Catalyst in Basic Oleochemicals

Total Page:16

File Type:pdf, Size:1020Kb

Catalyst in Basic Oleochemicals View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diponegoro University Institutional Repository Bulletin of Chemical Reaction Engineering & Catalysis, 2(2-3), 2007, 22-31 Catalyst in Basic Oleochemicals Eva Suyenty, Herlina Sentosa, Mariani Agustine, Sandy Anwar, Abun Lie, and Erwin Sutanto * Research and Development Department, PT. Ecogreen Oleochemicals Jln. Pelabuhan Kav 1, Kabil, Batam 29435, Telp/Fax: (0778)711374 Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia Abstract Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty ac- ids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydro- genation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methy- late is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based poly- styrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 CREC UNDIP. All rights reserved. Keywords: catalyst; hydrogenation; oleochemicals; transesterification 1. Introduction Oleochemicals are starting to replace crude oil Palm plantation shows high growth in the last derived products in various applications. Stearic 10 years. Indonesia has surpassed Malaysia in acid is replacing paraffin wax in candle making, palm oil production for the first time in year 2006. meanwhile natural fatty alcohol replacing synthet- Both countries produce more than 80% of total ics. The relentless climb of palm oil production and world production. Table 1 shows palm oil produc- the recent high crude oil price encourage signifi- tion from 2002 to 2006. With the ever-increasing cant growth of Indonesian basic oleochemicals. palm plantation acreage, the Indonesian palm oil In the early 20th century, the commercial pro- production will continue to increase much faster duction of fatty alcohol was derived from direct than Malaysian. On the other hand, the high crude sodium hydrogenation of sperm oil from whales (1). oil and ethylene prices in the last 3-4 years contrib- Later, many countries listed sperm whales as en- ute to the healthy demand growth for basic oleo- dangered species and banned the importation of chemicals: fatty acids and fatty alcohols . their product derivatives. The fatty alcohol produc- * Corresponding Author. Telp/Fax. (0778)711374 E-mail address: [email protected] (Erwin Sutanto) Copyright © 2007, BCREC, ISSN 1978-2993 Bulletin of Chemical Reaction Engineering & Catalysis, 2(2-3), 2007, 23 Table 1. Palm Oil Production (in thousand tones) 2002 2003 2004 2005 2006 Malaysia 11,908 13,354 13,974 14,961 15,880 Indones ia 9,370 10,600 12,380 14,000 15,900 Others 3,756 3,926 3,586 4,769 5,000 Total 25,034 27,880 29,940 33,730 36,780 Figure 1. The effect of reaction time on the polymerization of acrylonitrile: Reaction condition: 0.5 g exchanged bentonite; acrylonitrile 1.886 mol.dm-3; K2S2O8 0.03 mol.dm-3 at different temperature ers then switched their starting raw materials to oleochemicals and thus enhance their widespread tallow, lard, coconut oil, palm kernel oil, and cas- use. This paper is intended to review the catalytic tor oil. Since the mid 1950s, catalytic hydrogena- process in the production of basic oleochemicals. tion to produce fatty alcohol from natural fats and oils was proved to be more economical and re- 2. Catalytic Process in Basic Oleochemicals placed metallic sodium hydrogenation. 2.1. Unsaturated fatty acid hydrogenation It is plausible to produce fatty alcohol from Saturated fatty acids, naturally exist as direct catalytic hydrogenation of triglycerides. straight chains, do not contain any double bonds However, the catalyst and hydrogen consump- or other functional groups along the chain. tions are higher because by-product glycerin will Whereas unsaturated fatty acids are of similar be simultaneously hydrogenated to produce pro- form, except that one or more alkene functional pylene glycols and propanol. Moreover, glycerin groups exist along the chain, i.e.: each alkene sub- and glycerides were found to be poisonous to the stituting a single bond "-CH2-CH2-" part of the hydrogenation catalyst. The current practice of chain with a double bond "-CH=CH-". Unsatu- fatty alcohol production begins with separating rated fatty acids are naturally found in vegetable the glycerin from fatty acid/methyl ester before oils, including palm oil, palm kernel oil, and soy- hydrogenate the fatty acid/methyl ester further to bean oil . fatty alcohol. The modern manufacturing routes Unsaturated fatty acids are often not desir- of basic oleochemicals are shown in Figure 1. able in a number