Eine Auswahl Weiterer Mathematiker, Die in Der Vorlesung Funktionentheorie Erw¨Ahnt Wurden

Total Page:16

File Type:pdf, Size:1020Kb

Eine Auswahl Weiterer Mathematiker, Die in Der Vorlesung Funktionentheorie Erw¨Ahnt Wurden Eine Auswahl weiterer Mathematiker, die in der Vorlesung Funktionentheorie erw¨ahnt wurden John Wallis (* 3. Dezember 1616 in Ashford, Kent; y 8. November 1703 in Oxford) war ein englischer Mathematiker, der Beitr¨age zur Infinitesimalrechnung und zur Berechnung der Kreiszahl π leistete. Abraham de Moivre (* 26. Mai 1667 in Vitry-le-Fran¸cois; y 27. November 1754 in London) war ein franz¨osischer Mathematiker, der vor allem fur¨ den Satz von Moivre bekannt ist. James Stirling (* Mai 1692 in Garden bei Stirling; y 5. Dezember 1770 in Edinburgh) war ein schottischer Mathematiker. Joseph-Louis Lagrange (* 25. Januar 1736 in Turin als Giuseppe Lodovico Lag- rangia; y 10. April 1813 in Paris) war ein italienischer Mathematiker und Astronom. Er begrundete¨ die analytische Mechanik (Lagrangeformalismus mit der Lagrangefunktion), die er 1788 in seinem beruhmten¨ Lehrbuch M´ecaniqueanalytique\ darstellte. Weitere " Arbeitsgebiete waren das Dreik¨orperproblem der Himmelsmechanik (Lagrangepunkte), die Variationsrechnung und die Theorie der komplexen Funktionen. Lorenzo Mascheroni (* 13. Mai 1750 bei Bergamo; y 14. Juli 1800 in Paris) war ein italienischer Geistlicher und Mathematiker. Simeon´ Denis Poisson (* 21. Juni 1781 in Pithiviers (D´epartement Loiret); y 25. April 1840 in Paris) war ein franz¨osischer Physiker und Mathematiker. Augustin Jean Fresnel (* 10. Mai 1788 in Broglie (Eure); y 14. Juli 1827 in Ville- d'Avray bei Paris) war ein franz¨osischer Physiker und Ingenieur, der wesentlich zur Be- grundung¨ der Wellentheorie des Lichts und zur Optik beitrug. Augustin-Louis Cauchy (* 21. August 1789 in Paris; y 23. Mai 1857 in Sceaux) war ein franz¨osischer Mathematiker. Als ein Pionier der Analysis entwickelte er die von Gott- fried Wilhelm Leibniz und Sir Isaac Newton aufgestellten Grundlagen weiter, wo- bei er die fundamentalen Aussagen auch formal bewies. Insbesondere in der Funktionen- theorie stammen viele zentrale S¨atze von ihm. Seine fast 800 Publikationen decken im Großen und Ganzen die komplette Bandbreite der damaligen Mathematik ab. Nach dem Tode Leonhard Eulers war die Ansicht verbreitet, dass die Mathematik fast vollst¨andig erforscht und keine wesentlichen Probleme mehr ubrig¨ seien. Es waren insbesondere Carl Friedrich Gauß und Cauchy, die diesen Eindruck relativieren konnten. August Ferdinand Mobius¨ (* 17. November 1790 in Pforta; y 26. September 1868 in Leipzig) war ein deutscher Mathematiker und Astronom an der Universit¨at Leipzig. Johann Peter Gustav Lejeune Dirichlet (* 13. Februar 1805 in Duren;¨ y 5. Mai 1859 in G¨ottingen) war ein deutscher Mathematiker. Er lehrte in Berlin und G¨ottingen und arbeitete haupts¨achlich auf den Gebieten der Analysis und der Zahlentheorie. Joseph Liouville, (* 24. M¨arz 1809 in Saint-Omer; y 8. September 1882 in Paris) war ein franz¨osischer Mathematiker. Er studierte in Toul und ab 1825 in Paris an der Ecole´ polytechnique, wo er zwei Jahre sp¨ater, unter anderem bei Poisson, seine Prufungen¨ 1 ablegte. Nach einigen Jahren als Assistent an verschiedenen Universit¨aten wurde er 1838 zum Professor an der Ecole´ polytechnique