The Original Euler's Calculus-Of-Variations Method: Key
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 4 Finite Difference Gradient Information
Chapter 4 Finite Difference Gradient Information In the masters thesis Thoresson (2003), the feasibility of using gradient- based approximation methods for the optimisation of the spring and damper characteristics of an off-road vehicle, for both ride comfort and handling, was investigated. The Sequential Quadratic Programming (SQP) algorithm and the locally developed Dynamic-Q method were the two successive approximation methods used for the optimisation. The determination of the objective function value is performed using computationally expensive numerical simulations that exhibit severe inherent numerical noise. The use of forward finite differences and central finite differences for the determination of the gradients of the objective function within Dynamic-Q is also investigated. The results of this study, presented here, proved that the use of central finite differencing for gradient information improved the optimisation convergence history, and helped to reduce the difficulties associated with noise in the objective and constraint functions. This chapter presents the feasibility investigation of using gradient-based successive approximation methods to overcome the problems of poor gradient information due to severe numerical noise. The two approximation methods applied here are the locally developed Dynamic-Q optimisation algorithm of Snyman and Hay (2002) and the well known Sequential Quadratic 47 CHAPTER 4. FINITE DIFFERENCE GRADIENT INFORMATION 48 Programming (SQP) algorithm, the MATLAB implementation being used for this research (Mathworks 2000b). This chapter aims to provide the reader with more information regarding the Dynamic-Q successive approximation algorithm, that may be used as an alternative to the more established SQP method. Both algorithms are evaluated for effectiveness and efficiency in determining optimal spring and damper characteristics for both ride comfort and handling of a vehicle. -
7 Numerical Integration
7 Numerical Integration 7.1 Elementary Algorithms Let us suppose we are confronted with a function f(x) tabulated at the points x1, x2, x3...xn, not necessarily equally spaced. We require the integral of f(x) from x1 to xn. How do we proceed? The simplest algorithm we can use, valid both for equally and unequally spaced points, is the trapezoidal rule. The trapezoidal rule assumes that the function is linear between the tabulated points. With this assumption, it can be seen that the integral from x1 to x2 is given by x2 1 f(x)dx h(f1 + f2) Zx1 ≈ 2 where h = x x . 2 − 1 ¨¨u ¨¨ ¨¨ ¨¨ u¨ f2 f1 u u x1 x2 This equation can be extended to n points for equally spaced points xn 1 1 f(x)dx h( f1 + f2 + f3 ... + fn) (1) Zx1 ≈ 2 2 and xn 1 1 1 f(x)dx (x2 x1)(f1+f2)+ (x3 x2)(f2+f3) ...+ (xn xn−1)(fn−1+fn) Zx1 ≈ 2 − 2 − 2 − for unevenly spaced points. Exercise 7.1: Use the trapezoidal rule to evaluate the integral 2 x sin xdx Z1 1 with 10 points. Double the number of points and re-evaluate the integral. The “exact” value of this integral is 1.440422. Rewrite your program to evaluate the integral at an arbitrary number of points input by the user. Are 1000 points better than 100 points? For equally spaced points the trapezoidal rule has an error O(h3), which means that the error for each interval in the rule is proportional to the cube of the spacing. -
Generalizing the Trapezoidal Rule in the Complex Plane
Generalizing the trapezoidal rule in the complex plane Bengt Fornberg ∗ Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA May 22, 2020 Abstract In computational contexts, analytic functions are often best represented by grid-based func- tion values in the complex plane. For integrating periodic functions, the spectrally accurate trapezoidal rule (TR) then becomes a natural choice, due to both accuracy and simplicity. The two key present observations are (i) The accuracy of TR in the periodic case can be greatly increased (doubling or tripling the number of correct digits) by using function values also along grid lines adjacent to the line of integration, and (ii) A recently developed end correction strategy for finite interval integrations applies just as well when using these enhanced TR schemes. Keywords: Euler-Maclaurin, trapezoidal rule, contour integrals, equispaced grids, hexago- nal grid. AMS classification codes: Primary: 65B15, 65E05; Secondary: 30-04. 