of fatty acid industrial applica- As widely practiced in petrochemical industry, tions, such as: metal stearates, rubber compound- catalysts also play a very important role in the ing, candles, waxes, and crayons. The presence of production of basic oleochemicals. The invention double bond lowers the melting point and reduces and development of highly selective catalysts of- the shelf-life and heat stability due to vulnerabil- ten improve the economic competitiveness of basic ity of the double bond toward ambient oxidation. Bulletin of Chemical Reaction Engineering & Catalysis, 2(2-3), 2007, 24 To improve the shelf-life and increase the melting point, the unsaturated fatty acids are converted to saturated fatty acids by the relatively simple hydrogenation reaction: 1 2 1 2 R − CH = CH − R − COOH + H 2 ⇔ R − CH 2 − CH 2 − R − COOH A great care on the choice of catalyst, reaction temperature, and reaction pressure should be taken to avoid hydrogen attacking the carboxyl group during the hydrogenation of double bond. The heterogeneous catalyst normally used in the hydrogenation of unsaturated fatty acids is nickel based catalyst. Figure 2 shows process flow diagram of indus- trial scale unsaturated fatty acid hydrogenation. The unsaturated fatty acid is first passed through a dryer, mixed with hydrogen, added with nickel catalyst slurry, and hydrogenated at 25 atm and 453–523 K in a buss loop or slurry reactor. The sulfur, phosphorus, bromine and nitrogen com- pound in the feed should be minimized to below 1 ppm, because they are poisons to the nickel cata- lyst. By product nickel soaps are produced as side In the reaction, a large and branched triglyceride reaction from this process. (TG) is reacted with methanol to produce diglyc- The nickel catalyst is prepared by precipitat- eride (DG) and methyl ester. DG is then reacted ing a nickel salt, usually sulfate or chloride, on an further with methanol to produce monoglyceride inert support, such as silica, alumina, or a combi- (MG) and methyl ester. Finally MG reacts with nation thereof. The precipitate is filtered, washed, methanol to produce glycerol and methyl ester. and dried. The resulting powder is then reduced All the three reaction steps are reversible and at with hydrogen at 753 – 813 K, coated with triglyc- the end of the transesterification reaction usually eride fat, chilled, and formed into pellets (2). a small percentage of MG remain in the product mixture. A process flow diagram of continuous methyl ester production by transesterification is shown in 2.2. Methyl ester by transesterification Figure 3. Natural oils or fats are mixed with ex- The reaction mechanism of transesterification cess methanol and homogeneous alkali-based can be described as follows: Figure 2. Unsaturated Fatty Acid Hydrogenation Bulletin of Chemical Reaction Engineering & Catalysis, 2(2-3), 2007, 25 catalyst at atmospheric pressure and 333 – 338 K homogeneous alkali-based catalyst. Metal alkox- in a continuous stirred tank reactor. Common ide, such as sodium methoxide, is the most effec- catalyst for transesterification is alkali-based (3), tive catalyst for transesterification due to its high due to its higher reactivity than the acid. The alkalinity. Methoxide ion easily attacks triglyc- acid-catalyzed transesterification is normally erides and releases them as methyl ester. three orders of magnitude slower than the alkali. Sodium methoxide is commercially produced Moreover, acid-based catalyst is highly corrosive. from reaction of sodium metal and methanol un- The residence time of reaction mixture in the der inert gas: stirred reactor with homogeneous alkali-based + − catalyst is about 1-2 hours. In order to achieve a 2 Na + 2CH 3OH → 2 Na OCH 3 + H 2 complete transesterification, it is often desirable to have a transesterification plant with two con- Caustic soda and potassium hydroxide can also tinuous stirred reactors in series. provide methoxide ion in methanol solution. How- The use of homogeneous alkali-based catalysts ever, water is generated: limits the choice of feedstock to refined oil with +− very low free fatty acid (FFA) because FFA con- NaOH + CH 3OH → Na OCH 3 + H 2O sumes the alkali based catalyst to produce soap in the glycerin-water. The presence of soap also in- The presence of water interfere transesterifica- creases the glycerin-water viscosity, increases the tion (4). concentration of monoglyceride in the glycerin- Figure 4 shows the typical performance of four water, and complicates the separation of fatty different alkaline catalysts in methanol solution matters from glycerin.
