Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned American Mineralogist, Volume 67, pages 604409, 1982 The crystal structure of cascandite,CaScSi3Os(OH) Mancsrro MeLr-rNr AND STEFANoMERLTNo Istituto di Mineralogia e Petrografia, Universitd di Pisa and C.N.R., C.S. Geologia Strutturale e Dinamica dell'Appennino via S. Maria 53, 56100Pisa, Italy Abstract A new pyroxenoid mineral, cascandite,with the ideal formula cascSi3os(oH), is = j.076(0A, triclinic with a 9.791(3)4,b: fi.a2}e)A, c = a : 98.91(8f,F: 1O2.63(8).,y = 84.17(8)";Z : 4 for the CT unit cell setting. The crystal structure of cascanditeis similar to those of pectolite and seranditeand is composedof two main structural units: octahedral chains and three-repeattetrahedral chains. Cascandite,unlike pectolite and serandite,has only two octahedralcations per formula unit, and the octahedralchains are formed by two strands of edge-sharingoctahedra occupied by calcium and scandium cations. Cascanditeis a member of the hydrous pyroxenoid series,whose peculiaritiesare related to the presenceof intrachain hydrogen bonding. Introduction obtained starting from the atomic coordinates of Cascandite, a new scandium silicate, was found wollastonite based on PT setting, as given by in a geode from the granite of Baveno, Italy, Buerger and Prewitt (1961).However the E statis- together with quartz, orthoclase, albite and jervi- tics indicated a non-centrosymmetricstructure, and site, another new scandium silicate with ideal for- thus we removed the symmetry constraints on the mula NaScSi2O6.The descriptionsof these new octahedral cations. We assumedthat one of the six minerals are given by Mellini et al. (1982). The octahedral sites in the unit cell of the trial structure chemical, physical and crystallographic properties was vacant and the site that had been centrosymme- indicate that cascandite is a three-repeat pyroxe- trically related was occupied by a scandiumcation, noid. as suggested by the preliminary analytical data. The present structural study was undertaken to Four refinement cycles were calculated, each fol- give a better description of the new scandium lowed by a Fourier synthesis.The behavior of the mineral and to acquire a deeper insight into the thermal parameters and the heights of the various crystal chemistry of pyroxenoids. peaks in the Fourier maps strongly indicated that one more octahedral site had to be considered Structure determination vacant and that two silicon atoms had to be shifted A small crystal of cascandite was selected and from their positions in the trial structure. The new examined first by X-ray film methods. Triclinic cell structural arrangementsmoothly refined to an R, : parameters(Table 1) were obtainedby least squares > | lF"l - lF.l lDlF"l: 0.08. refinement using 25 reflections centeredon a Philips We then realized that the arrangement was in- PW 1100single crystal diffractometer with graphite deed a centrosymmetric one, closely related to that monochromatized MoKa radiation. A total of 1526 in minerals of the pectolite-serandite series. The non-zero reflections were measuredfrom 3 to 30' 0, false indication of the absenceof a symmetry center using a 0120scan and scan width 1.20". The data most probably resulted from not having taken into were corrected for Lorentz and polarization fac- account the "unobserved" reflections. The refine- tors. No absorptibncorrection was made because ment was then continued in the PT spacegroup. The of the small dimensions of the crystal. introduction of anisotropic thermal parametersfor Only qualitative energy dispersive analytical data all atomsled to Rr:0.042 and R2 : (2w I lFot- zDw were available when the structure determination lF.l | lFol2)1/2: 0.046, where u/ was the recip- was undertaken. The solution of the structure was rocal of the variance on F" as estimated from 