Process for Cosynthesis of Ethylene Glycol and Dimethyl Carbonate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Broda 1 Potential Synthesis Pathway for Redox-Active DNA Nucleoside
Broda 1 Potential Synthesis Pathway for Redox-Active DNA Nucleoside Nicole M. Broda Thesis Advisor: Robert Kuchta, Ph.D.: Department of Chemistry and Biochemistry Committee Members: Liu Xuedong, Ph.D.: Department of Chemistry and Biochemistry Levente Szentkirályi, Ph.D.: Program For Writing and Rhetoric Undergraduate Thesis March 23rd, 2018 University of Colorado at Boulder Department of Chemistry and Biochemistry Broda 2 Acknowledgements I am incredibly thankful for the mentorship and experience I have received from Robert Kuchta, who gave me the opportunity to be an undergraduate research assistant and supported me during numerous independent projects. Likewise, I want to extend my thanks to the other members of the Kuchta lab that have been crucial in my development as a researcher and in the intricacies of this thesis: Sarah Dickerson, for her guidance through the research process and creation of a friendly working environment; Ayman Alawneh, for his mentorship in the art of organic synthesis from the bottom-up and for answering my numerous questions about the theory behind it all; and Michelle Ledru, for sharing the long synthesis days and learning the process with me. Additionally, thank you to my honors committee members Liu Xuedong and Levente Szentkirályi for volunteering their time to participate in this undergraduate thesis defense. A special thanks to Levente Szentkirályi, for helping me through the thesis writing process from the draft to the final and for instilling in me the responsibility we as a scienctific community have to make science accessible to interdisciplinary readers and the general public. I extend my appreciation to Michael J. -
Catalysis Science & Technology
Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/catalysis Page 1 of 10 Catalysis Science & Technology Catalysis Science & Technology RSC Publishing ARTICLE Carbonates as reactants for the production of fine chemicals: the synthesis of 2-phenoxyethanol Cite this: DOI: 10.1039/x0xx00000x P. Ziosi a,b , T. Tabanelli a, G. Fornasari, a S. Cocchi a, F. Cavani a,b,* , P. Righi a,b,* Manuscript Received, The solventless and heterogeneously catalysed synthesis of 2-phenoxyethanol (ethylene glycol monophenyl ether) via the reaction between phenol and ethylene carbonate was investigated DOI: 10.1039/x0xx00000x using Na-mordenite catalysts, as an alternative to the industrial process using ethylene oxide and homogeneous basic conditions. -
Catalyst in Basic Oleochemicals
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diponegoro University Institutional Repository Bulletin of Chemical Reaction Engineering & Catalysis, 2(2-3), 2007, 22-31 Catalyst in Basic Oleochemicals Eva Suyenty, Herlina Sentosa, Mariani Agustine, Sandy Anwar, Abun Lie, and Erwin Sutanto * Research and Development Department, PT. Ecogreen Oleochemicals Jln. Pelabuhan Kav 1, Kabil, Batam 29435, Telp/Fax: (0778)711374 Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia Abstract Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty ac- ids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydro- genation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methy- late is derived from direct reaction of sodium metal and methanol under inert gas. -
Step-Growth Polymerisation of Alkyl Acrylates Via Concomitant Oxa-Michael and Transesterification Reactions
Step-growth polymerisation of alkyl acrylates via concomitant oxa-Michael and transesterification reactions Karin Ratzenböck,a David Pahovnikb and Christian Slugovc *a,c a Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, A 8010 Graz, Austria b National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia c Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, A 8010 Graz, Austria Herein we propose an auto-tandem catalytic approach towards the preparation of poly(ester- ether)s from simple alkyl acrylates and diols. By combining oxa-Michael addition with transesterification the preparation of hydroxy functionalized acrylate monomers can be avoided. Introduction. Polymerisation of acrylates is typically performed by free radical polymerisation. Formed poly(acrylates) based on C-C main chains are widely used as paintings, surface coatings, adhesives, or fibres.1 However, the oxa-Michael addition reaction2 presents an alternative method for the polymerisation of acrylates leading to potentially more easily degradable poly(ester-ether)s in which functional groups are incorporated in the polymer main chain. Oxa-Michael addition polymerisation of hydroxyalkyl acrylates, also referred to as hydrogen-transfer polymerisation, was first reported in 1975.3 The polymerisation of 2- hydroxyethyl acrylate (HEA) could be initiated with LiH or PPh3. Since then few studies on the polymerisation of hydroxy functionalized -
