Mathematik Für Physiker

Total Page:16

File Type:pdf, Size:1020Kb

Mathematik Für Physiker Mathematik f¨urPhysiker III Michael Dreher Fachbereich f¨urMathematik und Statistik Universit¨atKonstanz Studienjahr 2012/13 2 Acknowledgements: These are the lecture notes to a third semester course on Mathematics for Physicists, and the author is indebted to Nicola Wurz, Maria Lindauer, Florian Franz, Philip Lindner, Simon Sch¨uz,Samuel Greiner, Christian Schoder, Pascal Gumbsheimer for remarks which helped to improve the presentation, and to the audience for appropriating this huge amount of knowledge. Some Legalese: This work is licensed under the Creative Commons Attribution { Noncommercial { No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea{shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me. Sir Isaac Newton (1642 { 1727) 1 1As quoted in [3]. 4 Contents I Ordinary Differential Equations7 1 Existence and Uniqueness Results9 1.1 An Introductory Example....................................9 1.2 General Considerations...................................... 12 1.3 The Theorem of Picard and Lindelof¨ ............................ 19 1.4 Comparison Principles...................................... 23 2 Special Solution Methods 25 2.1 Equations with Separable Variables............................... 25 2.2 Substitution and Homogeneous Differential Equations.................... 27 2.3 Power Series Expansions (Or How to Determine the Sound of a Drum)........... 28 2.4 Exact Differential Equations................................... 34 3 Linear Differential Equations and Systems 37 3.1 Linear Differential Equations.................................. 37 3.2 Exp of a Matrix, and (det A)0 .................................. 39 3.3 Linear Systems with General Coefficients........................... 41 3.4 Linear Systems and Equations with Constant Coefficients.................. 45 4 Flows 51 4.1 General Remarks......................................... 51 4.2 Dynamical Systems and Stability................................ 55 4.3 Outlook: The Over Head Pendulum.............................. 61 4.4 Geometric Investigations of Dynamical Systems........................ 65 5 Numerical Methods 73 5.1 Explicit Methods......................................... 73 5.2 Implicit Methods......................................... 77 5.3 Symplectic Methods....................................... 79 6 Boundary Value Problems and Eigenvalues 85 6.1 Introduction............................................ 85 6.2 Solutions to First Order BVPs................................. 87 6.3 Second Order Scalar BVPs................................... 90 6.4 Playing in Hilbert Spaces.................................... 94 6.5 Orthogonal Polynomials..................................... 98 5 6 CONTENTS 6.6 Applications of Orthogonal Polynomials............................ 103 II Complex Analysis (Funktionentheorie) 111 7 Holomorphic Functions 113 7.1 Back to the Roots........................................ 113 7.2 Differentiation.......................................... 116 7.3 Conclusions and Applications.................................. 119 8 Integration 127 8.1 Definition and Simple Properties................................ 127 8.2 The Cauchy Integral Theorem.................................. 130 9 Zeroes, Singularities, Residues 139 9.1 Zeroes of Holomorphic Functions................................ 139 9.2 Singularities............................................ 143 9.3 The Residue Theorem...................................... 147 10 Applications of Complex Analysis 153 10.1 Behaviour of Functions...................................... 153 10.2 The Laplace Transform..................................... 156 10.3 Outlook: Maxwell's Equations in the Vacuum......................... 