0003-004)v82l0506-o6M$02.00 6& MELLINI AND MERLINO: CASCANDITE Table 1. Unit cell parameters of cascandite, serandite and these different topologies appearin the structures of schizolite wollastonite, bustamite and minerals of the pecto- + lite-serandite series. With regard to the general Cascand i te Serandite * schizolite cascSi,0U (0R) {nrNaSirOU(Ofl) Ca}{nNaSi308(OH) topological features, cascanditeis closely related to the pectolite-seranditegroup. This is clearly shown a 7.503(6),i s.zsr (o) i 9.909(9) A 10.o59(4) A by the comparison of Figure I in the present paper b 1.016(6) 10 42o(9) L0.661(9' 10.88o(8) with Figure 3 of Ohashi and Finger (1978). c 6.777(6) 1.o76(6) 6.913(4) 6.978(6) The bond lengths in the various tetrahedral and o 92.23(8)' 98.91(8) " 99.10(6)" 98.84(7)' octahedral polyhedra, together with their standard 0 93.s8(8) to2.63 (8) 1OO.51(6) 1O0.58(5) deviations, are given in Table 4. Two longer Ml- Y 1o4.49(8) 84. 17(8) 82,49 (7) 82.64(5) OC3 and M1-OC3*distances are reportedin brack- Space group Pl ct c1 c1 ets and were taken into account in calculating the valence bond balance. The mean bond lengths in * Values for serandite and schizolite are fron ohashi and FinBet Ml and M2 octahedra are given also in Table 5 (L978). together with the mean bond lengths in Ml, M2 and (Ohashi and counting statistics. Observed and calculated struc- A sites in schizolite and serandite the cation ture factors are given in Table 2.1 Finger, 1978).The same table compares present refinement with The entire refinement was carried out in the occupancies used in the Finger (1978) for conventional PT setting of the unit cell, whereasthe those obtained by Ohashi and site, occupied by crystal structure will be described and discussed schizolite and serandite. The M2 than the with reference to the C-centered cell first intro- scandium cations, is definitely smaller pectolite-schizo- duced by Narita (1973;quoted by Morimoto,1974) corresponding site in the entire difference in and used also by Ohashi and Finger (1978)in their lite-serandite series. Furthermore the M2 sites results discussion of the three-repeat pyroxenoid crystal size between the octahedralMl and The tetrahedral chemistry. Table 1 compares the C-centered unit in distortion of tetrahedral chains. of three tetra- cell parameters in this setting with the correspond- triplet, namely the C-shapedcluster arrangement ing parameters given by Ohashi and Finger (1978) hedra which provides a nearly square pectolite, deformed in for the seranditeand schizolite specimensstudied in of oxygens in is slightly arrangement their paper. The transformation matrix from the cascandite towards a diamond-shaped Moreover the A site, which in the conventionalPT cell to the CT cell is [101/10T/010].of oxygens. group is occupiedby The final atomic positional and thermal parameters pectolite-serandite of minerals and in this for cascanditein the CT setting are given in Table 3. sodium, appears vacant in cascandite respect cascandite is unique in the entire three- Description and discussionof the structure repeat pyroxenoid family. analysis clearly indi- The crystal structure of cascandite (Fig. 1) may The results of the structure for cascan- be described in terms of two main structural units: cate the ideal formula CaScSi3Oa(OH) presence the hydrogen atom, which octahedral double chains, formed by two strandsof dite. The of by the close relationship edge-sharing octahedra, and tetrahedral single was strongly suggested and the minerals of the pecto- chains with a repeat period of three tetrahedra. between cascandite was confirmed by the results of Each octahedral chain is connected to six tetrahe- lite-serandite series, (Table 6) and ascertained dral chains by corner sharing, whereas each tetra- the valence bond balance Apart from the hedral chain is connected to three octachedral by a difference