ernannt. Pierre Alphonse Laurent (* 18. Juli 1813 in Paris; y 2. September 1854 ebenda) war ein franz¨osischer Mathematiker. Seine einzige bekannte mathematische Arbeit wurde erst nach seinem Tode ver¨offentlicht, obwohl Augustin Louis Cauchy bereits 1843 uber¨ deren Inhalt in der franz¨osischen Akademie berichtete. Gegenstand dieser Arbeit waren Konvergenzuntersuchungen uber¨ die nach Laurent benannten Laurentreihen. Karl Theodor Wilhelm Weierstraß (* 31. Oktober 1815 in Ostenfelde bei Enni- gerloh/Munsterland;¨ y 19. Februar 1897 in Berlin) war ein deutscher Mathematiker, der sich vor allem um die logisch fundierte Aufarbeitung der Analysis verdient gemacht hat. Georg Friedrich Bernhard Riemann (* 17. September 1826 in Breselenz bei Dan- nenberg (Elbe); y 20. Juli 1866 in Selasca bei Verbania am Lago Maggiore) war ein deut- scher Mathematiker, der trotz seines relativ kurzen Lebens auf vielen Gebieten der Ana- lysis, Differentialgeometrie, mathematischen Physik und der analytischen Zahlentheorie bahnbrechend wirkte. Er gilt als einer der bedeutendsten Mathematiker. Elwin Bruno Christoffel (* 10. November 1829 in Montjoie; y 15. M¨arz 1900 in Straßburg) war ein deutscher Mathematiker. Er studierte an der Universit¨at Berlin | unter anderem bei Peter Gustav Dirichlet | und promovierte 1856 mit einer Arbeit zur Bewegung der Elektrizit¨at in homogenen K¨orpern. Eugene` Rouche´ (* 18. August 1832 in Sommi`eres,D´epartement H´erault; y 19. August 1910 in Lunel) war ein franz¨osischer Mathematiker. Er war Gymnasiallehrer am Lyc´ee Charlemagne und danach Professor am Conservatoire national des arts et m´etiersin Paris sowie daneben Prufer¨ an der Ecole´ polytechnique. Felice Casorati (* 17. Dezember 1835 in Pavia; y 11. September 1890 ebenda) war ein italienischer Mathematiker. Er ist vor allem durch den Satz von Casorati-Weierstraß bekannt. Giulio Ascoli (* 20. Januar 1843 in Triest; y 12. Juli 1896 in Mailand) war ein italie- nischer Mathematiker. Auf ihn ist auch der Satz von Arzela-Ascoli` zuruckzuf¨ uhren.¨ Ascoli beendete 1868 die Schule in Pisa. Ab 1872 unterrichtete er Algebra am Polytech- nikum von Mailand. Hermann Amandus Schwarz (* 25. Januar 1843 in Hermsdorf, Schlesien; y 30. No- vember 1921 in Berlin) war ein deutscher Mathematiker und Hochschullehrer in Berlin. Er studierte in Berlin zun¨achst Chemie am K¨oniglichen Gewerbeinstitut in Charlotten- burg und wechselte dann zum Studium der Mathematik an die Universit¨at Berlin unter dem Einfluss seiner dortigen akademischen Lehrer Ernst Eduard Kummer und Karl Weierstraß. 1864 wurde er bei Kummer in Mathematik promoviert (Dissertation: De superficiebus in planum explicabilibus primorum septem ordinum). Magnus Gosta¨ Mittag-Leffler (* 16. M¨arz 1846 in Stockholm; y 7. Juli 1927 in Djursholm) war ein schwedischer Mathematiker, der sich vor allem mit Analysis besch¨af- tigte. 2 Nikolai Jegorowitsch Schukowski, wiss. Transliteration Nikolaj Egorovic Zu-ˇ kovskij, h¨aufig als Joukowski transkribiert (* 17. Januar 1847 in Orechowo, Gouver- nement Wladimir; y 17. M¨arz 1921 in Moskau) war ein russischer Mathematiker, Aerody- namiker und Hydrodynamiker. Er gilt als Vater der russischen Luftfahrt. Cesare Arzela` (* 6. M¨arz 1847 in Santo Stefano di Magra, La Spezia; y 15. M¨arz 1912 in Santo Stefano di Magra) war ein italienischer Mathematiker. Er forschte auf dem Gebiet der Funktionentheorie. 