. Introduction The structure of a differentiable manifold defines one of the most important mathematical object or entity both in pure and applied mathematics1. From a traditional historiographical viewpoint, it is well-known2 as a possible source of the modern concept of an affine differentiable manifold should be searched in the Weyl’s work3 on Riemannian surfaces, where he gave a new axiomatic description, in terms of neighborhoods4, of a Riemann surface, that is to say, in a modern terminology, of a real two-dimensional analytic differentiable manifold. Moreover, the well-known geometrical works of Gauss and Riemann5 are considered as prolegomena, respectively, to the topological and metric aspects of the structure of a differentiable manifold. All of these common claims are well-established in the History of Mathematics, as witnessed by the work of Erhard Scholz6. As it has been pointed out by the Author in [Sc, Section 2.1], there is an initial historical- epistemological problem of how to characterize a manifold, talking about a ‘’dissemination of manifold idea’’, and starting, amongst other, from the consideration of the most meaningful examples that could be taken as models of a manifold, precisely as submanifolds of a some environment space n, like some projective spaces ( m) or the zero sets of equations or inequalities under suitable non-singularity conditions, in this last case mentioning above all of the work of Enrico Betti on Combinatorial Topology [Be] (see also Section 5) but also that of R.
    [Show full text]
  • Levi-Civita,Tullio Francesco Dell’Isola, Emilio Barchiesi, Luca Placidi
    Levi-Civita,Tullio Francesco Dell’Isola, Emilio Barchiesi, Luca Placidi To cite this version: Francesco Dell’Isola, Emilio Barchiesi, Luca Placidi. Levi-Civita,Tullio. Encyclopedia of Continuum Mechanics, 2019, 11 p. hal-02099661 HAL Id: hal-02099661 https://hal.archives-ouvertes.fr/hal-02099661 Submitted on 15 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Levi-Civita, Tullio dating back to the fourteenth century. Giacomo the publication of one of his best known results Levi-Civita had also been a counselor of the in the field of analytical mechanics. We refer to municipality of Padua from 1877, the mayor of the Memoir “On the transformations of dynamic Padua between 1904 and 1910, and a senator equations” which, due to the importance of the of the Kingdom of Italy since 1908. A bust of results and the originality of the proceedings, as him by the Paduan sculptor Augusto Sanavio well as to its possible further developments, has has been placed in the council chamber of the remained a classical paper. In 1897, being only municipality of Padua after his death. According 24, Levi-Civita became in Padua full professor to Ugo Amaldi, Tullio Levi-Civita drew from in rational mechanics, a discipline to which he his father firmness of character, tenacity, and his made important scientific original contributions.
    [Show full text]
  • Science and Fascism
    Science and Fascism Scientific Research Under a Totalitarian Regime Michele Benzi Department of Mathematics and Computer Science Emory University Outline 1. Timeline 2. The ascent of Italian mathematics (1860-1920) 3. The Italian Jewish community 4. The other sciences (mostly Physics) 5. Enter Mussolini 6. The Oath 7. The Godfathers of Italian science in the Thirties 8. Day of infamy 9. Fascist rethoric in science: some samples 10. The effect of Nazism on German science 11. The aftermath: amnesty or amnesia? 12. Concluding remarks Timeline • 1861 Italy achieves independence and is unified under the Savoy monarchy. Venice joins the new Kingdom in 1866, Rome in 1870. • 1863 The Politecnico di Milano is founded by a mathe- matician, Francesco Brioschi. • 1871 The capital is moved from Florence to Rome. • 1880s Colonial period begins (Somalia, Eritrea, Lybia and Dodecanese). • 1908 IV International Congress of Mathematicians held in Rome, presided by Vito Volterra. Timeline (cont.) • 1913 Emigration reaches highest point (more than 872,000 leave Italy). About 75% of the Italian popu- lation is illiterate and employed in agriculture. • 1914 Benito Mussolini is expelled from Socialist Party. • 1915 May: Italy enters WWI on the side of the Entente against the Central Powers. More than 650,000 Italian soldiers are killed (1915-1918). Economy is devastated, peace treaty disappointing. • 1921 January: Italian Communist Party founded in Livorno by Antonio Gramsci and other former Socialists. November: National Fascist Party founded in Rome by Mussolini. Strikes and social unrest lead to political in- stability. Timeline (cont.) • 1922 October: March on Rome. Mussolini named Prime Minister by the King.
    [Show full text]
  • A Brief Account Op the Life and Work of the Late Professor Ulisse Dini
    1920.3 LIFE AND WOEK OF ULISSE DINI. 173 A BRIEF ACCOUNT OP THE LIFE AND WORK OF THE LATE PROFESSOR ULISSE DINI. BY PROFESSOR WALTER B. FORD. (Read before the American Mathematical Society September 3,1919.) THE death of Professor Ulisse Dini in his native city of Pisa, Italy, on the 28th of last October marked the passing of one whose name has long been familiar to the mathematical fraternity of the entire world and it therefore seems fitting, despite the wide separation geographically between the scene of his labors and our own, that a brief account of his life and work be given at this time in America and a small measure at least of tribute be rendered to his genius. Dini was born on the 14th of November, 1845, of parents highly respected but of very moderate circumstances. He early manifested an unusual activity of both mind and body, thus commanding the attention and admiration of his in­ structors and masters who foresaw for him a future of extraordinary promise. Upon entering the neighboring uni­ versity of Pisa his marked capabilities in mathematics Were soon recognized and he shortly became the favorite pupil of Professor Betti, well known as one of the leaders in mathe­ matical instruction and research at this period in Italy. Under such auspices and at the uncommonly early age of nine­ teen years, Dini attained the laureate and received directly afterward a government scholarship enabling him to continue his studies for a year at Paris. During this brief foreign sojourn he came chiefly under the influences of Bertrand and Hermite and formed an intimate friendship with them which extended long into later years.
    [Show full text]
  • Considerations Based on His Correspondence Rossana Tazzioli
    New Perspectives on Beltrami’s Life and Work - Considerations Based on his Correspondence Rossana Tazzioli To cite this version: Rossana Tazzioli. New Perspectives on Beltrami’s Life and Work - Considerations Based on his Correspondence. Mathematicians in Bologna, 1861-1960, 2012, 10.1007/978-3-0348-0227-7_21. hal- 01436965 HAL Id: hal-01436965 https://hal.archives-ouvertes.fr/hal-01436965 Submitted on 22 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. New Perspectives on Beltrami’s Life and Work – Considerations based on his Correspondence Rossana Tazzioli U.F.R. de Math´ematiques, Laboratoire Paul Painlev´eU.M.R. CNRS 8524 Universit´ede Sciences et Technologie Lille 1 e-mail:rossana.tazzioliatuniv–lille1.fr Abstract Eugenio Beltrami was a prominent figure of 19th century Italian mathematics. He was also involved in the social, cultural and political events of his country. This paper aims at throwing fresh light on some aspects of Beltrami’s life and work by using his personal correspondence. Unfortunately, Beltrami’s Archive has never been found, and only letters by Beltrami - or in a few cases some drafts addressed to him - are available.
    [Show full text]