Ethylene Glycol
Ethylene glycol Ethylene glycol (IUPAC name: ethane-1,2-diol) is an organic Ethylene glycol compound with the formula (CH2OH)2. It is mainly used for two purposes, as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odorless, colorless, sweet-tasting, viscous liquid. Contents Production Industrial routes Biological routes Historical routes Uses Coolant and heat-transfer agent Antifreeze Precursor to polymers Other uses Dehydrating agent Hydrate inhibition Applications Chemical reactions Toxicity Environmental effects Names Notes Preferred IUPAC name References Ethane-1,2-diol External links Other names Ethylene glycol 1,2-Ethanediol Production Ethylene alcohol Hypodicarbonous acid Monoethylene glycol Industrial routes 1,2-Dihydroxyethane Ethylene glycol is produced from ethylene (ethene), via the Identifiers intermediate ethylene oxide. Ethylene oxide reacts with water to CAS Number 107-21-1 (http produce ethylene glycol according to the chemical equation: s://commonche mistry.cas.org/d C2H4O + H2O → HO−CH2CH2−OH etail?cas_rn=10 7-21-1) 3D model (JSmol) Interactive This reaction can be catalyzed by either acids or bases, or can occur image (https://ch at neutral pH under elevated temperatures. The highest yields of emapps.stolaf.e ethylene glycol occur at acidic or neutral pH with a large excess of du/jmol/jmol.ph water. Under these conditions, ethylene glycol yields of 90% can be p?model=OCC achieved. The major byproducts are the oligomers diethylene glycol, O) triethylene glycol, and tetraethylene glycol. The separation of these oligomers and water is energy-intensive. About 6.7 million tonnes 3DMet B00278 (http://w are produced annually.[4] ww.3dmet.dna.af frc.go.jp/cgi/sho A higher selectivity is achieved by use of Shell's OMEGA process. -
Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: a Review
energies Review Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: A Review Violeta Makareviciene * , Egle Sendzikiene and Milda Gumbyte Faculty of Forest Sciences and Ecology, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania; [email protected] (E.S.); [email protected] (M.G.) * Correspondence: [email protected] Received: 7 April 2020; Accepted: 28 April 2020; Published: 2 May 2020 Abstract: Increasing concentrations of greenhouse gases in the atmosphere are leading to increased production and use of biofuels. The industrial development of biodiesel production and the use of biodiesel in the EU transport sector have been ongoing for almost two decades. Compared to mineral diesel production, the process of producing biodiesel is quite complex and expensive, and the search for new raw materials and advanced technologies is needed to maintain production value and expand the industrial production of biodiesel. The purpose of this article is to review the application possibilities of one of the new technologies—simultaneous extraction of oil from oily feedstock and transesterification (in situ)—and to evaluate the effectiveness of the abovementioned process under various conditions. Keywords: biodiesel; in situ; simultaneous oil extraction and transesterification 1. Introduction With the increase in atmospheric pollution in the form of greenhouse gases, the development of the use of biofuels in the transport sector is receiving increasing attention. Biodiesel is a well-known type of biofuel that has been used for a relatively long time. It is produced from various oily raw materials. Recently, the possibilities of utilizing non-food raw materials and residual waste in the synthesis of biodiesel have been intensively studied. -
Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters
Energies 2009, 2, 362-376; doi:10.3390/en20200362 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters George Anastopoulos 1, Ypatia Zannikou 1, Stamoulis Stournas 1 and Stamatis Kalligeros 2,* 1 National Technical University of Athens, School of Chemical Engineering, Laboratory of Fuels Technology and Lubricants, Iroon Polytechniou 9, Athens 15780, Greece E-Mails: [email protected] (G.A.); [email protected] (Y.Z.); [email protected] (S.S.) 2 Hellenic Organization for Standardization, Technical Committee 66, 67 Prevezis Street, Athens, 10444, Greece * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +30-210- 5154695; Fax: +30-210-5154695 Received: 28 April 2009; in revised form: 24 May 2009 / Accepted: 3 June 2009/ Published: 5 June 2009 Abstract: The transesterification reactions of four different vegetable oils (sunflower, rapeseed, olive oil and used frying oil) with ethanol, using sodium hydroxide as catalyst, were studied. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil (0.25 – 1.5%), the molar ratio of ethanol to oil (6:1 – 12:1), and the reaction temperature (35 – 90 °C ) were studied for the conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, NaOH amount (1% wt/wt), and 80 °C temperature, whereas the maximum yield of ethyl esters reached 81.4% wt/wt. -
