Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned THE PECTOLITE-SCHIZOLITE-SERANDITE SERIES* Wer,rnuln T. Scn,lr,r,nn, U. S. Geol,ogical Suraey, Woshington25, D. C. ABsrRAcr A study of the pertinent recorded analyses of pectolite, schizolite, and serandite, indi- cates that they are members of an isostructural series from pectolite (4CaO NarO.6SiO: 'H2O or Ca:NaSiaOs(OH)) to serandite (4MnO NazO.6SiO:.HzO or MnzNaSisOs(OH)), another example of a series in which calcium and manganese proxy each other. The only recorded analysis of serandite is that of a calcian serandite. Schizolite is a manganoan pectolite and should not be rated as a species. The specific gravity and indices of refraction for the calcium and for the manganese end members are: Pectolite,Ca:NaSisOs(OH), G : 2.86; a: 1.595, P:1.605, t:1.633. serandite, : 3'32; y:'111t:',??,,1:i":';":"?lt] " IlrrnooucrtoN The pectolite-schizolite-seranditeseries is an example of an isostruc- tural seriesin which bivalent manganese(I.R. 0.80) proxies for calcium (LR. 0.99) at least to an extent of 77 per cent. The calcite-rhodochrosite seriesis even more complete for it indicates "complete ionic substitution of I{n++ to Ca++ in nature." as expressedby Kulp, Kent, and Kerr (1951)or, as stated earlierby Kulp, Wright, and Holmes (1949):"There- fore, it seemsthat the substitution of Ca+ for Mn+ is continuous for rhodochrosite to calcite." These conclusionsconfirm the earlier work of Krieger (1930). The wollastonite-bustamite seriesis another example in which manganese(plus a little ferrous iron) proxies the calcium in wollas- tonite to the extent of at Ieast 70 per cent, with retention of the wollas- tonite structure (Schaller). The maximum contentof MnO*FeO sofar found, in a bustamite from Australia, is about 28 per cent NInO with 8 per cent FeO. Several addi- tional bustamites from other localities contain almost as much manganese and iron (Schaller). For axinite the ratio of CaO to FeO*MnO*MgO was formerly held to be constant (Schaller,1911) but recent studiesby Milton, Hildebrand, and Sherwood(1953) show it to be variable. fn rhodonite and pyroxmangite the amount of calcium proxying for manganeseis variable but always small. The maximum content of CaO in rhodonite is about 11 per cent (Schaller,1938, p. 582). The so-called x Publication authorized by the Director_ U. S. Geological Survey. t022 TH E PECTOLI T E.SCE I ZOLI TE-SERA N DI T E SEKI ES to23 "high lime rhodonites" listed in standard reference books are either bustamite, johannsenite, or a mixture of rhodonite and johannsenite (Schaller, 1938, p. 580). In other calcium-manganeseminerals, such as inesite (Glass and Schaller, 1939) and johannsenite (Schaller, 1938) the content of CaO is constant and calcium and manganesedo not proxy each other. In all three of the series mentioned in which the proxying of man- ganesefor calcium is compJeteor nearly so, the almost manganese-free calcium end member is by far the commonest and most abundant. For those series (rhodonite, pyroxmangite) in which the manganese end member is the commonest and most abundant, calcium seemsto be al- ways minor in amount. That serandite, the manganese richest member of the pectolite- Frc.1. (a) Pectolite; (6) Schizolite; (c) Serandite. schizolite-seranditeseries is a pectolite in which manganeseproxies cal- cium to an extent greater than a 1:1 ratio, was shown by Machatschki (1932). Schizolite is intermediate between pectolite and serandite and the close morphological relationship of the triclinic crystals of schizolite and pectolitewas shownby Peacock(1935) and by Ito (1939). The similarity of the r-ray