Recommended publications
  • Broda 1 Potential Synthesis Pathway for Redox-Active DNA Nucleoside
    Broda 1 Potential Synthesis Pathway for Redox-Active DNA Nucleoside Nicole M. Broda Thesis Advisor: Robert Kuchta, Ph.D.: Department of Chemistry and Biochemistry Committee Members: Liu Xuedong, Ph.D.: Department of Chemistry and Biochemistry Levente Szentkirályi, Ph.D.: Program For Writing and Rhetoric Undergraduate Thesis March 23rd, 2018 University of Colorado at Boulder Department of Chemistry and Biochemistry Broda 2 Acknowledgements I am incredibly thankful for the mentorship and experience I have received from Robert Kuchta, who gave me the opportunity to be an undergraduate research assistant and supported me during numerous independent projects. Likewise, I want to extend my thanks to the other members of the Kuchta lab that have been crucial in my development as a researcher and in the intricacies of this thesis: Sarah Dickerson, for her guidance through the research process and creation of a friendly working environment; Ayman Alawneh, for his mentorship in the art of organic synthesis from the bottom-up and for answering my numerous questions about the theory behind it all; and Michelle Ledru, for sharing the long synthesis days and learning the process with me. Additionally, thank you to my honors committee members Liu Xuedong and Levente Szentkirályi for volunteering their time to participate in this undergraduate thesis defense. A special thanks to Levente Szentkirályi, for helping me through the thesis writing process from the draft to the final and for instilling in me the responsibility we as a scienctific community have to make science accessible to interdisciplinary readers and the general public. I extend my appreciation to Michael J.
    [Show full text]
  • Study of Fatty Acid and Fatty Alcohol Formation from Hydrolysis of Rice Bran Wax Kelly L
    1747 A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 32, 2013 of Chemical Engineering Online at: www.aidic.it/cet Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright © 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 Study of Fatty Acid and Fatty Alcohol Formation from Hydrolysis of Rice Bran Wax Kelly L. Tronia, Simone M. Silvab, Antonio J.A. Meirellesb, Roberta Ceriani*a a Faculty of Chemical Engineering, University of Campinas (UNICAMP), Zip Code, 13083-852, Campinas, São Paulo, Brazil b Faculty of Food Engineering, University of Campinas (UNICAMP), Zip Code, 13083-862, Campinas, São Paulo, Brazil [email protected] Rice bran wax is waste material of dewaxing process in oil refining. Dewaxing is accomplished by cooling and filtrating for separating wax from the oil to avoid turbidity in the final product. The dewaxing residue may have 20 up to 80 wt% of oil, followed by a main fraction of waxes, free fatty alcohols, free fatty acids and hydrocarbons. The wax fraction of the residue is composed by long-chain fatty alcohols esterified with long-chain fatty acids. Considering that rice bran oil has 4 – 6 wt% of wax, a large amount of this natural source of fatty compounds is undervalued. Noweck and Rider (1987) describe a process based on hydrolysis of waxes with sodium hydroxide, followed by distillation of fatty alcohols and soap. According to best of our knowledge no work has been reported on the formation of fatty acids and alcohols from the hydrolysis of the dewaxing residue using supersaturated stripping steam under high temperatures and high vacuum.
