Polyhydroxyalkylation of Urea with Ethylene Carbonate and Application of Obtained Products As Components of Polyurethane Foams

Total Page:16

File Type:pdf, Size:1020Kb

Polyhydroxyalkylation of Urea with Ethylene Carbonate and Application of Obtained Products As Components of Polyurethane Foams http://www.e-polymers.org e-Polymers 2008, no. 166 ISSN 1618-7229 Polyhydroxyalkylation of urea with ethylene carbonate and application of obtained products as components of polyurethane foams Iwona Zarzyka-Niemiec* *Rzeszów University of Technology, Department of Organic Chemistry, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland; e-mail: [email protected] (Received: 17 March, 2008; published: 27 December, 2008) Abstract: The reaction between urea and ethylene carbonate occur with partial release of CO2 and partial incorporation of carbonate groups into products. The carbonate groups were found to be attached both to nitrogen of urea and to oxyethylene chain. The most effective catalyst of the synthesis was potassium carbonate. The hydroxyethyl and hydroxyethoxy groups of urea derivatives undergo partial dimerization to form carbamate groups in the products. The products of reaction between urea and ethylene carbonate have good thermal stability, they start to decompose at 200 0C. The obtained products can be used as polyol components for polyurethane foams. Polyurethane foams obtained from hydroxyethoxy derivatives of urea (EC8) are rigid products of low water uptake, good stability of dimensions, low mass loss on 30 days heating at 150 C, enhanced thermal stability and good compressive strength. Introduction Hydroxyalkyl derivatives of urea can be obtained by reaction of urea with corresponding aminoalcohols (I, y = 1) [1, 2]: O O 2H N CH O H+H N C NH H O CH HN C NH CH O H+2NH (1) 2 2 n y 2 2 2 n y 2 n y 3 (I) where: n = 2-5, y = 1, 2 or 3. Similarly the hydroxyalcoxy derivatives of urea (I, y = 2 or 3) can be obtained using aminoetherol substrates [3, 4]. The synthesis is accompanied by ammonia release, which must be removed to improve the yield of synthesis. Moreover, the competitive formation of carbamates by the reaction between hydroxyl groups with urea takes place. We have experienced that purification of products, especially tetrakis(hydroxyalkyl)- and alcoxy- derivatives of urea was ineffective because they do not precipitate from the reaction mixture and decompose upon distillation even under reduced pressure. Another method of synthesis of hydroxyalkylurea and hydroxyalcoxyurea derivatives is based on the reaction of urea with oxiranes, like ethylene oxide or 2,3-epoxybutane according to the following scheme [5, 6]. 1 O O CH CH O H H O CH CH z H N C NH + R CH CH R x N C N 2 2 R R R R (2) O H O CH CH CH CH O H y w R R R R where: R = CH3-, H-, x + y +z + w = 2 4. However, oxiranes are toxic and cancerogenic and additionally the synthetic protocol requires high pressure. It seemed reasonable to replace them with alkylene carbonates, which are less ecologically hazardous [7, 8]. They posses higher boiling points and are good solvents for urea. They are expected to react with urea in analogous manner as oxiranes. Here the attempts of such a synthesis are described together with the application of polyol products to obtain polyurethane foams of enhanced thermal stability. Results and discussion The reactions of urea with EC were performed in presence of potassium carbonate as catalyst at 120-160 C temperature range (Table 1). Tab. 1. Reaction conditions of urea with EC. Initial Amount of Time Kind of Temp. Presence of Synth. Molar catalyst of Reaction Catalyst [ C] Carbodiimide Ratio [mole/mole urea] [h] 1. 1 : 1 K2CO3 0.06 120 10 + 2. 1 : 2 K2CO3 0.03 120 18.5 + 3. 1 : 2 K2CO3 0.06 120 11 + 4. 1 : 2 K2CO3 0.03 140 13.5 + 5. 1 : 2 K2CO3 0.06 140 6 + 6. 1 : 2 DABCO 0.06 120 28 + a 7. 1 : 2 ZnCl2 0.06 120 27 + 8. 1 : 3 K2CO3 0.06 140 6.5 + 9. 1 : 4 K2CO3 0.06 120 35 + 10. 1 : 4 K2CO3 0.06 140 8.5 - 11. 1 : 8 K2CO3 0.09 160 10.5 - 12. 1 : 12 K2CO3 0.09 160 16 - 13. 