1889 wurde der Satz von Ascoli von ihm zum Satz von Arzela-Ascoli` verallgemeinert. Alfred Pringsheim, (* 2. September 1850 in Ohlau, Provinz Schlesien; y 25. Juni 1941 in Zurich,¨ Schweiz) war ein deutscher Mathematiker und Kunstm¨azen. Giacinto Morera (* 18. Juli 1856 in Novara, Italien; y 8. Februar 1909 in Turin, Italien), war ein italienischer Ingenieur und Mathematiker. Er ist fur¨ den Satz von Morera in der Funktionentheorie und fur¨ seine Arbeiten uber¨ lineare Elastizit¨at bekannt. Charles Emile´ Picard (* 24. Juli 1856 in Paris; y 11. Dezember 1941 ebenda) war ein franz¨osischer Mathematiker. Er war auf dem Lyc´eeHenri IV einer der besten Schuler,¨ speziell in klassischer Philologie, und bei den Eingangstests fur¨ die Eliteschulen Ecole´ polytechnique und die Ecole´ normale sup´erieurezweiter bzw. erster. Da er nach einem Vortrag von Louis Pasteur fur¨ die Wissenschaften begeistert war (damals besonders an der Ecole´ normale sup´erieuregepflegt, w¨ahrend die Polytechnique eher Ingenieure ausbildete), w¨ahlte er die Ecole´ normale sup´erieure,wo er 1877 seinen Abschluss machte, als erster seiner Klasse. Edouard´ Jean-Baptiste Goursat (* 21. Mai 1858 in Lanzac, D´epartement Lot, Frankreich; y 25. November 1936 in Paris, Frankreich) war ein franz¨osischer Mathematiker, der als Verfasser eines klassischen Analysis-Lehrbuchs bekannt ist. Adolf Hurwitz (* 26. M¨arz 1859 in Hildesheim; y 18. November 1919 in Zurich)¨ war ein deutscher Mathematiker. In Hildesheim besuchte er den damaligen Realklassenzweig des Andreanums. Dort wurde seine mathematische Begabung durch seinen Lehrer Hermann Schubert erkannt und gef¨ordert. Schon als 17-j¨ahriger Schuler¨ ver¨offentlichte Hurwitz mit seinem Lehrer erste wissenschaftliche Arbeiten. Johan Ludwig William Valdemar Jensen (* 8. Mai 1859 in Nakskov; y 5. M¨arz 1925 in Kopenhagen) war ein d¨anischer Mathematiker. In Kopenhagen studierte er ab 1876 Na- turwissenschaften und Mathematik am Polytechnikum. Noch als Student ver¨offentlichte er erste Arbeiten uber¨ Mathematik. Seine Ausbildung in h¨oherer Mathematik erfolgte weit- gehend im Selbststudium, er promovierte nie und erwarb auch keine h¨oheren Abschlusse¨ in Mathematik. David Hilbert (* 23. Januar 1862 in K¨onigsberg; y 14. Februar 1943 in G¨ottingen) war ein deutscher Mathematiker. Er gilt als einer der bedeutendsten Mathematiker der Neu- zeit. Viele seiner Arbeiten auf dem Gebiet der Mathematik und mathematischen Physik begrundeten¨ eigenst¨andige Forschungsgebiete. Mit seinen Vorschl¨agen begrundete¨ er die bis heute bedeutsame formalistische Auffassung von den Grundlagen der Mathematik und veranlasste eine kritische Analyse der Begriffsdefinitionen der Mathematik und des ma- thematischen Beweises. Diese Analysen fuhrten¨ zum g¨odelschen Unvollst¨andigkeitssatz, 3 der unter anderem zeigt, dass das Hilbertprogramm, die von ihm angestrebte vollst¨andige Axiomatisierung der Mathematik, nicht g¨anzlich erfullt¨ werden kann. Hilberts program- matische Rede auf dem Internationalen Mathematikerkongress in Paris im Jahre 1900, in der
Recommended publications
  • Fabio Tonini –