powder patterns of the three minerals is shown in Fig. 1 and the shifts in the positions of the lines in Table 1. Many pectolites contain small quantities of manganese,as well as iron, though it is believed that the MnO content of the manganpectolite from Magnet Cove, described by Williams (1891) and reported to be 4.25 per cent MnO, is much too high, like the MnO and FeO percentagesgiven by him for the wollastonite and natroxonotlite from Potash Sulphur Springs, Arkansas (Schaller, 1950). That the content of MnO in the manganpectolite from Arkansas is not as high as reported is also indi- 1024 WALDEMAR T. SCHALLER Tanr,r 1, Poworn Dar.q.ron rnn Colp.tnrsoN ol PrcrourE. ScHrzorrro. eNn Srn,qxnrra Pectolite Schizoiite Serandite d I a d I 7.83 7.73 mw /.J) MS /.UJ 6.92 mw 6.75 MS 5.50 J 5.39 mw 5.24 mw 3.90 6 3.85 ms 3.77 ms 3.52 5 3.47 mw 3.38 mw J.JJ 6 3.27 InS 3.19 s 3.10 8 3 .06 InS 3.00 S 2.92 10 2.89 2.85 s 2.74 6 2.69 MS 2.62 MS 2.60 6 2.56 MS 2.51 ms 2.30 6 2.27 MS 2.21 ms 2.17 6 2.r5 InS 2.12 mw s: strong. ms:moderately strong. mw:moderately weak. cated by the value of its specific gravity, namely, 2.845, as given by Williams, which is lower than the specific gravity (2.86) of pectolile free from manganese. X-Rev ParrBnNs X-ray difiraction patterns of these minerals were taken some years ago by W. E. Richmond, formerly of the U. S. Geological Survey, and more recently by Fred A. Hildebrand. The specimensfor which patterns were obtained, are as follows: Pectolitefrom Bergen Hill, NewJersey, U.S.N.M. 82452. Film No. 5502. Manganpectolite from Magnet Cove, Arkansas, U S.N.M. R-3097. Film No. 240. Schizolite from Julianehaab, Greenland, U.S.N.M. 95502. Film No. 5752. Serandite from Los, French Guinea, U.S.N.M. 96515. Film No. 5739. From a comparison of their patterns, C. L. Christ and J. M. Axelrod, of the U. S. Geological Survey, conclude that the same general pattern prevails and that all four samples are isoslructural. The patterns of pectolite and of manganpectolite are identical; those of schizolite and of serandite contain some difierence in line position and line intensity. However, it seemsvery likely that these differencescan be ascribed to the differencesin chemical composition. The patterns for schizolite and for serandite are very similar; their differencesare less than their differ- ences from the patterns of pectolite. But the overall similarity is re- tained and it must be concluded, on the basis of their powder patterns, that pectolite, manganpectolite, schizolite, and serandite form an iso- structural series. T H E P ECTOLI TE-SC H I ZOLI T E-SER,4 N DI T E SERI ES r025 "r1 r\ | ,,' I Y,.' 7 ,l I I e/. /tzL/' '/ // ,/ llit t+v o / ry.' O { 1m B Frc. 2. Variation curves for G (specific gravities) and z (indices of refraction a, B, ,y) for the pectolite-schizolite-serandite series. The values for alpha and gamma are represented by circles whereas those for beta are represented by triangies, so as to avoid confusion. Solid dots represent specific gravities. A. Pectolite. CazNaSiaOs(OH). B. Serandite. Mn:NaSi:Os(OH). The powder data given in Table 1 were kindly furnished by Fred A. Hildebrand and are given here to show the isostructural relationship be- tween pectolite, schizolite, and serandite. Measurementsfor d were made with a ?il..nt.scale and 1 was estimated visually for schizolite and ser- andite. Corrections which would make very minor changesin d were not considered. The patterns of the three minerals shown in Fig. 1 were taken with Debye Scherrer powder cameras (114.59 mm. diameter), FeK" (Mn filter), I:1.93734. 