166 A The Fourier Transform 171 A.1 Some Function Spaces and Distribution Spaces........................ 171 A.2 The Fourier Transform on L1(Rn), S(Rn) and L2(Rn)..................... 173 A.3 The Fourier Transform on S0(Rn)................................ 175 B Core Components 179 Part I Ordinary Differential Equations 7 Chapter 1 Existence and Uniqueness Results 1.1 An Introductory Example We consider a thermodynamical system1 | think of a closed balloon with a certain type of gas in it | and (some of) the thermodynamical quantities are the pressure p, temperature T , specific volume τ, which is the volume per unit mass, density % with %τ = 1 per definition, specific entropy S, which is the entropy per unit mass, specific interior energy e, specific enthalpy i, defined as i = e + pτ. We assume that these quantities do not depend on the space variable x in the balloon, and they do not depend on the time variable t. It turns out that of these 7 quantities (for any fixed system), only two are independent, for instance S and τ. All the other five quantities can be expressed as functions of (S; τ), and these functions depend on the medium under consideration. We now concentrate on the function e = e(S; τ), and one of the key relations of thermodynamics is the formula de = T dS − p dτ; or expressed in more mathematical style, @e @e (S; τ) = T; (S; τ) = −p: (1.1) @S @τ A caloric equation of state2 then is p = f(%; S); p = g(S; τ); where f and g depend on the properties of the medium, and f, g are related to each other because of % = τ −1. A physically reasonable assumption is @f > 0; @% 1This exposition follows [5]. 2kalorische Zustandsgleichung 9 10 CHAPTER 1. EXISTENCE AND UNIQUENESS RESULTS which immediately implies @g < 0: @τ Then we may define c := p@p=@% as sound speed of the medium. Be careful: this formula holds only if p is written as a function of % and S. Another reasonable assumption from physics is g to be convex in τ, hence @2g (S; τ) > 0; @τ 2 and also @g (S; τ) > 0: @S Definition 1.1. A medium is called ideal gas if pτ = RT; with R being a constant depending only on the medium3. Proposition 1.2. Under additional assumptions to appear during the course of the proof, the interior energy of an ideal gas depends only on the temperature T . Quasi{Proof. We start with e = e(S; τ) and (1.1). Then we find @e @e R + τ = RT + τ · (−p) = 0; @S @τ or more in detail @e @e R (S; τ) + τ (S; τ) = 0: (1.2) @S @τ This is a differential equation, and in particular, it is a partial differential equation (PDE), because partial derivatives appear, first order differential equation, because higher order derivatives are absent, @ @ linear differential equation, because the operator R @S + τ @τ is a linear operator. PDEs are hard to investigate, which is the reason why this course concentrates on easier equations, so- called ordinary differential equations (ODE), and now we rely on a flash of inspiration which recommends the ansatz e(S; τ) = h(τ · H(S)); with unknown functions h and H. However, following this way we will never know if all solutions e = e(S; τ) to (1.2) can be expressed by this ansatz. Anyway, plugging the ansatz into (1.2) yields Rh0 · τH0(S) + τh0 · H(S) = 0; and the physical assumptions τ > 0; h0 6= 0 make division possible: RH0(S) + H(S) = 0: (1.3) This is an ordinary differential equation, because no partial derivatives exist. Moreover, it is 3 more precisely: R is the universal gas constant divided by the effective molecular weight of the gas under consideration 1.1. AN INTRODUCTORY EXAMPLE 11 of first order, linear, homogeneous, with constant coefficients. 