1 Introduction There are two main scenarios when approximating contour integrals in the complex plane: i. The function to integrate can be obtained at roughly equal cost for arbitrary spatial locations, and ii. Function values are available primarily on an equispaced grid in the complex plane.1 In case (i), a commonly used option is Gaussian quadrature2, either applied directly over the whole interval of interest, or combined with adaptive interval partitioning. Conformal (and other) mappings may be applied both for straightening curved integration paths (such as Hankel contours) and to improve the resolution in critical places. ∗Email: [email protected] 1If an analytic functions is somewhat costly to evaluate, it may be desirable to pay a one-time cost of evaluating over a grid and then re-use this data for multiple purposes, such as for graphical displays (e.g., [7, 12]) and, as focused on here, for highly accurate contour integrations (assuming some vicinity of the integration paths to be free of singularities). -
A Trapezoidal Rule Error Bound Unifying
Downloaded from http://rspa.royalsocietypublishing.org/ on November 10, 2016 A trapezoidal rule error bound unifying the Euler–Maclaurin formula and geometric rspa.royalsocietypublishing.org convergence for periodic functions Mohsin Javed and Lloyd N. Trefethen Research Mathematical Institute, University of Oxford, Oxford, UK Cite this article: Javed M, Trefethen LN. 2014 A trapezoidal rule error bound unifying the The error in the trapezoidal rule quadrature formula Euler–Maclaurin formula and geometric can be attributed to discretization in the interior and convergence for periodic functions. Proc. R. non-periodicity at the boundary. Using a contour Soc. A 470: 20130571. integral, we derive a unified bound for the combined http://dx.doi.org/10.1098/rspa.2013.0571 error from both sources for analytic integrands. The bound gives the Euler–Maclaurin formula in one limit and the geometric convergence of the trapezoidal Received: 27 August 2013 rule for periodic analytic functions in another. Similar Accepted:15October2013 results are also given for the midpoint rule. Subject Areas: 1. Introduction computational mathematics Let f be continuous on [0, 1] and let n be a positive Keywords: integer. The (composite) trapezoidal rule approximates the integral trapezoidal rule, midpoint rule, 1 = Euler–Maclaurin formula I f (x)dx (1.1) 0 by the sum Author for correspondence: n −1 k In = n f , (1.2) Lloyd N. Trefethen n k=0 e-mail: [email protected] where the prime indicates that the terms k = 0andk = n are multiplied by 1/2. Throughout this paper, f may be real or complex, and ‘periodic’ means periodic with period 1. -
Notes on the Convergence of Trapezoidal-Rule Quadrature
Notes on the convergence of trapezoidal-rule quadrature Steven G. Johnson Created Fall 2007; last updated March 10, 2010 1 Introduction Numerical quadrature is another name for numerical integration, which refers to the approximation of an integral f (x)dx of some function f (x) by a discrete summation ∑wi f (xi) over points xi with´ some weights wi. There are many methods of numerical quadrature corresponding to different choices of points xi and weights wi, from Euler integration to sophisticated methods such as Gaussian quadrature, with varying degrees of accuracy for various types of functions f (x). In this note, we examine the accuracy of one of the simplest methods: the trapezoidal rule with uniformly spaced points. In particular, we discuss how the convergence rate of this method is determined by the smoothness properties of f (x)—and, in practice, usually by the smoothness at the end- points. (This behavior is the basis of a more sophisticated method, Clenshaw-Curtis quadrature, which is essentially trapezoidal integration plus a coordinate transforma- tion to remove the endpoint problem.) For simplicity, without loss of generality, we can take the integral to be for x 2 [0;2p], i.e. the integral 2p I = f (x)dx; ˆ0 which is approximated in the trapezoidal rule1 by the summation: f (0)Dx N−1 f (2p)Dx IN = + ∑ f (nDx)Dx + ; 2 n=1 2 2p where Dx = N . We now want to analyze how fast the error EN = jI − INj decreases with N. Many books estimate the error as being O(Dx2) = O(N−2), assuming f (x) is twice differ- entiable on (0;2p)—this estimate is correct, but only as an upper bound. -
Introduction to Differential Equations