Enantioselective Organocatalytic Friedel-Crafts Alkylations Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Theses and Dissertations Enantioselective Organocatalytic Friedel-Crafts Alkylations of Heterocycles and Electron-Rich Benzenes Thesis by Nick A. Paras In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2004 (Defended February 19, 2004) ii Acknowledgements A graduate degree in organic chemistry comes not without a little help. First, I would like to thank my graduate advisor, Prof. David MacMillan. Dating back to the first days of our association, when he took me under his wing as a postdoc at Harvard, he taught me just about everything I know about organic synthetic methodology. I need to also thank my undergraduate research advisor, Prof. David Evans, for giving me a start in research and for the invaluable experience of sitting in on 2 years of Evans’ group meetings. I’d wager that I learned more about chemistry over beer and pretzels once a week than I had before or have since. I have benefited from working in a unique environment of brilliant minds and fierce competitors within the group. I would like to thank Kateri Ahrendt, Chris Borths, and Wendy Jen for taking the first crucial steps in the pursuit of iminium catalysis. I also very much enjoyed collaborating with Sean Brown and Joel Austin as asymmetric Friedel-Crafts really got off the ground. Above all, within the group, I was fortunate to have a superb baymate in Vy Dong. She was always supportive, always insightful and, more often than not, let me play any kind of music I liked. -
US5349077.Pdf
|||||||||||||||| USOO5349077A United States Patent (19) 11 Patent Number: 5,349,077 Doya et al. 45 Date of Patent: Sep. 20, 1994 54 PROCESS FOR PRODUCING ALKYLENE 5,003,084 3/1991 Su et al. .............................. 549/230 CARBONATES FOREIGN PATENT DOCUMENTS 75 Inventors: Masaharu Doya; Takashi Ohkawa; Yutaka Kanbara; Aksushi Okamoto; 0443758 8/1991 European Pat. Off. Kenichi Kimizuka, all of Niigata, OTHER PUBLICATIONS Japan Chemical Abstracts, vol. 82, No. 23, Jun. 9, 1975, Co 73 Assignee: Mitsubishi Gas Chemical Company, lumbus, Ohio; Sergio Fumasoni et al. Inc., Tokyo, Japan Primary Examiner-José G. Dees 21 Appl. No.: 99,461 Assistant Examiner-Joseph M. Conrad, III 22 Filed: Jul. 30, 1993 Attorney, Agent, or Firm-Wenderoth, Lind & Ponack (30) Foreign Application Priority Data (57) ABSTRACT Jul. 31, 1992 JP Japan .................................. 4-205362 A process for producing alkylene carbonates which Jul. 31, 1992 (JP) Japan .......................... ... 4-205363 comprises reacting urea and glycols described by the Jul. 31, 1992 JP Japan .......................... ... 4-205364 general formula RCH(OH) CH2OH; wherein R repre Jun. 30, 1993 JP Japan .................................. 5-161857 sents hydrogen or an alkyl group containing 1 to 4 51) Int. Cl. .............................................. CO7C 69/96 carbons, using a catalyst containing zinc, magnesium, 52 U.S. Cl. .................................... 558/260; 549/229; lead or calcium at reduced pressures. The alkylene 549/230 carbonates are produced with high yield easily using 58 Field of Search ................. 558/260; 549/229, 230 raw materials which are comparatively inexpensive with a mild reaction that does not involve explosive or 56) References Cited hazardous materials. U.S. PATENT DOCUMENTS 2,773,881 12/1956 Dunn et al. -
Safety Data Sheet According to 1907/2006/EC, Article 31 Printing Date 01.04.2020Version Number 4 Revision: 01.04.2020