1026 WALDEMAR T. SCHALLER Coruprr,-qrror.IoF PRoPERTTES The available pertinent literature data on the properties of pectolite, schizolite, and serandite are shown in the following compilation (Table 2) and the variation curves for specific gravity and for the indices of refraction are given in Fig. 2. The component weight percentagesare calculated on the basis of the determined values for MnO and FeO. The Ca-component is then obtained by difference.Both the specificgravities and the indices of refraction increase with increasing amounts of man- ganese.The continuous shift of the lines of the r-ray patterns has been given in Table 1. The data are meager and there is little assurancethat the physical properties were always determined on the actual samples analyzed. For example the three analyses of schizolite from Greenland (No. 9 in Table 1) given by Blggild show considerablevariation in the percentages of MnO (9.84,11.69, and 12.90),and correspondto 32, 35, and 40 weight per cent of the calcium-free manganese and iron end members. The specific gravity of the mineral is given as within the range 2.97-3.13. The only indices of refraction of schizolite found in the literature are those given by Larsen (192I) for an unanalyzed specimenin the Harvard collection. The values plotted in Fig. 2 for schizoliteare the averageof the available data. For pectolite, with lessthan one per cent of the calcium-freemanganese and iron end member, Harada (1934) gives the indices of refraction for three analyzed samples (average given in column 3, Table 2). He also gives the indices for three additional samples not analyzed. His values agree very closely with those given in Larsen's Tables. Harada analyzed 1.595 r.604 |.632 1.594 1.603 1.63r 1.595 1.605 r.633 Harada not analyzed 1.595 t.604 1.633 1.596 1.605 1.635 r.594 1.604 7.632 Larsents Tables, 1st ed. 1.595 1.606 1.633(p.118) 1.595 1.606 L(tj[ (p.216) Larsen's Tables, 2nd ed.
Recommended publications
  • The Crystal Structure of Cascandite, Cascsi30s(OH)
    --~~-- American Mineralogist, Volume 67, pages 604-609, 1982 The crystal structure of cascandite, CaScSi30S(OH) MARCELLO MELLINI AND STEFANO MERLINO Istituto di Mineralogia e Petrografia, Universita di Pisa and C.N.R., C.S. Geologia Strutturale e Dinamica dell'Appennino via S. Maria 53, 56100 Pisa, Italy Abstract A new pyroxenoid mineral, cascandite, with the ideal formula CaScSi308(OH), is 9.791(8)A, b = 10.420(9)A, c = 7.076(6)A, a = 98.91(8)°,13 = 102.63(8)°, triclinic with a = 'Y = 84.17(8)°; Z = 4 for the cT unit cell setting. The crystal structure of cascandite is similar to those of pectolite and serandite and is composed of two main structural units: octahedral chains and three-repeat tetrahedral chains. Cascandite, unlike pectolite and serandite, has only two octahedral cations per formula unit, and the octahedral chains are formed by two strands of edge-sharing octahedra occupied by calcium and scandium cations. Cascandite is a member of the hydrous pyroxenoid series, whose peculiarities are related to the presence of intrachain hydrogen bonding. Introduction obtained starting from the atomic coordinates of Cascandite, a new scandium silicate, was found wollastonite based on pI setting, as given by in a geode from the granite of Baveno, Italy, Buerger and Prewitt (1961). However the E statis- together with quartz, orthoclase, albite and jervi- tics indicated a non-centro symmetric structure, and site, another new scandium silicate with ideal for- thus we removed the symmetry constraints on the mula NaScSiz06. The descriptions of these new octahedral cations. We assumed that one of the six minerals are given by Mellini et ale (1982).