1 : 16 K2CO3 0.09 160 21 - a: EC did not react completely. The resin-like product was obtained at 1:1 molar ratio of substrates (Table 1, synthesis 1), which has shown the same ratio of oxyethylene to urea. The initial stoichiometry was chosen at the assumption that total elimination of CO2 occurs (reaction 3). However the spectral analysis of product evidenced the presence of carbonate groups in the product by the presence of the primary amide proton resonance at 6.4 ppm in the 1H-NMR spectrum (Figure 1) as well as the resonance at 2 7.5 ppm attributed to imide group proton (H2N-CO-NH-COO-) [9]. Thus the carbonate groups are preserved at product, which can be represented by the formula (III). O O C NH C NH CH CH OH CO O O O 2 2 2 + 2 (II) NH C NH + CH CH 2 2 2 2 O O NH2 C NH C O CH2 CH2OH (3) (III) In the spectrum of product (III) the resonance of methylene group proton at -CH2-O-CO was found at 4.15 ppm [10] while those at 5.4 and 6.0 ppm were attributed to primary and secondary amide protons of N-(2-hydroxyethyl)urea (II) [9]. From the integral intensity of the NH2 group resonances in (II) and (III), respectively, it can be concluded that N-(2-hydroxyethyl)urea (II) is the major component in obtained mixture (ca 60%). Fig. 1. 1H-NMR spectrum of the product of reaction between urea and EC at 1:1 molar ratio in the presence of 0.06 mole K2CO3/mole urea at 120 C. The IR spectrum (Figure 2) of the product corroborates well with the NMR data. The valence C=O stretching ester and imide group band are present at 1730 cm-1 while I amide bands of primary and secondary amides are observed at 1663 and 1607 cm-1, respectively. The asymmetric and symmetric valence bands of ester -C-O- group occur at 1250 and 1150 cm-1, respectively. The C-OH valence band of primary alcohol is observed at 1059 cm-1. Some minor products were also found in the reaction mixture obtained from 1:1 urea: EC system. Derivative (IV) was tentatively identified by the strong IR band at 2157 cm-1, which was assigned to valence band of carbodiimide fragment N C N. Carbodiimides were found to be formed upon dehydration of N,N’-disubstituted ureas [11]. 3 1150 2157 1730 1250 1059 1663 1607 Fig. 2. IR spectrum of the product of reaction between urea and EC at 1 : 1 molar ratio in the presence of 0.06 mole K2CO3/mole urea at 120 C. The product (V) was identified based on 7.0 ppm resonance at 1H-NMR spectrum of the product which was assigned to secondary amide protons in N-substituted urea with accepting groups [10]. O O C HO CH CH NH C NH CH CH OH + 2CO 2 2 2 2 2 O O O (IV) H N C NH +2CH CH 2 2 2 2 O O O C NH C +CO HO CH2 CH2 NH CH2 CH2 OH 2 (4) (V) In the reaction between urea and EC at 1:2 molar ratio a mixture of products is also found, some with preserved carbonate group (V) and others without it (IV). The 1H- NMR of this product is similar to that obtained from 1:1 system. The presence of the amine proton resonances centered at 5.4 and 6.4 ppm from (II) and (III) indicates the partial decomposition of EC and formation of mono-substituted derivatives and/or N,N’-bis(hydroxyalcoxy) derivatives of urea. The synthesis at 120 C in presence of 0.03 mole K2CO3/mole of urea lasts too long (18.5 hours), therefore the process was performed at higher concentration of catalyst (0.06 mol; Table 1, syntheses 2 and 3). During this process the ammonium carbamate sublimed into reflux condenser (the product was identified by IR spectrum). It forms in the reaction between urea and water (present in the reaction mixture due to dehydration of N,N’-disubstituted derivatives of urea with formation of carbodimide). This by-product was also formed at higher temperature irrespective of the catalyst concentration (Table 1, syntheses 4 and 5), while it was not observed under less basic conditions (in presence of 0.03 mole K2CO3/mole of urea (Table 1, synthesis 2) at lower temperatures. The percentage of ammonium carbamate did not exceed 10 wt.-%. 4 The reaction is slower in presence of DABCO catalyst instead of K2CO3; the time of reaction was 28 hours at 120 °C (Table 1, synthesis 6). The amount of ammonium carbamate and carbodiimide of by-products remains unaltered. Also the major products are the same as previous, namely (II)‚(V). Therefore the acid catalyst; zinc chloride was also tested (Table 1, synthesis 7), which is known to catalyze the reaction between amines and alkylene carbonates [12]. In the presence of this catalyst the reaction was much slower and although ammonium carbamate was not formed, the carbodiimide by-product was still present. Further studies were performed with potassium carbonate as catalyst. When 3-molar excess of EC related to urea was applied (Table 1, synthesis 8) the percentage of by-products was considerably reduced. When four-fold excess of EC was applied at 120 C (Table 1, synthesis 9) ammonium carbamate was absent. At higher temperature (140 C; Table 1, synthesis 10) also carbodiimide did not form.