    [Show full text]
  • Step-Growth Polymerisation of Alkyl Acrylates Via Concomitant Oxa-Michael and Transesterification Reactions
    Step-growth polymerisation of alkyl acrylates via concomitant oxa-Michael and transesterification reactions Karin Ratzenböck,a David Pahovnikb and Christian Slugovc *a,c a Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, A 8010 Graz, Austria b National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia c Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, A 8010 Graz, Austria Herein we propose an auto-tandem catalytic approach towards the preparation of poly(ester- ether)s from simple alkyl acrylates and diols. By combining oxa-Michael addition with transesterification the preparation of hydroxy functionalized acrylate monomers can be avoided. Introduction. Polymerisation of acrylates is typically performed by free radical polymerisation. Formed poly(acrylates) based on C-C main chains are widely used as paintings, surface coatings, adhesives, or fibres.1 However, the oxa-Michael addition reaction2 presents an alternative method for the polymerisation of acrylates leading to potentially more easily degradable poly(ester-ether)s in which functional groups are incorporated in the polymer main chain. Oxa-Michael addition polymerisation of hydroxyalkyl acrylates, also referred to as hydrogen-transfer polymerisation, was first reported in 1975.3 The polymerisation of 2- hydroxyethyl acrylate (HEA) could be initiated with LiH or PPh3. Since then few studies on the polymerisation of hydroxy functionalized
    [Show full text]
  • ( 12 ) United States Patent ( 10 ) Patent No .: US 10,751,310 B2 Freeman Et Al
    US010751310B2 ( 12 ) United States Patent ( 10 ) Patent No .: US 10,751,310 B2 Freeman et al . ( 45 ) Date of Patent : Aug. 25 , 2020 ( 54 ) PREVENTION , TREATMENT AND ( 56 ) References Cited REVERSAL OF DISEASE USING THERAPEUTICALLY EFFECTIVE U.S. PATENT DOCUMENTS AMOUNTS OF DICARBOXYLIC ACID 3,527,789 A 9/1970 Payne COMPOUNDS 4,166,913 A 9/1979 Kesling , Jr. et al . 6,528,499 B1 * 3/2003 Kozikowski C07C 59/347 ( 71 ) Applicant: UNIVERSITY OF 514/574 8,324,277 B2 12/2012 Freeman PITTSBURGH — OF THE 8,735,449 B2 5/2014 Freeman COMMONWEALTH SYSTEM OF 9,066,902 B2 6/2015 Freeman et al . HIGHER EDUCATION , Pittsburgh , 9,186,408 B2 11/2015 Freeman et al . PA (US ) 9,700,534 B2 7/2017 Freeman et al . 9,750,725 B2 9/2017 Freeman et al . 10,213,417 B2 2/2019 Freeman et al . ( 72 ) Inventors : Bruce A. Freeman , Pittsburgh , PA 10,258,589 B2 4/2019 Freeman et al . ( US ) ; Francisco J. Schopfer , 2015/0018417 Al 1/2015 Freeman et al . Pittsburgh , PA ( US ) FOREIGN PATENT DOCUMENTS ( 73 ) Assignee : University of Pittsburgh — of the CN 103705499 4/2014 Commonwealth System of Higher DE 102011118462 5/2013 Education , Pittsburgh , PA ( US ) GB 1153464 5/1969 WO WO 2002/022627 3/2002 WO WO 2009/017802 2/2009 ( * ) Notice : Subject to any disclaimer , the term of this WO WO 2009/112455 9/2009 patent is extended or adjusted under 35 WO WO 2010/005521 1/2010 U.S.C. 154 ( b ) by 0 days . WO WO 2010/014889 2/2010 WO WO 2011/014261 2/2011 WO WO 2013/116753 8/2013 ( 21 ) Appl.