Fourier synthesis. to the hydrogen atom, two chains. peak corresponding peaks found in the difference map' Cascanditeis thus classifiedwith the three-repeat additional were position (M2 pyroxenoids. It is well known that three-repeatpy- one corresponding to the scandium to the position of the sodium roxenoids develop three distinct stacking schemes site) and the other (A pectolite, schizolite and seran- of tetrahedral and octahedral structural layers: cations site) in dite. The chemical analysis (Mellini et al', 1982) showed the presence of significant quantities of I Document AM-82-200 To receive a copy of Table 2, order manganeseand iron and indicated the presenceof Mineralogical Society of America, from the Business Office, the chemical 2000 Florida Avenue, N.W., Washington, D.C. 20009. Please more than two octahedral cations in remit $1.00 in advance for the microfiche. formula of cascandite.On the basisof thesechemi- 606 MELLINI AND MERLINO: CASCANDITE -(h2 Table 3. Atomic positionalcoordinatesand anisotropic temperaturefactors (Xl0a) in the form: exp Ft * k2 hz + 12Be + zhk pn + 2hl BB + zkl fur).The coordinatesof the H and A sites were obtained from the difference Fourier synthesis. 9tt -22 9tz -23 JJ IJ Ml 0.Oo27(1) o.6629(L) 0.9128(1) 37(1) 24(r) 36(2) 3(1) 13(r) 1o(1) -o.0o19(1) t42 o.642r(r) 0.4062(1) 10(1) 13(1) 10(1) -4(1) o(1) 4(1) si1 0.2163(1) 0.0402(1) o.0886(2) 19(1) 2o(1) 27(2) -r (1) 4(1) 8(1) si2 o.2Lo2(r) o.0666(1) o- 5229 (2) 18(1) 18(1) 26(2) -2(1) 3(1) 10(1) si3 0.2o5s(1) o.8366(1) o.7399 (2) 20(1) 18(1) 28(2) -6(1) 2(7) 6(1) 0A1 o.1160(3) o.4490(3) o.8729 (s) le (3) 26(3) 42(6) -4(2) 1(3) 10(3) oA2 0.1176(3) o.4462(3) o.4203(5) 18(3) 25(3) 40(6) -1()\ 2(4) 8(3) (4) oA3 o.r27 9 o.6930(4) o.24L6(s) 24(3) 38(3) 47(6) -6 (3) 3(4) 13(4) - oBl o.L295(4) o.1s68(3) o.0262(5) 46(4) 2s<3) s2(7) 10(3) 16(4) 19(4) oB2 o.r479(4) o.
Recommended publications
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Crystal Structure of Protoamphibole
    Mineral. Soc. Amer. Spec. Pap. 2, 101-109 (1969). CRYSTAL STRUCTURE OF PROTOAMPHIBOLE G. V. GIBBS Department of Geological Sciences, Virginia Polytechnic Institute Blacksburg, Virginia 24061 ABSTRACT The structure proposed for protoamphibole (Gibbs et al., 1960) has been verified and refined by three-dimensional Fourier and least-squares methods using data collected with a Weissenberg single crystal counter-diffractometer. The symmetry is Pnmn with a = 9.330, b = 17.879 and c = 5.288 A and the unit-cell content is 2(Nao.03Li",oMg, ••) (Si r. ,.Alo.040,1.71) (OHo.15F,.14). The structure consists of layers of interlocking chains of fluorine-centered hexagonal rings of SiO. groups. The layers are bound together by Mg.Li cations which are coordinated between the chains, the coordination being effected by a ~(cI3) stagger between adjacent layers. An additional stagger of ~(-cI3) in the sequence along a gives an overall displacement of zero between alternate layers, accounting for the 9.33 A a cell edge and the orthogonal geometry. The direction of stagger can be related to the placement of the cations in the octahedral layer. The M -cation coordination groups are nearly regular octahedra with the exception of M(4) which is similar to Mg(l) in protoenstatite. The M(3), M(1) and M(2) sites are occupied principally by Mg. In addition to being randomly distributed around the cavity walls of the A-site, Li ions are also segregated in about 25% of the M(4) sites, the others being occupied by Mg ions. The individual Si-O bond distances in the chains are consistent with Cruickshank's d-p -n: bonding model: Si-O(non- bridging) bonds [Si(1)-O(1) = 1.592; Si(2)-0(4) = 1.592; Si(2)-0(2) = 1.605 AJ are significantly shorter, on the average, than the Si-O(bridging) bonds [Si(1)-0(5) = 1.616; Si(1)-0(6) = 1.623; Si(1)-0(7) = 1.624; Si(2)-0(5) = 1.626; Si(2)-0(6) = 1.655 AJ.