4 One more physical assumption is H 6= 0. Then we can divide once again, and H0(S) R + 1 = 0; H(S) d 1 ln jH(S)j = − ; dS R Z S0 d Z S0 1 ln jH(S)j dS = − dS; S=1 dS S=1 R 1 ln jH(S )j − ln jH(1)j = − (S − 1); 0 R 0 H(S0) 1 ln = − (S0 − 1); H(1) R 1 S jH(S )j = jH(1)j exp exp − 0 : 0 R R If we take the freedom to introduce a constant C0 2 R, then we can write H(S0) = C0 exp(−S0=R): Incorporating this constant C0 into an updated version of the function h, we then find e(S; τ) = h(τ exp(−S=R)); and the consequences are then @e p = − = −h0(τ exp(−S=R)) exp(−S=R) = −h0(%−1 exp(−S=R)) exp(−S=R): @τ Because of p > 0 everywhere, this gives the necessary condition h0 < 0 on the function h. We also wanted @p(%;S) 00 to have @% > 0, from which we deduce that h > 0. Additionally, @e 1 T = (S; τ) = − h0(τ exp(−S=R)) · τ exp(−S=R): @S R We put y = τ exp(−S=R), and it follows that 1 T = − h0(y)y; R hence T depends on y only. An information from physics is that this dependence is typically monotonically decreasing, and therefore an inverse function exists of the form y = y(T ). We can not express this function as a formula, but we know its existence. Then it follows that e = h(τ exp(−S=R)) = h(y) = h(y(T )); and indeed e depends on T only, but no other second thermodynamic quantity. For completeness, we list the assumptions made: • e has the form e = h(τH(S)), • h0 6= 0 and H 6= 0 (which means that these functions take nowhere the value zero), 4 In comparison: (1.2) is also linear and homogeneous, but has variable coefficients. 12 CHAPTER 1. EXISTENCE AND UNIQUENESS RESULTS • the function T = T (y) is strictly monotone. If the last condition seems to restrictive, we could it replace it by the condition that T has only a finite number of intervals of monotonicity, and consider only such systems where T stays in the same interval of monotonicity. Corollary 1.3. Also the sound speed depends only on the temperature, because of @p @ c2 = (%; S) = − h0(%−1) exp(−S=R) exp(−S=R) @% @% = h00(%−1 exp(−S=R))(exp(−S=R))2%−2 = h00(y)y2 = h00(y(T )) · (y(T ))2: Let us take a step back, go to the meta-level, and have a look what we have done so far.
Recommended publications
  • HOMOTECIA Nº 6-15 Junio 2017
    HOMOTECIA Nº 6 – Año 15 Martes, 1º de Junio de 2017 1 Entre las expectativas futuras que se tienen sobre un docente en formación, está el considerar como indicativo de que logrará realizarse como tal, cuando evidencia confianza en lo que hace, cuando cree en sí mismo y no deja que su tiempo transcurra sin pro pósitos y sin significado. Estos son los principios que deberán pautar el ejercicio de su magisterio si aspira tener éxito en su labor, lo cual mostrará mediante su afán por dar lo bueno dentro de sí, por hacer lo mejor posible, por comprometerse con el porvenir de quienes confiadamente pondrán en sus manos la misión de enseñarles. Pero la responsabilidad implícita en este proceso lo debería llevar a considerar seriamente algunos GIACINTO MORERA (1856 – 1907 ) aspectos. Obtener una acreditación para enseñar no es un pergamino para exhib ir con petulancia ante familiares y Nació el 18 de julio de 1856 en Novara, y murió el 8 de febrero de 1907, en Turín; amistades. En otras palabras, viviendo en el mundo educativo, es ambas localidades en Italia. asumir que se produjo un cambio significativo en la manera de Matemático que hizo contribuciones a la dinámica. participar en este: pasó de ser guiado para ahora guiar. No es que no necesite que se le orie nte como profesional de la docencia, esto es algo que sucederá obligatoriamente a nivel organizacional, Giacinto Morera , hijo de un acaudalado hombre de pero el hecho es que adquirirá una responsabilidad mucho mayor negocios, se graduó en ingeniería y matemáticas en la porque así como sus preceptores universitarios tuvieron el compromiso de formarlo y const ruirlo cultural y Universidad de Turín, Italia, habiendo asistido a los académicamente, él tendrá el mismo compromiso de hacerlo con cursos por Enrico D'Ovidio, Angelo Genocchi y sus discípulos, sea cual sea el nivel docente donde se desempeñe.