    Fabio Tonini Personal Data Date of Birth May 16, 1984 Citzenship Italy Current Position Since Researcher (RTDA) at University of Florence November 2018 Positions Held October 2018 Scholarship at Scuola Normale Superiore of Pisa October 2015 Post Doc at the Freie University of Berlin - September 2018 April 2013 - Post Doc at the Humboldt University of Berlin September 2015 January 2012 Scholarship at Scuola Normale Superiore of Pisa - January 2013 January 2009 Ph.D. student at Scuola Normale Superiore of Pisa under the supervision of - January Prof. Angelo Vistoli 2012 Italian National Scientific Habilitation (ASN) May 2021 - Professore II fascia May 2030 Education May 2013 Ph.D. at Scuola Normale Superiore of Pisa December Diploma at Scuola Normale Superiore of Pisa 2008 September Master’s Degree in Pure Mathematics, University of Pisa, with honors 2008 July 2006 Bachelor’s Degree in Pure Mathematics, University of Pisa, with honors Universitá degli Studi di Firenze, Dipartimento di Matematica e Informatica ’Ulisse Dini’, Viale Morgagni, 67/a, Firenze, 50134 Italy B fabio.tonini@unifi.it • Í people.dimai.unifi.it/tonini/ PhD’s Thesis Title Stacks of ramified Galois covers defended the 2 May 2013 pdf online link Advisor Angelo Vistoli Master’s Thesis Title Rivestimenti di Gorenstein (Gorenstein covers) pdf online link Advisor Angelo Vistoli Research Interests { Algebraic Geometry { Algebraic stacks, Moduli theory { Action of algebraic groups and Galois covers { Representation theory { Algebraic fundamental groups and gerbes Memberships { GNSAGA, INdAM, Gruppo Nazionale per le Strutture Algebriche, Geomet- riche e le loro Applicazioni Teaching Experience 2020/21 Course Title: Matematica e statistica, First year at “Scienze Farmaceutiche”, University of Florence 2020/21 Course Title: Matematica con elementi di Statistica, First year at “Scienze Naturali”, University of Florence.
    [Show full text]
  • A Historical Outline of the Theorem of Implicit Nctions
    Divulgaciones Matem acute-a t icas Vol period 10 No period 2 open parenthesis 2002 closing parenthesis commannoindent pp periodDivulgaciones 171 endash 180 Matem $ nacutefag $ t icas Vol . 10No . 2 ( 2002 ) , pp . 171 −− 180 A .... Historical .... Outline .... of the .... Theorem .... of nnoindentImplicit ..A F-un h nctions f i l l H i s t o r i c a l n h f i l l Outline n h f i l l o f the n h f i l l Theorem n h f i l l o f Un Bosquejo Hist acute-o rico del Teorema de las Funciones Impl dotlessi-acute citas n centerlineGiovanni Mingarif I m pScarpello l i c i t nquad open parenthesis$ F−u $ giovannimingari n c t i o n s g at l ibero period it closing parenthesis Daniele Ritelli dr itelli at e c onomia period unibo period it n centerlineDipartimentofUn di Matematica BosquejoDivulgaciones per Hist Matem le Scienzea´ $ tn icasacute Economiche Vol .f 10og No$ .e 2 Sociali( rico 2002 )delcomma , pp . Teorema 171 { 180 de las Funciones Impl $ nBolognaacutefn ItalyimathgA$ c Historical i t a s g Outline of the Theorem Abstract n centerline f Giovanniof Mingari Scarpello ( giovannimingari $ @ $ l ibero . it ) g In this article a historical outline ofImplicit the implicit functionsF theory− u nctions is presented startingUn from Bosquejo the wiewpoint Hist ofo´ Descartesrico del Teorema algebraic geometry de las Funciones Impl ´{ citas n centerline f Daniele Ritelli dr itelli $@$ e c onomia . unibo . it g open parenthesisGiovanni 1 637 closing Mingari parenthesis Scarpello and Leibniz ( giovannimingari open parenthesis 1 676@ l or ibero 1 677 closing .