    [Show full text]
  • COMPARISON of the CRYSTAL STRUCTURES of BUSTAMITE and WOLLASTONITE Dowarn R
    THE AMERICAN MINERALOGIST, VOL. 48, MAY-JUNE, 1963 COMPARISON OF THE CRYSTAL STRUCTURES OF BUSTAMITE AND WOLLASTONITE Dowarn R. Pneconl,q.Nl C. T. Pnnwrrr,2Massachusetts I nslituteof T echnology, Cambrid ge, M ass achus etts Aesrnecr The structures of bustamite and wollastonite difier principally only in the relative arrangement of chains of tetrahedra. Both structures have a pseudomonoclinic cell, this unit having space group P21/rnin wollastonite and A2/m in bustamite. INrnooucrtoN On the basis of a comparisonof optical properties, Sundius (1931) postulatedthat bustamite (CaMnSizOo)is Mn-rich wollastonite(CaSiOa). Schaller(1938, 1955) also concluded that bustamite had the wollastonite structure becauseof a closerelationship between the optical propertiesof the two minerals. Berman and Gonyer (1937), using rotating-crystal Tasln 1. Syuunrnv ,rNo Ulrrr-cnr-r Dere lon Busr.qurre aun Wolr-lsroNrrB Woliastonite Bustamite Peacor Bustamite Peacor Buerger and Buerger and Prewitt 7.e4A r5.4r2L 7.rc6L b 7.32 7.157 7.r57 7.07 13.824 13.824 q 90"02' 89"29' 90031' R 95"22', 9405r1 9+"35', ^l 103026' I0zo56' t03"52', Space group PI FI A1 photographs, found that their unit cells were similar, and concluded that they wererelated only by solid solution.Buerger, however, (1956) found that the unit cell of bustamite (Table 1) is closelyrelated to, but different from, the cell of wollastonite. He noted that there is a sort of super- structure relation between the two minerals. Liebau et al. (1958) con- firmed Buerger's unit cell and guessedthat the differencein structures is basedonly on a different ordering of chains and cations.
    [Show full text]
  • ON the CRYSTALLOGRAPHY of AXINITE and the NORMAL SETTING of TRICLINIC CRYSTALS MA Pracock, Harvard
    ON THE CRYSTALLOGRAPHY OF AXINITE AND THE NORMAL SETTING OF TRICLINIC CRYSTALS M. A. PracocK, Harvard.(Iniaersity, Cambriilge, Mass. CoNrBNrs Present Status of the Problem of Choosing Morphological Elements. 588 Course of the Present Study 591 Several Steps in Choosing Normal Triclinic Elements. 592 Determination of the SpecificLattice ... ... 592 Choice oI the Represbntative Lattice Cell .. 593 Orientation of the Representative Lattice Cell. 593 Determination of Normal Elements from the External Geometry 597 Determination of Normal Elements from X-Ray Measurements 599 Relation of the New Lattice Elements to those of Cossner & Reicliel... 602 Determination of the Optical Elements 603 Definitive Presentation of the Crystallography of Axinite 605 Some of the Existing Settings of Axinite and the Underlying Principles. 605 Neumann (1825). 605 L6vy (1838)-Des Cloizeaux (1862).. 609 Miller (1852) 609 Vom Rath (1866). 610 Schrauf (1870). 6tL Goldschmidt(1886; 1897-19tJ) .. 612 Dana (1892) 613 Friedel (1926). 613 Propriety of the Normal Setting of Triclinic Crystals. 615 Summary.... 616 Acknowledgments. 617 References...... 618 ExplanationoftheFigures.....'Co-ordinate. .618 Appendix: Transformation of tf. O. H. DoNNev;... 62l PnBsBNr Srarus or.TrrE Pnonr-nu oF CHoosrNG MonpnorocrcAl ELEMENTS The problem of choosing morphological crystallographic elements reachesfull generality in the triclinic system, in which the mutual inter- sectionsof any three non-tautozonal crystal planes may be taken as axes of referencewith the intercepts of any crystal plane cutting all the axes to define the parameters. If the indices of the observed planes are to be small numbers only a moderate number of morphological lattices come under consideration; but since a triclinic lattice may be defined by any one of numerous cells, and any triclinic cell can be oriented in twenty- four different ways, the number of sets of geometrical elements that can be chosen for any one triclinic speciesis still very considerable.