    [Show full text]
  • The Crystal Structure of Cascandite, Cascsi30s(OH)
    --~~-- American Mineralogist, Volume 67, pages 604-609, 1982 The crystal structure of cascandite, CaScSi30S(OH) MARCELLO MELLINI AND STEFANO MERLINO Istituto di Mineralogia e Petrografia, Universita di Pisa and C.N.R., C.S. Geologia Strutturale e Dinamica dell'Appennino via S. Maria 53, 56100 Pisa, Italy Abstract A new pyroxenoid mineral, cascandite, with the ideal formula CaScSi308(OH), is 9.791(8)A, b = 10.420(9)A, c = 7.076(6)A, a = 98.91(8)°,13 = 102.63(8)°, triclinic with a = 'Y = 84.17(8)°; Z = 4 for the cT unit cell setting. The crystal structure of cascandite is similar to those of pectolite and serandite and is composed of two main structural units: octahedral chains and three-repeat tetrahedral chains. Cascandite, unlike pectolite and serandite, has only two octahedral cations per formula unit, and the octahedral chains are formed by two strands of edge-sharing octahedra occupied by calcium and scandium cations. Cascandite is a member of the hydrous pyroxenoid series, whose peculiarities are related to the presence of intrachain hydrogen bonding. Introduction obtained starting from the atomic coordinates of Cascandite, a new scandium silicate, was found wollastonite based on pI setting, as given by in a geode from the granite of Baveno, Italy, Buerger and Prewitt (1961). However the E statis- together with quartz, orthoclase, albite and jervi- tics indicated a non-centro symmetric structure, and site, another new scandium silicate with ideal for- thus we removed the symmetry constraints on the mula NaScSiz06. The descriptions of these new octahedral cations. We assumed that one of the six minerals are given by Mellini et ale (1982).
    [Show full text]
  • Siu\,I-Bearing Alteration Product of Pectolite M
    44 THE AMERICAN MINENAI,OGIST A NEW OCCURRENCE OF STEVENSITE, A MAGNE- SIU\,I-BEARING ALTERATION PRODUCT OF PECTOLITE M. L. CLENN Erie, Pennsglaonia IN rnn old Hartshorn qua,rry, in Springfield Township, Essex County, New Jersey, Mr. Louis Reamer of Short Hills, N. J., discovered a single vein of a peculiar mineral, called by the quarrymen "magnesium" (:talc?) and submitted samples of it to the writer for identification. It proved to be essentially identical with the hitherto imperfectly known steuensite,the nature of which is discussed in this article. The quarry lies some 16 miles southwest from the better known mineral localities around Paterson, but is in the same rock, the basalt of First Watchung Mountain. The rock is, if anything, more altered than that at Paterson, and the mineralogical association is some- what different from that at the latter place. The most unusual feature is the abundance of a secondary feldspar, in aggregates of sheaflike and " cocks-cotlb " crystals, whieh shows the op- tical properties of anorthoclase.I There are also t.rumeroussmall quartz crystals, usually iron-stained; drusy prehnite in small pockets; many calcite crystals; a little pectolite and datolite; and several zeolites. Of the Iatter natrolite, stilbite and heu- landite were the only ones noted by the writer, no trace of apo- phyllite, chabazite, or laumontite, so common at other similar localities, being observed. Some of the pectolite found at the quarry is of the usual type, silky radiations of fine needles, but the greater part of it shows marked evidenee of alteration, the color becoming more and more pinkish and the luster more and more waxy toward the outer ends of the radiations.