Page 1/8 Safety data sheet according to 1907/2006/EC, Article 31 Printing date 01.04.2020Version number 4 Revision: 01.04.2020 * SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifier Trade name: 1mol/L Lithium hexafluorophosphate in (1:1:3 vol.%) Ethylene carbonate : Propylene carbonate : Dimethyl carbonate with 1wt.% Vinylene carbonate - 99,9% Article number: E020 UFI: TH30-W082-000P-86TG 1.2 Relevant identified uses of the substance or mixture and uses advised against No other important information available. Application of the substance / the mixture This product is intended for the exclusive use of Research and Development 1.3 Details of the supplier of the safety data sheet Manufacturer/Supplier: Solvionic SA 195 route d'Espagne 31036 TOULOUSE FRANCE Phone number: +33 (0)5.34.63.35.35 Further information obtainable from: HSE Department 1.4 Emergency telephone number: ORFILA (INRS): +33 (0)1.45.42.59.59 CCHST: 1-800-668-4284 (Canada & U.S.A) SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 GHS02 Flam. Liq. 3 H226 Flammable liquid and vapour. GHS08 STOT RE 1 H372 Causes damage to organs through prolonged or repeated exposure. GHS05 Skin Corr. 1B H314 Causes severe skin burns and eye damage. Eye Dam. 1 H318 Causes serious eye damage. GHS07 Acute Tox. 4 H302 Harmful if swallowed. Skin Sens. 1 H317 May cause an allergic skin reaction. 2.2 Label elements Labelling according to Regulation (EC) No 1272/2008 The product is classified and labelled according to the CLP regulation. -
(12) Patent Application Publication (10) Pub. No.: US 2007/0292501 A1 Udel (43) Pub
US 200702925O1A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0292501 A1 Udel (43) Pub. Date: Dec. 20, 2007 (54) CHEWABLE SOFT GELATIN CAPSULES Related U.S. Application Data (76) Inventor: Ronald G. Udell, Beverly Hills, CA (60) Provisional application No. 60/810,917, filed on Jun. (US) 5, 2006. Correspondence Address: Publication Classification DORSEY & WHITNEY LLP INTELLECTUAL PROPERTY DEPARTMENT (51) Int. Cl. SUTE 15OO A6IR 9/64 (2006.01) SO SOUTH SIXTH STREET (52) U.S. Cl. .............................................................. 424/456 MINNEAPOLIS, MN 55402-1498 (US) (57) ABSTRACT (21) Appl. No.: 11/757,789 The present invention is directed to compositions and meth ods of delivery of fill materials containing active agents, optionally dissolved or Suspended in a Suitable carrier, (22) Filed: Jun. 4, 2007 encapsulated in a chewable soft gelatin capsule. US 2007/02925O1 A1 Dec. 20, 2007 CHEWABLE SOFT GELATIN CAPSULES 0013 In still another aspect, the present invention also includes packaged formulations of the soft gelatin chewable CROSS-REFERENCE TO RELATED capsules. APPLICATION(S) 0014. The present invention provides the advantage of a 0001) This application claims the benefit of U.S. Provi chewable soft gelatin capsule for individuals who might not sional Application No. 60/810,917, filed Jun. 5, 2006, otherwise easily take a pill or tablet. This is especially true entitled “Chewable Soft Gelatin Capsule” by Michael Fan for the elderly and small children where swallowing can be tuzzi, the entire contents of which is incorporated herein by problematic. Likewise, animals, such as dogs, cats and reference. horses, often do not readily take “hard' pills and tablets. -
Comparative Study of Ethylene Carbonate-Based Electrolyte Decomposition at Li, Ca, and Al Anode Interfaces Joshua Young,* Peter M
Article Cite This: ACS Appl. Energy Mater. XXXX, XXX, XXX−XXX www.acsaem.org Comparative Study of Ethylene Carbonate-Based Electrolyte Decomposition at Li, Ca, and Al Anode Interfaces Joshua Young,* Peter M. Kulick, Taylor R. Juran, and Manuel Smeu* Department of Physics, Binghamton University, Binghamton, New York 13902, United States *S Supporting Information ABSTRACT: One of the major bottlenecks to the develop- ment of alternatives to existing Li ion battery technology, such as Li metal or multivalent ion (Mg, Ca, Zn, or Al) batteries, has to do with the layer of inorganic and organic compounds that forms at the interface between the metallic anode and electrolyte via solvent and salt decomposition (the solid− electrolyte interphase or SEI). In Li metal batteries the growth of dendrites causes continual formation of new SEI, while in multivalent ion batteries the SEI does not allow for the diffusion of the ions. Finding appropriate electrolytes for such systems and gaining an understanding of SEI formation is therefore critical to the development of secondary Li metal and multivalent ion cells. In this work, we use ab initio molecular dynamics simulations to investigate the initial stages of decomposition of organic electrolytes based on ethylene carbonate (EC) and formation of the SEI on Li, Ca, and Al metal fi fi 2− surfaces. We rst nd that pure EC only decomposes to CO and C2H4O2 species on each type of surface. However, when a salt 2− molecule is introduced to form an electrolyte, a second EC decomposition route resulting in the formation of CO3 and C2H4 begins to occur; furthermore, a variety of different inorganic compounds, depending on the chemical composition of the salt, form on the surfaces.