    [Show full text]
  • Characterization of the Fatty Acid Composition of Nannochloropsis
    Characterization of the Fatty Acid Composition of Nannochloropsis salina as a Determinant of Biodiesel Properties Nagwa Gamal-ElDin Mohammady Department of Botany and Microbiology, Faculty of Science, Moharam Bey 21511, Alexandria University, Alexandria, Egypt. Fax: +203 3911 794. E-mail: [email protected] Z. Naturforsch. 66 c, 328 – 332 (2011); received November 21, 2010/March 27, 2011 Nannochloropsis salina was cultured batch-wise to evaluate the potential of the alga to produce biodiesel. The cells were harvested at the end of the exponential growth phase when the concentration was 18 · 106 cells/mL culture. The growth estimated as dry weight from this cell number was (3.8 0.7) mg/L. The lipid and triglyceride contents were 40% and 12% on a dry weight basis, respectively. The amount of the ratio triglycerides/total lipids was approximately 0.3. The composition of triglyceride fatty acid methyl esters (biodiesel) was analysed by gas- liquid chromatography and identifi ed as: C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:1, and C20:5. The ratio of unsaturated to saturated fatty acid contents was approximate- ly 4.4. Additionally, the characterization of each individual fatty acid ester was discussed with regard to the fuel properties of biodiesel produced by the alga. Key words: Biodiesel, Lipids, Nannochloropsis salina Introduction Depending on species, many microalgae have been described as lipid-rich strains for their hy- The use of biofuels can play an important role drocarbons and other complex oils. However, not in avoiding excessive dependence on fossil fu- all algal oils are satisfactory for the production els and reducing pollution by greenhouse gases of biodiesel (Guschina and Harwood, 2006), due emission (Gouveia and Oliveira, 2009).
    [Show full text]
  • Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: a Review
    energies Review Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: A Review Violeta Makareviciene * , Egle Sendzikiene and Milda Gumbyte Faculty of Forest Sciences and Ecology, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania; [email protected] (E.S.); [email protected] (M.G.) * Correspondence: [email protected] Received: 7 April 2020; Accepted: 28 April 2020; Published: 2 May 2020 Abstract: Increasing concentrations of greenhouse gases in the atmosphere are leading to increased production and use of biofuels. The industrial development of biodiesel production and the use of biodiesel in the EU transport sector have been ongoing for almost two decades. Compared to mineral diesel production, the process of producing biodiesel is quite complex and expensive, and the search for new raw materials and advanced technologies is needed to maintain production value and expand the industrial production of biodiesel. The purpose of this article is to review the application possibilities of one of the new technologies—simultaneous extraction of oil from oily feedstock and transesterification (in situ)—and to evaluate the effectiveness of the abovementioned process under various conditions. Keywords: biodiesel; in situ; simultaneous oil extraction and transesterification 1. Introduction With the increase in atmospheric pollution in the form of greenhouse gases, the development of the use of biofuels in the transport sector is receiving increasing attention. Biodiesel is a well-known type of biofuel that has been used for a relatively long time. It is produced from various oily raw materials. Recently, the possibilities of utilizing non-food raw materials and residual waste in the synthesis of biodiesel have been intensively studied.
    [Show full text]
  • Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters
    Energies 2009, 2, 362-376; doi:10.3390/en20200362 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters George Anastopoulos 1, Ypatia Zannikou 1, Stamoulis Stournas 1 and Stamatis Kalligeros 2,* 1 National Technical University of Athens, School of Chemical Engineering, Laboratory of Fuels Technology and Lubricants, Iroon Polytechniou 9, Athens 15780, Greece E-Mails: [email protected] (G.A.); [email protected] (Y.Z.); [email protected] (S.S.) 2 Hellenic Organization for Standardization, Technical Committee 66, 67 Prevezis Street, Athens, 10444, Greece * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +30-210- 5154695; Fax: +30-210-5154695 Received: 28 April 2009; in revised form: 24 May 2009 / Accepted: 3 June 2009/ Published: 5 June 2009 Abstract: The transesterification reactions of four different vegetable oils (sunflower, rapeseed, olive oil and used frying oil) with ethanol, using sodium hydroxide as catalyst, were studied. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil (0.25 – 1.5%), the molar ratio of ethanol to oil (6:1 – 12:1), and the reaction temperature (35 – 90 °C ) were studied for the conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, NaOH amount (1% wt/wt), and 80 °C temperature, whereas the maximum yield of ethyl esters reached 81.4% wt/wt.