Introduction to Differential Equations Lecture notes for MATH 2351/2352 Jeffrey R. Chasnov k kK m m x1 x2 The Hong Kong University of Science and Technology The Hong Kong University of Science and Technology Department of Mathematics Clear Water Bay, Kowloon Hong Kong Copyright ○c 2009–2016 by Jeffrey Robert Chasnov This work is licensed under the Creative Commons Attribution 3.0 Hong Kong License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/hk/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Preface What follows are my lecture notes for a first course in differential equations, taught at the Hong Kong University of Science and Technology. Included in these notes are links to short tutorial videos posted on YouTube. Much of the material of Chapters 2-6 and 8 has been adapted from the widely used textbook “Elementary differential equations and boundary value problems” by Boyce & DiPrima (John Wiley & Sons, Inc., Seventh Edition, ○c 2001). Many of the examples presented in these notes may be found in this book. The material of Chapter 7 is adapted from the textbook “Nonlinear dynamics and chaos” by Steven H. Strogatz (Perseus Publishing, ○c 1994). All web surfers are welcome to download these notes, watch the YouTube videos, and to use the notes and videos freely for teaching and learning. An associated free review book with links to YouTube videos is also available from the ebook publisher bookboon.com. I welcome any comments, suggestions or corrections sent by email to [email protected]. -
Numerical Solution of Ordinary Differential Equations
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Kendall Atkinson, Weimin Han, David Stewart University of Iowa Iowa City, Iowa A JOHN WILEY & SONS, INC., PUBLICATION Copyright c 2009 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. -
José M. Vega-Guzmán
Jos´eM. Vega-Guzm´an Curriculum Vitae Contact Department of Mathematics Tel: (409) 880-8792 Information College of Arts and Sciences Fax: (409) 880-8794 Lamar University email: [email protected] 200-C Lucas Building URL: https://sites.google.com/site/profjmvg/ Beaumont, TX 77710 Education PhD (Applied Mathematics) 2008{2013 • Arizona State University, Tempe, AZ • Co-Advisors: Sergei K. Suslov and Carlos Castillo-Chavez • Dissertation Title: Solution Methods for Certain Evolution Equations Master in Natural Sciences (Mathematics) 2006{2008 • Arizona State University, Tempe, AZ B.S. (MathEd) 2000{2005 • Universidad de Puerto Rico, Cayey, PR • Advisor: Maria A. Avi~n´o Research Interests Nonlinear Wave Propagation. Quantum Mechanics. Integrability of Nonlinear Evolution Equations. Applications of ODE's and PDE's in the Natural Sciences. Mathematical Modeling. Publications 2017 Vega{Guzm´an,J.M.; Alqahtani, R.; Zhou, Q.; Mahmood, M.F.; Moshokoa, S.P.; Ullah, M.Z.; Biswas, A.; Belic, M. Optical solitons for Lakshmanan-Porsezian-Daniel model with spatio-temporal dispersion using the method of undetermined coefficients. Optik - International Journal for Light and Electron Optics. 144, 115{123. 2017 Wang, G.; Kara, A.H.; Vega{Guzm´an,J.M.; Biswas, A. Group analysis, nonlinear self-adjointness, conser- vation laws and soliton solutions for the mKdV systems. Nonlinear Analysis: Modeling and Control. 22(3), 334{346. 2017 Vega{Guzm´an,J.M.; Ullah, M.Z.; Asma, M.; Zhou, Q.; Biswas, A. Dispersive solitons in magneto-optic waveguides. Superlattices and Microstructures. 103, 161{170. 2017 Vega{Guzm´an,J.M.; Mahmood, M.F.; Zhou, Q.; Triki, H.; Arnous, A.H.; Biswas, A.; Moshokoa, S.P.; Belic, M. -
Numerical Integration
Chapter 12 Numerical Integration Numerical differentiation methods compute approximations to the derivative of a function from known values of the function. Numerical integration uses the same information to compute numerical approximations to the integral of the function. An important use of both types of methods is estimation of derivatives and integrals for functions that are only known at isolated points, as is the case with for example measurement data. An important difference between differen- tiation and integration is that for most functions it is not possible to determine the integral via symbolic methods, but we can still compute numerical approx- imations to virtually any definite integral. Numerical integration methods are therefore more useful than numerical differentiation methods, and are essential in many practical situations. We use the same general strategy for deriving numerical integration meth- ods as we did for numerical differentiation methods: We find the polynomial that interpolates the function at some suitable points, and use the integral of the polynomial as an approximation to the function. This means that the truncation error can be analysed in basically the same way as for numerical differentiation. However, when it comes to round-off error, integration behaves differently from differentiation: Numerical integration is very insensitive to round-off errors, so we will ignore round-off in our analysis. The mathematical definition of the integral is basically via a numerical in- tegration method, and we therefore start by reviewing this definition. We then derive the simplest numerical integration method, and see how its error can be analysed. We then derive two other methods that are more accurate, but for these we just indicate how the error analysis can be done. -
3.3 the Trapezoidal Rule