Recommended publications
  • Catalysis Science & Technology
    Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/catalysis Page 1 of 10 Catalysis Science & Technology Catalysis Science & Technology RSC Publishing ARTICLE Carbonates as reactants for the production of fine chemicals: the synthesis of 2-phenoxyethanol Cite this: DOI: 10.1039/x0xx00000x P. Ziosi a,b , T. Tabanelli a, G. Fornasari, a S. Cocchi a, F. Cavani a,b,* , P. Righi a,b,* Manuscript Received, The solventless and heterogeneously catalysed synthesis of 2-phenoxyethanol (ethylene glycol monophenyl ether) via the reaction between phenol and ethylene carbonate was investigated DOI: 10.1039/x0xx00000x using Na-mordenite catalysts, as an alternative to the industrial process using ethylene oxide and homogeneous basic conditions.
    [Show full text]
  • Ethylene Glycol
    Ethylene glycol Ethylene glycol (IUPAC name: ethane-1,2-diol) is an organic Ethylene glycol compound with the formula (CH2OH)2. It is mainly used for two purposes, as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odorless, colorless, sweet-tasting, viscous liquid. Contents Production Industrial routes Biological routes Historical routes Uses Coolant and heat-transfer agent Antifreeze Precursor to polymers Other uses Dehydrating agent Hydrate inhibition Applications Chemical reactions Toxicity Environmental effects Names Notes Preferred IUPAC name References Ethane-1,2-diol External links Other names Ethylene glycol 1,2-Ethanediol Production Ethylene alcohol Hypodicarbonous acid Monoethylene glycol Industrial routes 1,2-Dihydroxyethane Ethylene glycol is produced from ethylene (ethene), via the Identifiers intermediate ethylene oxide. Ethylene oxide reacts with water to CAS Number 107-21-1 (http produce ethylene glycol according to the chemical equation: s://commonche mistry.cas.org/d C2H4O + H2O → HO−CH2CH2−OH etail?cas_rn=10 7-21-1) 3D model (JSmol) Interactive This reaction can be catalyzed by either acids or bases, or can occur image (https://ch at neutral pH under elevated temperatures. The highest yields of emapps.stolaf.e ethylene glycol occur at acidic or neutral pH with a large excess of du/jmol/jmol.ph water. Under these conditions, ethylene glycol yields of 90% can be p?model=OCC achieved. The major byproducts are the oligomers diethylene glycol, O) triethylene glycol, and tetraethylene glycol. The separation of these oligomers and water is energy-intensive. About 6.7 million tonnes 3DMet B00278 (http://w are produced annually.[4] ww.3dmet.dna.af frc.go.jp/cgi/sho A higher selectivity is achieved by use of Shell's OMEGA process.
    [Show full text]
  • US5349077.Pdf
    |||||||||||||||| USOO5349077A United States Patent (19) 11 Patent Number: 5,349,077 Doya et al. 45 Date of Patent: Sep. 20, 1994 54 PROCESS FOR PRODUCING ALKYLENE 5,003,084 3/1991 Su et al. .............................. 549/230 CARBONATES FOREIGN PATENT DOCUMENTS 75 Inventors: Masaharu Doya; Takashi Ohkawa; Yutaka Kanbara; Aksushi Okamoto; 0443758 8/1991 European Pat. Off. Kenichi Kimizuka, all of Niigata, OTHER PUBLICATIONS Japan Chemical Abstracts, vol. 82, No. 23, Jun. 9, 1975, Co 73 Assignee: Mitsubishi Gas Chemical Company, lumbus, Ohio; Sergio Fumasoni et al. Inc., Tokyo, Japan Primary Examiner-José G. Dees 21 Appl. No.: 99,461 Assistant Examiner-Joseph M. Conrad, III 22 Filed: Jul. 30, 1993 Attorney, Agent, or Firm-Wenderoth, Lind & Ponack (30) Foreign Application Priority Data (57) ABSTRACT Jul. 31, 1992 JP Japan .................................. 4-205362 A process for producing alkylene carbonates which Jul. 31, 1992 (JP) Japan .......................... ... 4-205363 comprises reacting urea and glycols described by the Jul. 31, 1992 JP Japan .......................... ... 4-205364 general formula RCH(OH) CH2OH; wherein R repre Jun. 30, 1993 JP Japan .................................. 5-161857 sents hydrogen or an alkyl group containing 1 to 4 51) Int. Cl. .............................................. CO7C 69/96 carbons, using a catalyst containing zinc, magnesium, 52 U.S. Cl. .................................... 558/260; 549/229; lead or calcium at reduced pressures. The alkylene 549/230 carbonates are produced with high yield easily using 58 Field of Search ................. 558/260; 549/229, 230 raw materials which are comparatively inexpensive with a mild reaction that does not involve explosive or 56) References Cited hazardous materials. U.S. PATENT DOCUMENTS 2,773,881 12/1956 Dunn et al.