    [Show full text]
  • Marshallsussmanite’ with a Reinstatement of the Name Schizolite Mncamnsi3o8(OH)
    Discreditation of the pyroxenoid mineral name ‘marshallsussmanite’ with a reinstatement of the name schizolite MnCaMnSi3O8(OH) Joel D. Grice1*, Aaron J. Lussier1, Henrik Friis2, Ralph Rowe1, Glenn G. Poirier1 and Zina Fihl3 1Canadian Museum of Nature, PO Box 3443 Stn D, Ottawa Canada, KIP 6P4, Canada 2Natural History Museum, University of Oslo, PO Box 1172, Blindern, 0318 Oslo, Norway 3Natural History Museum of Denmark, Øster Volgade 5-7, 1350 Copenhagen K, Denmark *corresponding author; E-mail: [email protected] ABSTRACT Schizolite, originating from the type locality, Tutop Agtakôrfia, in the Ilímaussaq alkaline complex, Julianehåb district, South Greenland, was initially described by Winther (1901) with additional data being supplied by Bøggild (1903). Recently, a proposal for the new mineral ‘marshallsussmanite’ was submitted to, and approved by, the International Mineralogical Association - Commission on New Minerals, Nomenclature, and Classification (IMA 2013-067) by Origlieri et al. (2013). Results from the detailed examination of two schizolite cotype samples presented here, using single-crystal XRD, powder XRD, and optics, confirms it be equivalent to ‘marshallsussmanite’. Historical precedence sets a priority for discrediting the name ‘marshallsussmanite’ in favour of the original, more-than-a century-old name, This is a 'preproof' accepted article for Mineralogical Magazine. This version may be subject to change during the production process. DOI: 10.1180/mgm.2019.21 schizolite. The two schizolite samples investigated vary slightly in physical and chemical properties but are consistent overall. The prismatic crystals are pale red or pink to brownish. Schizolite is brittle with a splintery aspect. It is biaxial positive, with average optical parameters: α = 1.626 ± 0.003, β = 1.630 ± 0.002, γ = 1.661 ± 0.002, 2Vmeas = 71(4)º and 2Vcalc = 40º; there is no pleochroism.
    [Show full text]
  • Polysynthetically-Twinned Structures of Enstatite and Wollastonite
    Phys Chem Minerals (1984) 10:217-229 PHYSICS CHEMISTRY [[MIHERALS © Springer-Verlag 1984 Polysynthetically-Twinned Structures of Enstatite and Wollastonite Yoshikazu Ohashi * Department of Geology, University of Pennsylvania, Philadelphia, PA 19104, USA Abstract. Crystal structures of clinoenstatite, orthoenstatite, wollastonite polytypes established the structural relation- wollastonite-lT and wollastonite-2M (parawollastonite) ships between polytypes (Morimoto et al. 1960; Burnham were refined to an R factor 3-4 percent level. Molar vol- 1967; Morimoto and Koto 1969; Trojer 1968), and empha- umes at room temperature are 31.270(15), 31.315(8), sized the close relationship of the structure to the model 39.842(5) and 39.901(10) cm3/MSiO3, in the above-men- produced by applying mathematical operations to the basic tioned order, indicating that one-layer polytypes (clinoen- slab. Stacking sequences of new 3T, 4T, 5T, and 7T wollas- statite and wollastonite-lT) are stable at higher pressures tonite polytypes were determined (Henmi etal. 1978; than two-layer polytypes (orthoenstatite and wollastonite- Henmi et al. 1983), although refinements of atomic coordi- 2M). The polytypic relation of the enstatite polytypes can nates of these longer repeat polytypes were impossible. be described by four twinning operations - b glide [1 to Because of the similarities in chemistries and silicate (110), a glide I[ to (001), twofold screw axis [I to a (of linkages, and the existence of polytypes, enstatite and wol- orthoenstatite) and a twofold screw axis I[ to c. For the lastonite are often compared in parallel. Polytypes of ensta- wollastonite polytypes, twinning operations are twofold tite and wollastonite are, however, different in the way twin- screw axis II to b and a glide [I to (010).