    [Show full text]
  • COMPARISON of the CRYSTAL STRUCTURES of BUSTAMITE and WOLLASTONITE Dowarn R
    THE AMERICAN MINERALOGIST, VOL. 48, MAY-JUNE, 1963 COMPARISON OF THE CRYSTAL STRUCTURES OF BUSTAMITE AND WOLLASTONITE Dowarn R. Pneconl,q.Nl C. T. Pnnwrrr,2Massachusetts I nslituteof T echnology, Cambrid ge, M ass achus etts Aesrnecr The structures of bustamite and wollastonite difier principally only in the relative arrangement of chains of tetrahedra. Both structures have a pseudomonoclinic cell, this unit having space group P21/rnin wollastonite and A2/m in bustamite. INrnooucrtoN On the basis of a comparisonof optical properties, Sundius (1931) postulatedthat bustamite (CaMnSizOo)is Mn-rich wollastonite(CaSiOa). Schaller(1938, 1955) also concluded that bustamite had the wollastonite structure becauseof a closerelationship between the optical propertiesof the two minerals. Berman and Gonyer (1937), using rotating-crystal Tasln 1. Syuunrnv ,rNo Ulrrr-cnr-r Dere lon Busr.qurre aun Wolr-lsroNrrB Woliastonite Bustamite Peacor Bustamite Peacor Buerger and Buerger and Prewitt 7.e4A r5.4r2L 7.rc6L b 7.32 7.157 7.r57 7.07 13.824 13.824 q 90"02' 89"29' 90031' R 95"22', 9405r1 9+"35', ^l 103026' I0zo56' t03"52', Space group PI FI A1 photographs, found that their unit cells were similar, and concluded that they wererelated only by solid solution.Buerger, however, (1956) found that the unit cell of bustamite (Table 1) is closelyrelated to, but different from, the cell of wollastonite. He noted that there is a sort of super- structure relation between the two minerals. Liebau et al. (1958) con- firmed Buerger's unit cell and guessedthat the differencein structures is basedonly on a different ordering of chains and cations.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • ON the CRYSTALLOGRAPHY of AXINITE and the NORMAL SETTING of TRICLINIC CRYSTALS MA Pracock, Harvard
    ON THE CRYSTALLOGRAPHY OF AXINITE AND THE NORMAL SETTING OF TRICLINIC CRYSTALS M. A. PracocK, Harvard.(Iniaersity, Cambriilge, Mass. CoNrBNrs Present Status of the Problem of Choosing Morphological Elements. 588 Course of the Present Study 591 Several Steps in Choosing Normal Triclinic Elements. 592 Determination of the SpecificLattice ... ... 592 Choice oI the Represbntative Lattice Cell .. 593 Orientation of the Representative Lattice Cell. 593 Determination of Normal Elements from the External Geometry 597 Determination of Normal Elements from X-Ray Measurements 599 Relation of the New Lattice Elements to those of Cossner & Reicliel... 602 Determination of the Optical Elements 603 Definitive Presentation of the Crystallography of Axinite 605 Some of the Existing Settings of Axinite and the Underlying Principles. 605 Neumann (1825). 605 L6vy (1838)-Des Cloizeaux (1862).. 609 Miller (1852) 609 Vom Rath (1866). 610 Schrauf (1870). 6tL Goldschmidt(1886; 1897-19tJ) .. 612 Dana (1892) 613 Friedel (1926). 613 Propriety of the Normal Setting of Triclinic Crystals. 615 Summary.... 616 Acknowledgments. 617 References...... 618 ExplanationoftheFigures.....'Co-ordinate. .618 Appendix: Transformation of tf. O. H. DoNNev;... 62l PnBsBNr Srarus or.TrrE Pnonr-nu oF CHoosrNG MonpnorocrcAl ELEMENTS The problem of choosing morphological crystallographic elements reachesfull generality in the triclinic system, in which the mutual inter- sectionsof any three non-tautozonal crystal planes may be taken as axes of referencewith the intercepts of any crystal plane cutting all the axes to define the parameters. If the indices of the observed planes are to be small numbers only a moderate number of morphological lattices come under consideration; but since a triclinic lattice may be defined by any one of numerous cells, and any triclinic cell can be oriented in twenty- four different ways, the number of sets of geometrical elements that can be chosen for any one triclinic speciesis still very considerable.
    [Show full text]
  • Identification Tables for Common Minerals in Thin Section
    Identification Tables for Common Minerals in Thin Section These tables provide a concise summary of the properties of a range of common minerals. Within the tables, minerals are arranged by colour so as to help with identification. If a mineral commonly has a range of colours, it will appear once for each colour. To identify an unknown mineral, start by answering the following questions: (1) What colour is the mineral? (2) What is the relief of the mineral? (3) Do you think you are looking at an igneous, metamorphic or sedimentary rock? Go to the chart, and scan the properties. Within each colour group, minerals are arranged in order of increasing refractive index (which more or less corresponds to relief). This should at once limit you to only a few minerals. By looking at the chart, see which properties might help you distinguish between the possibilities. Then, look at the mineral again, and check these further details. Notes: (i) Name: names listed here may be strict mineral names (e.g., andalusite), or group names (e.g., chlorite), or distinctive variety names (e.g., titanian augite). These tables contain a personal selection of some of the more common minerals. Remember that there are nearly 4000 minerals, although 95% of these are rare or very rare. The minerals in here probably make up 95% of medium and coarse-grained rocks in the crust. (ii) IMS: this gives a simple assessment of whether the mineral is common in igneous (I), metamorphic (M) or sedimentary (S) rocks. These are not infallible guides - in particular many igneous and metamorphic minerals can occur occasionally in sediments.