    [Show full text]
  • HOMOTECIA Nº 6-15 Junio 2017
    HOMOTECIA Nº 6 – Año 15 Martes, 1º de Junio de 2017 1 Entre las expectativas futuras que se tienen sobre un docente en formación, está el considerar como indicativo de que logrará realizarse como tal, cuando evidencia confianza en lo que hace, cuando cree en sí mismo y no deja que su tiempo transcurra sin pro pósitos y sin significado. Estos son los principios que deberán pautar el ejercicio de su magisterio si aspira tener éxito en su labor, lo cual mostrará mediante su afán por dar lo bueno dentro de sí, por hacer lo mejor posible, por comprometerse con el porvenir de quienes confiadamente pondrán en sus manos la misión de enseñarles. Pero la responsabilidad implícita en este proceso lo debería llevar a considerar seriamente algunos GIACINTO MORERA (1856 – 1907 ) aspectos. Obtener una acreditación para enseñar no es un pergamino para exhib ir con petulancia ante familiares y Nació el 18 de julio de 1856 en Novara, y murió el 8 de febrero de 1907, en Turín; amistades. En otras palabras, viviendo en el mundo educativo, es ambas localidades en Italia. asumir que se produjo un cambio significativo en la manera de Matemático que hizo contribuciones a la dinámica. participar en este: pasó de ser guiado para ahora guiar. No es que no necesite que se le orie nte como profesional de la docencia, esto es algo que sucederá obligatoriamente a nivel organizacional, Giacinto Morera , hijo de un acaudalado hombre de pero el hecho es que adquirirá una responsabilidad mucho mayor negocios, se graduó en ingeniería y matemáticas en la porque así como sus preceptores universitarios tuvieron el compromiso de formarlo y const ruirlo cultural y Universidad de Turín, Italia, habiendo asistido a los académicamente, él tendrá el mismo compromiso de hacerlo con cursos por Enrico D'Ovidio, Angelo Genocchi y sus discípulos, sea cual sea el nivel docente donde se desempeñe.
    [Show full text]
  • Continuous Nowhere Differentiable Functions
    2003:320 CIV MASTER’S THESIS Continuous Nowhere Differentiable Functions JOHAN THIM MASTER OF SCIENCE PROGRAMME Department of Mathematics 2003:320 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 03/320 - - SE Continuous Nowhere Differentiable Functions Johan Thim December 2003 Master Thesis Supervisor: Lech Maligranda Department of Mathematics Abstract In the early nineteenth century, most mathematicians believed that a contin- uous function has derivative at a significant set of points. A. M. Amp`ereeven tried to give a theoretical justification for this (within the limitations of the definitions of his time) in his paper from 1806. In a presentation before the Berlin Academy on July 18, 1872 Karl Weierstrass shocked the mathematical community by proving this conjecture to be false. He presented a function which was continuous everywhere but differentiable nowhere. The function in question was defined by ∞ X W (x) = ak cos(bkπx), k=0 where a is a real number with 0 < a < 1, b is an odd integer and ab > 1+3π/2. This example was first published by du Bois-Reymond in 1875. Weierstrass also mentioned Riemann, who apparently had used a similar construction (which was unpublished) in his own lectures as early as 1861. However, neither Weierstrass’ nor Riemann’s function was the first such construction. The earliest known example is due to Czech mathematician Bernard Bolzano, who in the years around 1830 (published in 1922 after being discovered a few years earlier) exhibited a continuous function which was nowhere differen- tiable. Around 1860, the Swiss mathematician Charles Cell´erieralso discov- ered (independently) an example which unfortunately wasn’t published until 1890 (posthumously).