    [Show full text]
  • 2Ca2nahsi3o9
    1884 GEOLOGY: BUERGER AND PREWITT PROC. N. A. S. The answer given to my Letter to the Editor' was quite unsatisfactory.2 By going to a doubly connected region containing the plasma' the requirements for nuclear fusion for practical power applications may be met. Other important papers and books make the same mistake of omitting from their equations the term -nmivi* Vv.4 5 1 Slepian, J., Physics of Fluids, 3, 490 (1960). 2 Simon, A., Physics of Fluids, 3, 490 (1960). 3Slepian, J., these PROCEEDINGS, 47, 313-319 (1961). 4 Ibid., 47, 1173-1175 (1961). 5Ibid., 47, 1680-1683 (1961). THE CRYSTAL STRUCTURES OF WOLLASTONITE AND PECTOLITE BY M. J. BUERGER AND C. T. PREWITT CRYSTALLOGRAPHIC LABORATORY, MASSACHUSETTS INSTITUTE OF TECHNOLOGY Communicated October 18, 1961 Wollastonite, CaSiO3, and pectolite, Ca2NaHSi309, belong to the same mineral family. They have the same symmetry, P1, and similar cells: Wollastonite Pectolite a 7.94 A 7.99 A b 7.32A 7.04A c 7.07 A 7.02 A a 900 02' 900 31' , 950 22' 950 11' ly 1030 26' 1020 28' Z 6CaSiO3 2Ca2NaHSi3O9 The structure of pectolite was solved by Buergerl 2 and the structure of wollastonite was solved shortly thereafter by Mamedov and Belov.3 Curiously enough, al- though the two structures have rather similar arrangements, they are not the same, and they are described by different sets of coordinates for corresponding atoms. For two crystals of the same family to have different coordinates suggests that one of the structures might be incorrect. Since pectolite was solved in this labora- tory, we were prejudiced in favor of the correctness of that structure.
    [Show full text]
  • Santaclaraite, a New Calcium-Manganese Silicate
    American Mineralogist, Volume 69, pages 200J06, 1984 Santaclaraite,a new calcium-manganesesilicate hydrate from California RrcHeno C. Eno U.S. Geological Survey, Menlo Park, California 94025 eNo Yosnrrezu Onasnr Department of Geology, University of Pennsylvania Philadelphia, Pennsylvania19104 Abstract Santaclaraite,ideally CaMna[Si5O14(OH)](OH)' H2O, occursas pink and tan veins and massesin Franciscan chert in the Diablo Range, Santa Clara and Stanislaus Counties, Calif. It is associatedwith four unidentified Mn silicates, Mn-howieite, qtrartz, braunite, calcite, rhodochrosite, kutnohorite, barite, harmotome, chalcopyrite, and native cgpper. Santaclaraiteistriclinic,spacegroup Bl,a:15.633(l), b:7.603(l), c = 12.003(l)A,a= 109.71(lf,F = 88.61(1)',y:99.95(l)",Y = 13223Q)41,2= 4. The strongestlines of the X-raypowder pattern are (d,1, hkt):7.044, 100, 010; 3.003, 84, 501;3.152,80,410; 7 .69,63, 200; 3.847, 57, ( I 13,400); 3.524,39, 020. Crystalsare lamellarto prismatic (flattenedon {100}),with good cleavageon {100}and {010};H: 6%; D(calc.) : 3.398g/cm3, D(meas.) : -10.002), 3.31(t0.01);optically biaxial negative, with a : 1.681,F: 1.696,y = 1.708(all 2Vx:83 (tl)". Although chemicallya hydratedrhodonite, santaclaraitedehydrates to Mn-bustamite at about 550'C (in air). Santaclaraiteis a five-tetrahedral-repeatsingle-chain silicate and has structural affinities with rhodonite, nambulite, marsturite, babingtonite, and inesite. Introduction about fifty abandonedmanganese mines located in Santa The new mineral santaclaraitewas discovered in 1975 Clara, Alameda, San Joaquin, and Stanislaus Counties in an abandonedmanganese mine in the Diablo Range in near their common junction.