    [Show full text]
  • Marshallsussmanite’ with a Reinstatement of the Name Schizolite Mncamnsi3o8(OH)
    Discreditation of the pyroxenoid mineral name ‘marshallsussmanite’ with a reinstatement of the name schizolite MnCaMnSi3O8(OH) Joel D. Grice1*, Aaron J. Lussier1, Henrik Friis2, Ralph Rowe1, Glenn G. Poirier1 and Zina Fihl3 1Canadian Museum of Nature, PO Box 3443 Stn D, Ottawa Canada, KIP 6P4, Canada 2Natural History Museum, University of Oslo, PO Box 1172, Blindern, 0318 Oslo, Norway 3Natural History Museum of Denmark, Øster Volgade 5-7, 1350 Copenhagen K, Denmark *corresponding author; E-mail: [email protected] ABSTRACT Schizolite, originating from the type locality, Tutop Agtakôrfia, in the Ilímaussaq alkaline complex, Julianehåb district, South Greenland, was initially described by Winther (1901) with additional data being supplied by Bøggild (1903). Recently, a proposal for the new mineral ‘marshallsussmanite’ was submitted to, and approved by, the International Mineralogical Association - Commission on New Minerals, Nomenclature, and Classification (IMA 2013-067) by Origlieri et al. (2013). Results from the detailed examination of two schizolite cotype samples presented here, using single-crystal XRD, powder XRD, and optics, confirms it be equivalent to ‘marshallsussmanite’. Historical precedence sets a priority for discrediting the name ‘marshallsussmanite’ in favour of the original, more-than-a century-old name, This is a 'preproof' accepted article for Mineralogical Magazine. This version may be subject to change during the production process. DOI: 10.1180/mgm.2019.21 schizolite. The two schizolite samples investigated vary slightly in physical and chemical properties but are consistent overall. The prismatic crystals are pale red or pink to brownish. Schizolite is brittle with a splintery aspect. It is biaxial positive, with average optical parameters: α = 1.626 ± 0.003, β = 1.630 ± 0.002, γ = 1.661 ± 0.002, 2Vmeas = 71(4)º and 2Vcalc = 40º; there is no pleochroism.
    [Show full text]
  • Polysynthetically-Twinned Structures of Enstatite and Wollastonite
    Phys Chem Minerals (1984) 10:217-229 PHYSICS CHEMISTRY [[MIHERALS © Springer-Verlag 1984 Polysynthetically-Twinned Structures of Enstatite and Wollastonite Yoshikazu Ohashi * Department of Geology, University of Pennsylvania, Philadelphia, PA 19104, USA Abstract. Crystal structures of clinoenstatite, orthoenstatite, wollastonite polytypes established the structural relation- wollastonite-lT and wollastonite-2M (parawollastonite) ships between polytypes (Morimoto et al. 1960; Burnham were refined to an R factor 3-4 percent level. Molar vol- 1967; Morimoto and Koto 1969; Trojer 1968), and empha- umes at room temperature are 31.270(15), 31.315(8), sized the close relationship of the structure to the model 39.842(5) and 39.901(10) cm3/MSiO3, in the above-men- produced by applying mathematical operations to the basic tioned order, indicating that one-layer polytypes (clinoen- slab. Stacking sequences of new 3T, 4T, 5T, and 7T wollas- statite and wollastonite-lT) are stable at higher pressures tonite polytypes were determined (Henmi etal. 1978; than two-layer polytypes (orthoenstatite and wollastonite- Henmi et al. 1983), although refinements of atomic coordi- 2M). The polytypic relation of the enstatite polytypes can nates of these longer repeat polytypes were impossible. be described by four twinning operations - b glide [1 to Because of the similarities in chemistries and silicate (110), a glide I[ to (001), twofold screw axis [I to a (of linkages, and the existence of polytypes, enstatite and wol- orthoenstatite) and a twofold screw axis I[ to c. For the lastonite are often compared in parallel. Polytypes of ensta- wollastonite polytypes, twinning operations are twofold tite and wollastonite are, however, different in the way twin- screw axis II to b and a glide [I to (010).