    [Show full text]
  • Real Proofs of Complex Theorems (And Vice Versa)
    REAL PROOFS OF COMPLEX THEOREMS (AND VICE VERSA) LAWRENCE ZALCMAN Introduction. It has become fashionable recently to argue that real and complex variables should be taught together as a unified curriculum in analysis. Now this is hardly a novel idea, as a quick perusal of Whittaker and Watson's Course of Modern Analysis or either Littlewood's or Titchmarsh's Theory of Functions (not to mention any number of cours d'analyse of the nineteenth or twentieth century) will indicate. And, while some persuasive arguments can be advanced in favor of this approach, it is by no means obvious that the advantages outweigh the disadvantages or, for that matter, that a unified treatment offers any substantial benefit to the student. What is obvious is that the two subjects do interact, and interact substantially, often in a surprising fashion. These points of tangency present an instructor the opportunity to pose (and answer) natural and important questions on basic material by applying real analysis to complex function theory, and vice versa. This article is devoted to several such applications. My own experience in teaching suggests that the subject matter discussed below is particularly well-suited for presentation in a year-long first graduate course in complex analysis. While most of this material is (perhaps by definition) well known to the experts, it is not, unfortunately, a part of the common culture of professional mathematicians. In fact, several of the examples arose in response to questions from friends and colleagues. The mathematics involved is too pretty to be the private preserve of specialists.
    [Show full text]
  • Complex Analysis
    8 Complex Representations of Functions “He is not a true man of science who does not bring some sympathy to his studies, and expect to learn something by behavior as well as by application. It is childish to rest in the discovery of mere coincidences, or of partial and extraneous laws. The study of geometry is a petty and idle exercise of the mind, if it is applied to no larger system than the starry one. Mathematics should be mixed not only with physics but with ethics; that is mixed mathematics. The fact which interests us most is the life of the naturalist. The purest science is still biographical.” Henry David Thoreau (1817-1862) 8.1 Complex Representations of Waves We have seen that we can determine the frequency content of a function f (t) defined on an interval [0, T] by looking for the Fourier coefficients in the Fourier series expansion ¥ a0 2pnt 2pnt f (t) = + ∑ an cos + bn sin . 2 n=1 T T The coefficients take forms like 2 Z T 2pnt an = f (t) cos dt. T 0 T However, trigonometric functions can be written in a complex exponen- tial form. Using Euler’s formula, which was obtained using the Maclaurin expansion of ex in Example A.36, eiq = cos q + i sin q, the complex conjugate is found by replacing i with −i to obtain e−iq = cos q − i sin q. Adding these expressions, we have 2 cos q = eiq + e−iq. Subtracting the exponentials leads to an expression for the sine function. Thus, we have the important result that sines and cosines can be written as complex exponentials: 286 partial differential equations eiq + e−iq cos q = , 2 eiq − e−iq sin q = .( 8.1) 2i So, we can write 2pnt 1 2pint − 2pint cos = (e T + e T ).
    [Show full text]
  • On History of Epsilontics
    ANTIQUITATES MATHEMATICAE Vol. 10(1) 2016, p. xx–zz doi: 10.14708/am.v10i0.805 Galina Ivanovna Sinkevich∗ (St. Petersburg) On History of Epsilontics Abstract. This is a review of genesis of − δ language in works of mathematicians of the 19th century. It shows that although the sym- bols and δ were initially introduced in 1823 by Cauchy, no functional relationship for δ as a function of was ever ever specied by Cauchy. It was only in 1861 that the epsilon-delta method manifested itself to the full in Weierstrass denition of a limit. The article gives various interpretations of these issues later provided by mathematicians. This article presents the text [Sinkevich, 2012d] of the same author which is slightly redone and translated into English. 2010 Mathematics Subject Classication: 01A50; 01A55; 01A60. Key words and phrases: History of mathematics, analysis, continu- ity, Lagrange, Ampére, Cauchy, Bolzano, Heine, Cantor, Weierstrass, Lebesgue, Dini.. It is mere feedback-style ahistory to read Cauchy (and contemporaries such as Bernard Bolzano) as if they had read Weierstrass already. On the contrary, their own pre-Weierstrassian muddles need historical reconstruction. [Grattan-Guinness 2004, p. 176]. Since the early antiquity the concept of continuity was described throgh the notions of time, motion, divisibility, contact1 . The ideas about functional accuracy came with the extension of mathematical interpretation to natural-science observations. Physical and geometrical notions of continuity became insucient, ultimately ∗ Galina Ivanovna Sinkeviq 1The 'continuous' is a subdivision of the contiguous: things are called continuous when the touching limits of each become one and the same and are, as the word implies, contained in each other: continuity is impossible if these extremities are two.