    [Show full text]
  • Numerical Solution of Ordinary Differential Equations
    NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Kendall Atkinson, Weimin Han, David Stewart University of Iowa Iowa City, Iowa A JOHN WILEY & SONS, INC., PUBLICATION Copyright c 2009 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
    [Show full text]
  • Numerical Integration
    Chapter 12 Numerical Integration Numerical differentiation methods compute approximations to the derivative of a function from known values of the function. Numerical integration uses the same information to compute numerical approximations to the integral of the function. An important use of both types of methods is estimation of derivatives and integrals for functions that are only known at isolated points, as is the case with for example measurement data. An important difference between differen- tiation and integration is that for most functions it is not possible to determine the integral via symbolic methods, but we can still compute numerical approx- imations to virtually any definite integral. Numerical integration methods are therefore more useful than numerical differentiation methods, and are essential in many practical situations. We use the same general strategy for deriving numerical integration meth- ods as we did for numerical differentiation methods: We find the polynomial that interpolates the function at some suitable points, and use the integral of the polynomial as an approximation to the function. This means that the truncation error can be analysed in basically the same way as for numerical differentiation. However, when it comes to round-off error, integration behaves differently from differentiation: Numerical integration is very insensitive to round-off errors, so we will ignore round-off in our analysis. The mathematical definition of the integral is basically via a numerical in- tegration method, and we therefore start by reviewing this definition. We then derive the simplest numerical integration method, and see how its error can be analysed. We then derive two other methods that are more accurate, but for these we just indicate how the error analysis can be done.
    [Show full text]
  • On the Numerical Solution of Equations Involving Differential Operators with Constant Coefficients 1
    ON THE NUMERICAL SOLUTION OF EQUATIONS 219 The author acknowledges with thanks the aid of Dolores Ufford, who assisted in the calculations. Yudell L. Luke Midwest Research Institute Kansas City 2, Missouri 1 W. E. Milne, "The remainder in linear methods of approximation," NBS, Jn. of Research, v. 43, 1949, p. 501-511. 2W. E. Milne, Numerical Calculus, p. 108-116. 3 M. Bates, On the Development of Some New Formulas for Numerical Integration. Stanford University, June, 1929. 4 M. E. Youngberg, Formulas for Mechanical Quadrature of Irrational Functions. Oregon State College, June, 1937. (The author is indebted to the referee for references 3 and 4.) 6 E. L. Kaplan, "Numerical integration near a singularity," Jn. Math. Phys., v. 26, April, 1952, p. 1-28. On the Numerical Solution of Equations Involving Differential Operators with Constant Coefficients 1. The General Linear Differential Operator. Consider the differential equation of order n (1) Ly + Fiy, x) = 0, where the operator L is defined by j» dky **£**»%- and the functions Pk(x) and Fiy, x) are such that a solution y and its first m derivatives exist in 0 < x < X. In the special case when (1) is linear the solution can be completely determined by the well known method of varia- tion of parameters when n independent solutions of the associated homo- geneous equations are known. Thus for the case when Fiy, x) is independent of y, the solution of the non-homogeneous equation can be obtained by mere quadratures, rather than by laborious stepwise integrations. It does not seem to have been observed, however, that even when Fiy, x) involves the dependent variable y, the numerical integrations can be so arranged that the contributions to the integral from the upper limit at each step of the integration, at the time when y is still unknown at the upper limit, drop out.
    [Show full text]
  • Real Proofs of Complex Theorems (And Vice Versa)
    REAL PROOFS OF COMPLEX THEOREMS (AND VICE VERSA) LAWRENCE ZALCMAN Introduction. It has become fashionable recently to argue that real and complex variables should be taught together as a unified curriculum in analysis. Now this is hardly a novel idea, as a quick perusal of Whittaker and Watson's Course of Modern Analysis or either Littlewood's or Titchmarsh's Theory of Functions (not to mention any number of cours d'analyse of the nineteenth or twentieth century) will indicate. And, while some persuasive arguments can be advanced in favor of this approach, it is by no means obvious that the advantages outweigh the disadvantages or, for that matter, that a unified treatment offers any substantial benefit to the student. What is obvious is that the two subjects do interact, and interact substantially, often in a surprising fashion. These points of tangency present an instructor the opportunity to pose (and answer) natural and important questions on basic material by applying real analysis to complex function theory, and vice versa. This article is devoted to several such applications. My own experience in teaching suggests that the subject matter discussed below is particularly well-suited for presentation in a year-long first graduate course in complex analysis. While most of this material is (perhaps by definition) well known to the experts, it is not, unfortunately, a part of the common culture of professional mathematicians. In fact, several of the examples arose in response to questions from friends and colleagues. The mathematics involved is too pretty to be the private preserve of specialists.