    [Show full text]
  • The Pectolite Skarn from Międzyrzecze (Bielsko-Biała Region) in the Polish Carpathians
    Acta Mineralogica-Petrographica, Abstract Series 1, Szeged, 2003 THE PECTOLITE SKARN FROM MIĘDZYRZECZE (BIELSKO-BIAŁA REGION) IN THE POLISH CARPATHIANS KARWOWSKI, Ł. & WŁODYKA, R. Department of Geochemistry and Petrology, University of Silesia, ul. Będzińska 60, PL-41-200 Sosnowiec, Poland. E-mail: [email protected] In the western part of the Outer Polish Carpathians, be- There are two genetic types of pectolite: open-space fill- tween Bielsko-Biała and Cieszyn, the occurrence of ing and metasomatic. Pectolite, like datolite, can crystallize teschenite sills and related rocks (diabase, picrite and lam- only from solutions with very low concentrations of CO2, i.e. prophyre) were observed. They are widely distributed in the in zones of reduced pressure, where degassing of CO2 takes flysch sediments of the Cieszyn Subnappe (Cieszyn beds, place. In the veins intersecting the skarn body pectolite forms Upper Kimmeridgian to Hauterivian). irregular massive aggregates of radial or fan-arranged crys- In Międzyrzecze Górne near Bielsko-Biała, close to the tals with size between a few millimeters and 12 cm. Large, top of the picrite sill, the presence of a pectolite skarn was up to 6 cm long, fibrous (with diameter below 0.01 mm) or stated. The pectolite endoskarn forms a lenticular body that is needle-shaped (up to 0.03 mm) crystals are white and silky. up to 2 m thick, 5 m wide and 12 m long. Abundant carbon- The second, metasomatic type of pectolite forms the endo- ate veins (up to 30 cm thick) intersect the central part of the skarn body. The formula of the fibrous pectolite from the skarn filling the tectonic fissures and cracks.
    [Show full text]
  • 2Ca2nahsi3o9
    1884 GEOLOGY: BUERGER AND PREWITT PROC. N. A. S. The answer given to my Letter to the Editor' was quite unsatisfactory.2 By going to a doubly connected region containing the plasma' the requirements for nuclear fusion for practical power applications may be met. Other important papers and books make the same mistake of omitting from their equations the term -nmivi* Vv.4 5 1 Slepian, J., Physics of Fluids, 3, 490 (1960). 2 Simon, A., Physics of Fluids, 3, 490 (1960). 3Slepian, J., these PROCEEDINGS, 47, 313-319 (1961). 4 Ibid., 47, 1173-1175 (1961). 5Ibid., 47, 1680-1683 (1961). THE CRYSTAL STRUCTURES OF WOLLASTONITE AND PECTOLITE BY M. J. BUERGER AND C. T. PREWITT CRYSTALLOGRAPHIC LABORATORY, MASSACHUSETTS INSTITUTE OF TECHNOLOGY Communicated October 18, 1961 Wollastonite, CaSiO3, and pectolite, Ca2NaHSi309, belong to the same mineral family. They have the same symmetry, P1, and similar cells: Wollastonite Pectolite a 7.94 A 7.99 A b 7.32A 7.04A c 7.07 A 7.02 A a 900 02' 900 31' , 950 22' 950 11' ly 1030 26' 1020 28' Z 6CaSiO3 2Ca2NaHSi3O9 The structure of pectolite was solved by Buergerl 2 and the structure of wollastonite was solved shortly thereafter by Mamedov and Belov.3 Curiously enough, al- though the two structures have rather similar arrangements, they are not the same, and they are described by different sets of coordinates for corresponding atoms. For two crystals of the same family to have different coordinates suggests that one of the structures might be incorrect. Since pectolite was solved in this labora- tory, we were prejudiced in favor of the correctness of that structure.
    [Show full text]