    [Show full text]
  • 4 Complex Analysis
    4 Complex Analysis “He is not a true man of science who does not bring some sympathy to his studies, and expect to learn something by behavior as well as by application. It is childish to rest in the discovery of mere coincidences, or of partial and extraneous laws. The study of geometry is a petty and idle exercise of the mind, if it is applied to no larger system than the starry one. Mathematics should be mixed not only with physics but with ethics; that is mixed mathematics. The fact which interests us most is the life of the naturalist. The purest science is still biographical.” Henry David Thoreau (1817 - 1862) We have seen that we can seek the frequency content of a signal f (t) defined on an interval [0, T] by looking for the the Fourier coefficients in the Fourier series expansion In this chapter we introduce complex numbers and complex functions. We a ¥ 2pnt 2pnt will later see that the rich structure of f (t) = 0 + a cos + b sin . 2 ∑ n T n T complex functions will lead to a deeper n=1 understanding of analysis, interesting techniques for computing integrals, and The coefficients can be written as integrals such as a natural way to express analog and dis- crete signals. 2 Z T 2pnt an = f (t) cos dt. T 0 T However, we have also seen that, using Euler’s Formula, trigonometric func- tions can be written in a complex exponential form, 2pnt e2pint/T + e−2pint/T cos = . T 2 We can use these ideas to rewrite the trigonometric Fourier series as a sum over complex exponentials in the form ¥ 2pint/T f (t) = ∑ cne , n=−¥ where the Fourier coefficients now take the form Z T −2pint/T cn = f (t)e dt.
    [Show full text]
  • Sunti Delle Conferenze
    Sunti delle Conferenze Analisi complessa a Pisa, 1860-1900 UMBERTO BOTTAZZINI (Università di Milano) Nel 1859 Enrico Betti inaugura gli studi di analisi complessa a Pisa (e di fatto in Italia) pubblicando la traduzione italiana della Inauguraldissertation (1851) di Riemann. L’incontro con il grande matematico conosciuto l’anno prima a Göttingen segna una svolta nella carriera scientifica di Betti, che fa dell’analisi complessa l’oggetto delle sue lezioni e delle sue pubblicazioni (1860/61 e 1862) che incontrano l’approvazione di Riemann, durante il suo soggiorno in Italia. Nella conferenza saranno discussi i contributi all’analisi complessa di Betti, Dini e Bianchi. Ulisse Dini raccolse l’eredità del maestro dapprima in articoli (1870/71, 1871/73, 1881) che suscitano l’interesse della comunità internazionale, e poi in lezioni litografate (1890) che hanno offerto a Luigi Bianchi il modello e il riferimento iniziale per le sue celebri lezioni sulla teoria delle funzioni di variabile complessa in due volumi, apparse prima in versione litografata (1898/99) e poi a stampa in diverse edizioni. Il periodo romano di Luigi Cremona: tra Statica Grafica e Geometria Algebrica, la Biblioteca Nazionale, i Lincei, il Senato ALDO BRIGAGLIA (Università di Palermo) Il periodo romano (1873 – 1903) è considerato il meno produttivo, dal punto di vista scientifico, della vita di Luigi Cremona. Un periodo quasi unicamente dedicato agli aspetti politico – istituzionali della sua attività. Senza voler capovolgere questo giudizio consolidato, anzi sottolineando
    [Show full text]
  • Ph. D. Programme in Mathematics
    Ph.D School in Mathematics Department of Mathematics, Pisa University, Pisa, Italy Coordinator: Sergio Spagnolo History In Italy, before the year 1980 there was only one university degree awarded, namely, the "laurea". After a study of four years, the students had to write a dessertation consisting of an original work, the "tesi di laurea": which required about an year of work, and there were no postgraduate studies as such, except for the “Perfezionamento” of the Scuola Normale Superiore of Pisa and the courses of the "Alta Matematica" at Rome. At the beginning of the 80's the “Dottorato di Ricerca” was officially established by law. About ten Ph.D. programmes in Mathematics were set up, mainly at some of the major Italian Universities (Roma I, Roma II, Milano, Torino, Bologna, Padova, Pisa, Firenze, Trento, Messina, Napoli). Some of the “peripherical” universities joined with these major centers to co-sponsor the Ph. D. degree as associate Universities. In addition, one should also consider the somewhat special Ph. D. programmes of the Scuola Normale, the Institute of Alta Matematica, and the SISSA at Trieste. The Ph. D. programme in Mathematics of Pisa, which included also the Universities of Bari, Parma, Lecce and Ferrara as associated Universities, was established in the year 1983. The institutional structure of all the programmes was partially centralized, for instance all the theses had to be defended before a national panel of examiners, in Rome, while organization of courses and periodical evaluations were left to the single universities. At the end of nineties, a new national legislation under the title “Autonomy of the Universities” was introduced, which allowed, in particular, each University to institute and manage financially its own Ph.