    [Show full text]
  • Enantioselective Organocatalytic Friedel-Crafts Alkylations Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Theses and Dissertations Enantioselective Organocatalytic Friedel-Crafts Alkylations of Heterocycles and Electron-Rich Benzenes Thesis by Nick A. Paras In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2004 (Defended February 19, 2004) ii Acknowledgements A graduate degree in organic chemistry comes not without a little help. First, I would like to thank my graduate advisor, Prof. David MacMillan. Dating back to the first days of our association, when he took me under his wing as a postdoc at Harvard, he taught me just about everything I know about organic synthetic methodology. I need to also thank my undergraduate research advisor, Prof. David Evans, for giving me a start in research and for the invaluable experience of sitting in on 2 years of Evans’ group meetings. I’d wager that I learned more about chemistry over beer and pretzels once a week than I had before or have since. I have benefited from working in a unique environment of brilliant minds and fierce competitors within the group. I would like to thank Kateri Ahrendt, Chris Borths, and Wendy Jen for taking the first crucial steps in the pursuit of iminium catalysis. I also very much enjoyed collaborating with Sean Brown and Joel Austin as asymmetric Friedel-Crafts really got off the ground. Above all, within the group, I was fortunate to have a superb baymate in Vy Dong. She was always supportive, always insightful and, more often than not, let me play any kind of music I liked.
    [Show full text]
  • Comparative Study on Properties of Methyl Ester of Cotton Seed Oil and Methyl Ester of Mango Seed Oil with Diesel by K
    Global Journal of Researches in Engineering: B Automotive Engineering Volume 14 Issue 2 Version 1.0 Year 2014 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4596 & Print ISSN: 0975-5861 Comparative Study on Properties of Methyl Ester of Cotton Seed Oil and Methyl Ester of Mango Seed Oil with Diesel By K. Vijayaraj & A. P. Sathiyagnanam Annamalai University, India Abstract- The use of fatty acid methyl esters (FAME), often referred to as biodiesel, instead of fossil diesel fuel is under consideration in order to increase the share of fuels from renewable sources and to reduce green house gas emissions. An alternative fuel must be technically feasible, economically competitive, environmentally acceptable and easily available. Fatty acid methyl esters have found to befit all these essential qualities. Fatty acid methyl esters derived from various vegetable oils / animal fats have gained importance as an alternative fuel for diesel engines and almost no modifications are required for using biodiesel. The research on alternative fuels for compression engine has become essential due to depletion of petroleum products and its major contribution for pollution, where vegetable oil promises best alternative fuel. Vegetable oils, due to their agricultural origin are able to reduce net CO2 emissions to the atmosphere. But the major disadvantage of vegetable oil is its viscosity which is higher than diesel. In this study, the Methyl Ester of Cotton Seed oil (MECSO) and Methyl Ester of Mango Seed oil (MEMSO) from non-edible oils of Cotton seed oil and Mango seed oil are prepared, their properties are compared in order to meet EN 14214/ASTM D6751 Standards for biodiesel and with the standards of diesel fuel.
    [Show full text]
  • Predicting Distribution of Ethoxylation Homologues With
    1 PREDICTING THE DISTRIBUTION OF ETHOXYLATION HOMOLOGUES WITH A PROCESS SIMULATOR Nathan Massey, Chemstations, Inc. Introduction Ethoxylates are generally obtained by additions of ethylene oxide (EO) to compounds containing dissociated protons. Substrates used for ethoxylation are primarily linear and branched C12-C18 alcohols, alkyl phenols, nonyl (propylene trimer) or decyl (propylene tetramer) groups, fatty acids and fatty acid derivatives. The addition of EO to a substrate containing acidic hydrogen is catalyzed by bases or Lewis acids. Amphoteric catalysts, as well as heterogeneous catalysts are also used. The degree of ethoxylation ( the moles of EO added per mole of substrate ) varies over wide ranges, in general between 3 and 40, and is chosen according to the intended use. As an illustration of how this distribution might be predicted using a process simulator, Chemcad was used to simulate the ethoxylation of Nonylphenols. Description of the Ethoxylation