    [Show full text]
  • The Original Euler's Calculus-Of-Variations Method: Key
    Submitted to EJP 1 Jozef Hanc, [email protected] The original Euler’s calculus-of-variations method: Key to Lagrangian mechanics for beginners Jozef Hanca) Technical University, Vysokoskolska 4, 042 00 Kosice, Slovakia Leonhard Euler's original version of the calculus of variations (1744) used elementary mathematics and was intuitive, geometric, and easily visualized. In 1755 Euler (1707-1783) abandoned his version and adopted instead the more rigorous and formal algebraic method of Lagrange. Lagrange’s elegant technique of variations not only bypassed the need for Euler’s intuitive use of a limit-taking process leading to the Euler-Lagrange equation but also eliminated Euler’s geometrical insight. More recently Euler's method has been resurrected, shown to be rigorous, and applied as one of the direct variational methods important in analysis and in computer solutions of physical processes. In our classrooms, however, the study of advanced mechanics is still dominated by Lagrange's analytic method, which students often apply uncritically using "variational recipes" because they have difficulty understanding it intuitively. The present paper describes an adaptation of Euler's method that restores intuition and geometric visualization. This adaptation can be used as an introductory variational treatment in almost all of undergraduate physics and is especially powerful in modern physics. Finally, we present Euler's method as a natural introduction to computer-executed numerical analysis of boundary value problems and the finite element method. I. INTRODUCTION In his pioneering 1744 work The method of finding plane curves that show some property of maximum and minimum,1 Leonhard Euler introduced a general mathematical procedure or method for the systematic investigation of variational problems.
    [Show full text]
  • Improving Numerical Integration and Event Generation with Normalizing Flows — HET Brown Bag Seminar, University of Michigan —
    Improving Numerical Integration and Event Generation with Normalizing Flows | HET Brown Bag Seminar, University of Michigan | Claudius Krause Fermi National Accelerator Laboratory September 25, 2019 In collaboration with: Christina Gao, Stefan H¨oche,Joshua Isaacson arXiv: 191x.abcde Claudius Krause (Fermilab) Machine Learning Phase Space September 25, 2019 1 / 27 Monte Carlo Simulations are increasingly important. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults MC event generation is needed for signal and background predictions. ) The required CPU time will increase in the next years. ) Claudius Krause (Fermilab) Machine Learning Phase Space September 25, 2019 2 / 27 Monte Carlo Simulations are increasingly important. 106 3 10− parton level W+0j 105 particle level W+1j 10 4 W+2j particle level − W+3j 104 WTA (> 6j) W+4j 5 10− W+5j 3 W+6j 10 Sherpa MC @ NERSC Mevt W+7j / 6 Sherpa / Pythia + DIY @ NERSC 10− W+8j 2 10 Frequency W+9j CPUh 7 10− 101 8 10− + 100 W +jets, LHC@14TeV pT,j > 20GeV, ηj < 6 9 | | 10− 1 10− 0 50000 100000 150000 200000 250000 300000 0 1 2 3 4 5 6 7 8 9 Ntrials Njet Stefan H¨oche,Stefan Prestel, Holger Schulz [1905.05120;PRD] The bottlenecks for evaluating large final state multiplicities are a slow evaluation of the matrix element a low unweighting efficiency Claudius Krause (Fermilab) Machine Learning Phase Space September 25, 2019 3 / 27 Monte Carlo Simulations are increasingly important. 106 3 10− parton level W+0j 105 particle level W+1j 10 4 W+2j particle level − W+3j 104 WTA (>
    [Show full text]
  • A Brief Introduction to Numerical Methods for Differential Equations
    A Brief Introduction to Numerical Methods for Differential Equations January 10, 2011 This tutorial introduces some basic numerical computation techniques that are useful for the simulation and analysis of complex systems modelled by differential equations. Such differential models, especially those partial differential ones, have been extensively used in various areas from astronomy to biology, from meteorology to finance. However, if we ignore the differences caused by applications and focus on the mathematical equations only, a fundamental question will arise: Can we predict the future state of a system from a known initial state and the rules describing how it changes? If we can, how to make the prediction? This problem, known as Initial Value Problem(IVP), is one of those problems that we are most concerned about in numerical analysis for differential equations. In this tutorial, Euler method is used to solve this problem and a concrete example of differential equations, the heat diffusion equation, is given to demonstrate the techniques talked about. But before introducing Euler method, numerical differentiation is discussed as a prelude to make you more comfortable with numerical methods. 1 Numerical Differentiation 1.1 Basic: Forward Difference Derivatives of some simple functions can be easily computed. However, if the function is too compli- cated, or we only know the values of the function at several discrete points, numerical differentiation is a tool we can rely on. Numerical differentiation follows an intuitive procedure. Recall what we know about the defini- tion of differentiation: df f(x + h) − f(x) = f 0(x) = lim dx h!0 h which means that the derivative of function f(x) at point x is the difference between f(x + h) and f(x) divided by an infinitesimal h.