Analysis and Implementation of an Age Structured Model of the Cell Cycle Anna Broms [email protected] principal supervisor: Sara Maad Sasane assistant supervisor: Gustaf S¨oderlind Master's thesis Lund University September 2017 Abstract In an age-structured model originating from cancer research, the cell cycle is divided into two phases: Phase 1 of variable length, consisting of the biologically so called G1 phase, and Phase 2 of fixed length, consisting of the so called S, G2 and M phases. A system of nonlinear PDEs along with initial and boundary data describes the number densities of cells in the two phases, depending on time and age (where age is the time spent in a phase). It has been shown that the initial and boundary value problem can be rewritten as a coupled system of integral equations, which in this M.Sc. thesis is implemented in matlab using the trapezoidal and Simpson rule. In the special case where the cells are allowed to grow without restrictions, the system is uncoupled and possible to study analytically, whereas otherwise, a nonlinearity has to be solved in every step of the iterative equation solving. The qualitative behaviour is investigated numerically and analytically for a wide range of model components. This includes investigations of the notions of crowding, i.e. that cell division is restricted for large population sizes, and quorum sensing, i.e. that a small enough tumour can eliminate itself through cell signalling. In simulations, we also study under what conditions an almost eliminated tumour relapses after completed therapy. Moreover, upper bounds for the number of dividing cells at the end of Phase 2 at time t are determined for specific cases, where the bounds are found to depend on the existence of so called cancer stem cells. -
Introduction to the Modern Calculus of Variations
MA4G6 Lecture Notes Introduction to the Modern Calculus of Variations Filip Rindler Spring Term 2015 Filip Rindler Mathematics Institute University of Warwick Coventry CV4 7AL United Kingdom [email protected] http://www.warwick.ac.uk/filiprindler Copyright ©2015 Filip Rindler. Version 1.1. Preface These lecture notes, written for the MA4G6 Calculus of Variations course at the University of Warwick, intend to give a modern introduction to the Calculus of Variations. I have tried to cover different aspects of the field and to explain how they fit into the “big picture”. This is not an encyclopedic work; many important results are omitted and sometimes I only present a special case of a more general theorem. I have, however, tried to strike a balance between a pure introduction and a text that can be used for later revision of forgotten material. The presentation is based around a few principles: • The presentation is quite “modern” in that I use several techniques which are perhaps not usually found in an introductory text or that have only recently been developed. • For most results, I try to use “reasonable” assumptions, not necessarily minimal ones. • When presented with a choice of how to prove a result, I have usually preferred the (in my opinion) most conceptually clear approach over more “elementary” ones. For example, I use Young measures in many instances, even though this comes at the expense of a higher initial burden of abstract theory. • Wherever possible, I first present an abstract result for general functionals defined on Banach spaces to illustrate the general structure of a certain result. -
3 Runge-Kutta Methods
3 Runge-Kutta Methods In contrast to the multistep methods of the previous section, Runge-Kutta methods are single-step methods — however, with multiple stages per step. They are motivated by the dependence of the Taylor methods on the specific IVP. These new methods do not require derivatives of the right-hand side function f in the code, and are therefore general-purpose initial value problem solvers. Runge-Kutta methods are among the most popular ODE solvers. They were first studied by Carle Runge and Martin Kutta around 1900. Modern developments are mostly due to John Butcher in the 1960s. 3.1 Second-Order Runge-Kutta Methods As always we consider the general first-order ODE system y0(t) = f(t, y(t)). (42) Since we want to construct a second-order method, we start with the Taylor expansion h2 y(t + h) = y(t) + hy0(t) + y00(t) + O(h3). 2 The first derivative can be replaced by the right-hand side of the differential equation (42), and the second derivative is obtained by differentiating (42), i.e., 00 0 y (t) = f t(t, y) + f y(t, y)y (t) = f t(t, y) + f y(t, y)f(t, y), with Jacobian f y. We will from now on neglect the dependence of y on t when it appears as an argument to f. Therefore, the Taylor expansion becomes h2 y(t + h) = y(t) + hf(t, y) + [f (t, y) + f (t, y)f(t, y)] + O(h3) 2 t y h h = y(t) + f(t, y) + [f(t, y) + hf (t, y) + hf (t, y)f(t, y)] + O(h3(43)).