    [Show full text]
  • On the Role Played by the Work of Ulisse Dini on Implicit Function
    On the role played by the work of Ulisse Dini on implicit function theory in the modern differential geometry foundations: the case of the structure of a differentiable manifold, 1 Giuseppe Iurato Department of Physics, University of Palermo, IT Department of Mathematics and Computer Science, University of Palermo, IT 1. Introduction The structure of a differentiable manifold defines one of the most important mathematical object or entity both in pure and applied mathematics1. From a traditional historiographical viewpoint, it is well-known2 as a possible source of the modern concept of an affine differentiable manifold should be searched in the Weyl’s work3 on Riemannian surfaces, where he gave a new axiomatic description, in terms of neighborhoods4, of a Riemann surface, that is to say, in a modern terminology, of a real two-dimensional analytic differentiable manifold. Moreover, the well-known geometrical works of Gauss and Riemann5 are considered as prolegomena, respectively, to the topological and metric aspects of the structure of a differentiable manifold. All of these common claims are well-established in the History of Mathematics, as witnessed by the work of Erhard Scholz6. As it has been pointed out by the Author in [Sc, Section 2.1], there is an initial historical- epistemological problem of how to characterize a manifold, talking about a ‘’dissemination of manifold idea’’, and starting, amongst other, from the consideration of the most meaningful examples that could be taken as models of a manifold, precisely as submanifolds of a some environment space n, like some projective spaces ( m) or the zero sets of equations or inequalities under suitable non-singularity conditions, in this last case mentioning above all of the work of Enrico Betti on Combinatorial Topology [Be] (see also Section 5) but also that of R.
    [Show full text]
  • Levi-Civita,Tullio Francesco Dell’Isola, Emilio Barchiesi, Luca Placidi
    Levi-Civita,Tullio Francesco Dell’Isola, Emilio Barchiesi, Luca Placidi To cite this version: Francesco Dell’Isola, Emilio Barchiesi, Luca Placidi. Levi-Civita,Tullio. Encyclopedia of Continuum Mechanics, 2019, 11 p. hal-02099661 HAL Id: hal-02099661 https://hal.archives-ouvertes.fr/hal-02099661 Submitted on 15 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Levi-Civita, Tullio dating back to the fourteenth century. Giacomo the publication of one of his best known results Levi-Civita had also been a counselor of the in the field of analytical mechanics. We refer to municipality of Padua from 1877, the mayor of the Memoir “On the transformations of dynamic Padua between 1904 and 1910, and a senator equations” which, due to the importance of the of the Kingdom of Italy since 1908. A bust of results and the originality of the proceedings, as him by the Paduan sculptor Augusto Sanavio well as to its possible further developments, has has been placed in the council chamber of the remained a classical paper. In 1897, being only municipality of Padua after his death. According 24, Levi-Civita became in Padua full professor to Ugo Amaldi, Tullio Levi-Civita drew from in rational mechanics, a discipline to which he his father firmness of character, tenacity, and his made important scientific original contributions.
    [Show full text]