    [Show full text]
  • Arxiv:1809.06300V1 [Hep-Ph] 17 Sep 2018
    CERN-TH-2018-205, TTP18-034 Double-real contribution to the quark beam function at N3LO QCD Kirill Melnikov,1, ∗ Robbert Rietkerk,1, y Lorenzo Tancredi,2, z and Christopher Wever1, 3, x 1Institute for Theoretical Particle Physics, KIT, Karlsruhe, Germany 2Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland 3Institut f¨urKernphysik, KIT, 76344 Eggenstein-Leopoldshafen, Germany Abstract We compute the master integrals required for the calculation of the double-real emission contri- butions to the matching coefficients of jettiness beam functions at next-to-next-to-next-to-leading order in perturbative QCD. As an application, we combine these integrals and derive the double- real emission contribution to the matching coefficient Iqq(t; z) of the quark beam function. arXiv:1809.06300v1 [hep-ph] 17 Sep 2018 ∗ Electronic address: [email protected] y Electronic address: [email protected] z Electronic address: [email protected] x Electronic address: [email protected] 1 I. INTRODUCTION The absence of any evidence for physics beyond the Standard Model at the LHC implies a growing importance of indirect searches for new particles and interactions. An integral part of this complex endeavour are first-principles predictions for hard scattering processes in proton collisions with controllable perturbative accuracy. In recent years, we have seen a remarkable progress in an effort to provide such predictions. Indeed, robust methods for one-loop computations developed during the past decade, that allowed the theoretical description of a large number of processes with multi-particle final states through NLO QCD [1{6], were followed by the development of practical NNLO QCD subtraction and slicing schemes [7{17] and advances in computations of two-loop scattering amplitudes [18{29].
    [Show full text]
  • Complex Analysis
    8 Complex Representations of Functions “He is not a true man of science who does not bring some sympathy to his studies, and expect to learn something by behavior as well as by application. It is childish to rest in the discovery of mere coincidences, or of partial and extraneous laws. The study of geometry is a petty and idle exercise of the mind, if it is applied to no larger system than the starry one. Mathematics should be mixed not only with physics but with ethics; that is mixed mathematics. The fact which interests us most is the life of the naturalist. The purest science is still biographical.” Henry David Thoreau (1817-1862) 8.1 Complex Representations of Waves We have seen that we can determine the frequency content of a function f (t) defined on an interval [0, T] by looking for the Fourier coefficients in the Fourier series expansion ¥ a0 2pnt 2pnt f (t) = + ∑ an cos + bn sin . 2 n=1 T T The coefficients take forms like 2 Z T 2pnt an = f (t) cos dt. T 0 T However, trigonometric functions can be written in a complex exponen- tial form. Using Euler’s formula, which was obtained using the Maclaurin expansion of ex in Example A.36, eiq = cos q + i sin q, the complex conjugate is found by replacing i with −i to obtain e−iq = cos q − i sin q. Adding these expressions, we have 2 cos q = eiq + e−iq. Subtracting the exponentials leads to an expression for the sine function. Thus, we have the important result that sines and cosines can be written as complex exponentials: 286 partial differential equations eiq + e−iq cos q = , 2 eiq − e−iq sin q = .( 8.1) 2i So, we can write 2pnt 1 2pint − 2pint cos = (e T + e T ).