    [Show full text]
  • STRUCTURE DETERMINATION of VISTEPITE Snmnab2siloro(Ohl2
    1283 Thz Canadian Mineralogist Vol. 35, pp. 1283-1292(1997) STRUCTUREDETERMINATION OF VISTEPITE SnMnaB2SilOro(OHl2 : ISOTYP|SM WITHBUSTAMITE, REVISED CRYSTALLOGRAPHIC DATA AND COMPOSITION JR.I TTYBLERI,VAcLAv PETAICEK' eNo KAREL JUREKI Institute of Physics, Aca-demy of Sciences ofthe CTech Republic, Cukrovantickt 10, 162 53 Praha 6, Czech Republic ROMANSKALA Geological Suwey, GeologicM 6, 152 00 Praha 5, Czech Republic TVANACISAROVA Departmznt of Inorganic Chemisny, Facalty of Science of the Charles University, Hlavova 2030, 128 43 Praha 2, CaechRepublic Arsrnacr vistepite,idealcompositionsnMnaB2si4ol6(oH)2,triclinic,pI,a6.973(2),b7.365e),c7.665e)4,a89.94e),p62.94(2), y76.88(2)", y339.05(10) A3,Z=l,occursintherhodoniteoredepositonthenorthernflankofthelnvl'chek6euntsinchain. Tien-Shan, in southeasternKirghizia. It forms tiny pale or-g"-y"[o* acicular crystals. A new electron-microprobe analysis yielded (in wt.7o): Sn 13.70,Mn 27.91, Ca0.7l, Fe 0.28, Si 15.21,B 2.50, Al 0.n, O 36.64.The crystalsare rwinned, wirh [100i as twin axis and (010) as composition plane. The monoclinic unit-cell originally described by Pautov et aI. (1992) corresponds to the F-centered cell of the twin lattice. In the structure analysis of cotype material, we used special procedures for tle refinement of the strucore involving twins. The refilement converged to R = 4.l5%a for 1244 observed reflections of both twin individuals (R = 3.34Vofor 968 observed reflections of one individual). One Sn and two independent Mn atoms are octahedrally coordinated. One B and two Si atoms occupy tetrahedrally coordinated positions. Corner-sharing tetrahedra form a dreier chun pamllel to [100].
    [Show full text]
  • The Microscopic Determination of the Nonopaque Minerals
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 679 THE MICROSCOPIC DETERMINATION OF THE NONOPAQUE MINERALS BY ESPER S. LARSEN WASHINGTON GOVERNMENT PRINTING OFFICE 1921 CONTENTS. CHAPTER I. Introduction.................................................. 5 The immersion method of identifying minerals........................... 5 New data............................................................. 5 Need of further data.................................................... 6 Advantages of the immersion method.................................... 6 Other suggested uses for the method.................................... 7 Work and acknowledgments............................................. 7 CHAPTER II. Methods of determining the optical constants of minerals ....... 9 The chief optical constants and their interrelations....................... 9 Measurement of indices of refraction.................................... 12 The embedding method............................................ 12 The method of oblique illumination............................. 13 The method of central illumination.............................. 14 Immersion media.................................................. 14 General features............................................... 14 Piperine and iodides............................................ 16 Sulphur-selenium melts....................................... 38 Selenium and arsenic selenide melts........................... 20 Methods of standardizing
    [Show full text]
  • The Microscopic Determination of the Nonopaque Minerals
    PLEASE DO NOT DESTROY OR THROW AWAY THIS PUBLICATION. If you haw no further use for it, write to the Geological Survey at Washington and ask for a frank to return it UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Bulletin 848 THE MICROSCOPIC DETERMINATION OF THE NONOPAQUE MINERALS SECOND EDITION BY ESPER S. LARSEN AND HARRY HERMAN UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1934 For sale by the Superintendent of Documents, Washington, D. C. ------ Price 20 cents CONTENTS " '*" ^ t**v Page 1'f) OHAPTER 1. Introduction_______-____-----------_---------.-----_-_ 1 The immersion method of identifying minerals.______--___-_-___-_ 1 New data._______-___________-__-_-________-----_--_-_---_-_- 2 Need of further data.________------------------------------_-- 2 ; Advantages of the immersion method..