Chemistry The reaction mechanisms of base catalyzed and acid catalyzed ethoxylation differ, which affects the composition of the reaction products. In base catalyzed ethoxylation an alcoholate anion, formed initially by reaction with the catalyst ( alkali metal, alkali metal oxide, carbonate, hydroxide, or alkoxide ) nucleophilically attacks EO. The resulting union of the EO addition product can undergo an equilibrium reaction with the alcohol starting material or ethoxylated product, or can react further with EO: Figure 1 O RO- + H2CCH2 - - RO CH2CH2O O ROH H2CCH2 - - RO RO CH2CH2OH RO RO CH2CH2O 2 As Figure 1 illustrates, in alkaline catalyzed ethoxylations several reactions proceed in parallel. The addition of EO to an anion with the formation of an ether bond is irreversible.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0292501 A1 Udel (43) Pub
    US 200702925O1A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0292501 A1 Udel (43) Pub. Date: Dec. 20, 2007 (54) CHEWABLE SOFT GELATIN CAPSULES Related U.S. Application Data (76) Inventor: Ronald G. Udell, Beverly Hills, CA (60) Provisional application No. 60/810,917, filed on Jun. (US) 5, 2006. Correspondence Address: Publication Classification DORSEY & WHITNEY LLP INTELLECTUAL PROPERTY DEPARTMENT (51) Int. Cl. SUTE 15OO A6IR 9/64 (2006.01) SO SOUTH SIXTH STREET (52) U.S. Cl. .............................................................. 424/456 MINNEAPOLIS, MN 55402-1498 (US) (57) ABSTRACT (21) Appl. No.: 11/757,789 The present invention is directed to compositions and meth ods of delivery of fill materials containing active agents, optionally dissolved or Suspended in a Suitable carrier, (22) Filed: Jun. 4, 2007 encapsulated in a chewable soft gelatin capsule. US 2007/02925O1 A1 Dec. 20, 2007 CHEWABLE SOFT GELATIN CAPSULES 0013 In still another aspect, the present invention also includes packaged formulations of the soft gelatin chewable CROSS-REFERENCE TO RELATED capsules. APPLICATION(S) 0014. The present invention provides the advantage of a 0001) This application claims the benefit of U.S. Provi chewable soft gelatin capsule for individuals who might not sional Application No. 60/810,917, filed Jun. 5, 2006, otherwise easily take a pill or tablet. This is especially true entitled “Chewable Soft Gelatin Capsule” by Michael Fan for the elderly and small children where swallowing can be tuzzi, the entire contents of which is incorporated herein by problematic. Likewise, animals, such as dogs, cats and reference. horses, often do not readily take “hard' pills and tablets.
    [Show full text]
  • Unusual Aldehyde Reductase Activity for Production of Full-Length Fatty Alcohol by Cyanobacterial Aldehyde Deformylating Oxygenase
    Unusual Aldehyde Reductase Activity for Production of Full-length Fatty Alcohol by Cyanobacterial Aldehyde Deformylating Oxygenase Supacha Buttranon Vidyasirimedhi Institute of Science and Technology Pattarawan Intasian Vidyasirimedhi Institute of Science and Technology Nidar Treesukkasem Vidyasirimedhi Institute of Science and Technology Juthamas Jaroensuk Vidyasirimedhi Institute of Science and Technology Somchart Maenpuen Burapha university Jeerus Sucharitakul Chulalongkorn University Faculty Of Dentistry Narin Lawan Chiang Mai University Faculty of Science Pimchai Chaiyen Vidyasirimedhi Institute of Science and Technology Thanyaporn Wongnate ( [email protected] ) School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Wangchan Valley, Rayong 21210, Thailand https://orcid.org/0000-0001-5072-9738 Research Keywords: Non-heme diiron enzyme, Aldehyde-deformylating oxygenase, NADPH-dependent fatty aldehyde reductase, Fatty alcohol, Oxido-reductase Posted Date: November 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-100741/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/28 Abstract Background: Aldehyde-deformylating oxygenase (ADO) is a non-heme di-iron enzyme that catalyzes deformylation of aldehydes to generate alkanes/alkenes. In this study, we report for the rst time that under anaerobic or limited oxygen conditions, Prochlorococcus marinus (PmADO) can generate full- length fatty alcohols from fatty aldehydes without eliminating a carbon unit. Results: Unlike the native activity of ADO which requires electrons from the Fd/FNR electron transfer complex, the aldehyde reduction activity of ADO requires only NADPH. Our results demonstrated that yield of alcohol products can be affected by oxygen concentration and type of aldehyde.
    [Show full text]