    [Show full text]
  • Further Results on the Dirac Delta Approximation and the Moment Generating Function Techniques for Error Probability Analysis in Fading Channels
    International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.1, January 2013 FURTHER RESULTS ON THE DIRAC DELTA APPROXIMATION AND THE MOMENT GENERATING FUNCTION TECHNIQUES FOR ERROR PROBABILITY ANALYSIS IN FADING CHANNELS Annamalai Annamalai 1, Eyidayo Adebola 2 and Oluwatobi Olabiyi 3 Center of Excellence for Communication Systems Technology Research Department of Electrical & Computer Engineering, Prairie View A&M University, Texas [email protected], [email protected], [email protected] ABSTRACT In this article, we employ two distinct methods to derive simple closed-form approximations for the statistical expectations of the positive integer powers of Gaussian probability integral E[ Q p (βΩ γ )] with γ respect to its fading signal-to-noise ratio (SNR) γ random variable. In the first approach, we utilize the shifting property of Dirac delta function on three tight bounds/approximations for Q (.) to circumvent the need for integration. In the second method, tight exponential-type approximations for Q (.) are exploited to simplify the resulting integral in terms of only the weighted sum of moment generating function (MGF) of γ. These results are of significant interest in the development of analytically tractable and simple closed- form approximations for the average bit/symbol/block error rate performance metrics of digital communications over fading channels. Numerical results reveal that the approximations based on the MGF method are much more versatile and can achieve better accuracy compared to the approximations derived via the asymptotic Dirac delta technique for a wide range of digital modulations schemes and wireless fading environments. KEYWORDS Moment generating function method, Dirac delta approximation, Gaussian quadrature approximation.
    [Show full text]
  • Numerical Integration of Functions with Logarithmic End Point
    FACTA UNIVERSITATIS (NIS)ˇ Ser. Math. Inform. 17 (2002), 57–74 NUMERICAL INTEGRATION OF FUNCTIONS WITH ∗ LOGARITHMIC END POINT SINGULARITY Gradimir V. Milovanovi´cand Aleksandar S. Cvetkovi´c Abstract. In this paper we study some integration problems of functions involv- ing logarithmic end point singularity. The basic idea of calculating integrals over algebras different from the standard algebra {1,x,x2,...} is given and is applied to evaluation of integrals. Also, some convergence properties of quadrature rules over different algebras are investigated. 1. Introduction The basic motive for our work is a slow convergence of the Gauss-Legendre quadrature rule, transformed to (0, 1), 1 n (1.1) I(f)= f(x) dx Qn(f)= Aνf(xν), 0 ν=1 in the case when f(x)=xx. It is obvious that this function is continuous (even uniformly continuous) and positive over the interval of integration, so that we can expect a convergence of (1.1) in this case. In Table 1.1 we give relative errors in Gauss-Legendre approximations (1.1), rel. err(f)= |(Qn(f) − I(f))/I(f)|,forn = 30, 100, 200, 300 and 400 nodes. All calculations are performed in D- and Q-arithmetic, with machine precision ≈ 2.22 × 10−16 and ≈ 1.93 × 10−34, respectively. (Numbers in parentheses denote decimal exponents.) Received September 12, 2001. The paper was presented at the International Confer- ence FILOMAT 2001 (Niˇs, August 26–30, 2001). 2000 Mathematics Subject Classification. Primary 65D30, 65D32. ∗The authors were supported in part by the Serbian Ministry of Science, Technology and Development (Project #2002: Applied Orthogonal Systems, Constructive Approximation and Numerical Methods).
    [Show full text]