___-__-_-__-_---__________ 2 Other suggested uses for the method___________________________ 3 Work and acknowledgments.___________-_____-_---__-__-___-___ 3 CHAPTER 2. Methods of determining the optical constants of minerals. __ 5 The chief optical constants and their interrelations________________ 5 Measurement of-indices of refraction____---____-__-_--_--_-_____ 8 The embedding method..___--------_-___-_-_-__--__-______ 8 The method of oblique illumination.___._-_-______-_____ 9 The method of central illumination______________________ 10 Dispersion method.----------------------.------------ 10 : Immersion media______--_---_-----_---------------------- 11 General features.--.-.--------------------------------
    [Show full text]
  • Discreditation of the Pyroxenoid Mineral Name ‘Marshallsussmanite’ with a Reinstatement of the Name Schizolite, Nacamnsi3o8(OH)
    Mineralogical Magazine (2019), 83, 473–478 doi:10.1180/mgm.2019.21 Article Discreditation of the pyroxenoid mineral name ‘marshallsussmanite’ with a reinstatement of the name schizolite, NaCaMnSi3O8(OH) Joel D. Grice1*, Aaron J. Lussier1, Henrik Friis2, Ralph Rowe1, Glenn G. Poirier1 and Zina Fihl3 1Canadian Museum of Nature, PO Box 3443 Stn D, Ottawa Canada, KIP 6P4, Canada; 2Natural History Museum, University of Oslo, PO Box 1172, Blindern, 0318 Oslo, Norway; and 3Natural History Museum of Denmark, Øster Volgade 5-7, 1350 Copenhagen K, Denmark Abstract Schizolite, originating from the type locality, Tutop Agtakôrfia, in the Ilímaussaq alkaline complex, Julianehåb district, South Greenland, was described initially by Winther (1901) with additional data being supplied by Bøggild (1903). Recently, a proposal for the new min- eral ‘marshallsussmanite’ was submitted to, and approved by, the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2013-067) by Origlieri et al.(2013). Results from the detailed examination of two schizolite cotype samples presented here, using single-crystal and powder X-ray diffraction, and optical properties, confirms it to be equivalent to ‘marshallsussmanite’. Historical precedence sets a priority for discrediting the name ‘marshallsussmanite’ in favour of the original, more-than-a century-old name, schizolite. The two schizolite samples investigated vary slightly in physical and chemical properties but are consistent overall. The prismatic crystals are pale red or pink to brownish. Schizolite is brittle with a splintery aspect. It is biaxial α β γ (+), with average optical parameters: = 1.626 ± 0.003, = 1.630 ± 0.002, = 1.661 ± 0.002, 2Vmeas = 71(4)° and 2Vcalc = 40°; there is no pleochroism.
    [Show full text]
  • Mineralogy Chkalovite
    Comptes Rendus (Doklady) de l'Aeademie des Sciences de I'URSS' 1939. Volume XXII, ;M l) MINERALOGY CHKALOVITE By V. I. GERASIMOVSKY (Communicated by A. E. Fersman, Mem1;Jer of the Academy, 1.1.1939) In the summer of 1936, in the south-eastern partof the Lovozero alkaline massifs (Punkaruayv mountain), situated in the central part of the Kola peninsula, the author found a mineral, by its .external appearance somewhat resembling natrolite, though differing from the latter by '3. less distinct clea­ vage. This circumstance prompted the author to take several samples COn­ t,aining the discovered mineral (or the purpose of investigation. When the mineral was studied, it became evident that by its properties it could not be identified with minerals already known, and was therefore named chka­ lovite, in honour of the great aviator of our times, Valery Pavlovich Chkalov who was the first to accomplish in 1936 the non-stop flight from Moscow, via north pole, to the United States of America. Ph y sic a I Pro per tie s. Chkalovite has not been encountered in crystalline form. It occurs in the form of grains, with dimensions 5X4X3, 7x4 X3 cm. The mineral is of white colour. Lustre vitreous. Semi-transpa­ rent. Cleavage{ as examined with the microscope, occurs in one direction, is of fair quality, and usually observed with difficulty. In one direction parting plane poorly expressed. Fracture from uneven to conchoidaL Hard­ ness"-'6. Specific gravity determined by a pycnometer equal to 2.662. In the blowpipe flame easily fused to a transparent colourless globule.
    [Show full text]