    [Show full text]
  • Safety Data Sheet According to 1907/2006/EC, Article 31 Printing Date 01.04.2020Version Number 4 Revision: 01.04.2020
    Page 1/8 Safety data sheet according to 1907/2006/EC, Article 31 Printing date 01.04.2020Version number 4 Revision: 01.04.2020 * SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifier Trade name: 1mol/L Lithium hexafluorophosphate in (1:1:3 vol.%) Ethylene carbonate : Propylene carbonate : Dimethyl carbonate with 1wt.% Vinylene carbonate - 99,9% Article number: E020 UFI: TH30-W082-000P-86TG 1.2 Relevant identified uses of the substance or mixture and uses advised against No other important information available. Application of the substance / the mixture This product is intended for the exclusive use of Research and Development 1.3 Details of the supplier of the safety data sheet Manufacturer/Supplier: Solvionic SA 195 route d'Espagne 31036 TOULOUSE FRANCE Phone number: +33 (0)5.34.63.35.35 Further information obtainable from: HSE Department 1.4 Emergency telephone number: ORFILA (INRS): +33 (0)1.45.42.59.59 CCHST: 1-800-668-4284 (Canada & U.S.A) SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 GHS02 Flam. Liq. 3 H226 Flammable liquid and vapour. GHS08 STOT RE 1 H372 Causes damage to organs through prolonged or repeated exposure. GHS05 Skin Corr. 1B H314 Causes severe skin burns and eye damage. Eye Dam. 1 H318 Causes serious eye damage. GHS07 Acute Tox. 4 H302 Harmful if swallowed. Skin Sens. 1 H317 May cause an allergic skin reaction. 2.2 Label elements Labelling according to Regulation (EC) No 1272/2008 The product is classified and labelled according to the CLP regulation.
    [Show full text]
  • Comparative Study of Ethylene Carbonate-Based Electrolyte Decomposition at Li, Ca, and Al Anode Interfaces Joshua Young,* Peter M
    Article Cite This: ACS Appl. Energy Mater. XXXX, XXX, XXX−XXX www.acsaem.org Comparative Study of Ethylene Carbonate-Based Electrolyte Decomposition at Li, Ca, and Al Anode Interfaces Joshua Young,* Peter M. Kulick, Taylor R. Juran, and Manuel Smeu* Department of Physics, Binghamton University, Binghamton, New York 13902, United States *S Supporting Information ABSTRACT: One of the major bottlenecks to the develop- ment of alternatives to existing Li ion battery technology, such as Li metal or multivalent ion (Mg, Ca, Zn, or Al) batteries, has to do with the layer of inorganic and organic compounds that forms at the interface between the metallic anode and electrolyte via solvent and salt decomposition (the solid− electrolyte interphase or SEI). In Li metal batteries the growth of dendrites causes continual formation of new SEI, while in multivalent ion batteries the SEI does not allow for the diffusion of the ions. Finding appropriate electrolytes for such systems and gaining an understanding of SEI formation is therefore critical to the development of secondary Li metal and multivalent ion cells. In this work, we use ab initio molecular dynamics simulations to investigate the initial stages of decomposition of organic electrolytes based on ethylene carbonate (EC) and formation of the SEI on Li, Ca, and Al metal fi fi 2− surfaces. We rst nd that pure EC only decomposes to CO and C2H4O2 species on each type of surface. However, when a salt 2− molecule is introduced to form an electrolyte, a second EC decomposition route resulting in the formation of CO3 and C2H4 begins to occur; furthermore, a variety of different inorganic compounds, depending on the chemical composition of the salt, form on the surfaces.
    [Show full text]
  • Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries
    Review Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries Neha Chawla1,*, Neelam Bharti 2 and Shailendra Singh 1 1 Environmental, Health and Safety, Carnegie Mellon University, Pittsburgh, PA 15213, USA; [email protected] 2 Mellon Institute Library, Carnegie Mellon University, Pittsburgh, PA 15213, USA; [email protected] * Correspondence: [email protected] Received: 19 December 2018; Accepted: 17 January 2019; Published: 1 February 2019 Abstract: Lithium-ion batteries are the most commonly used source of power for modern electronic devices. However, their safety became a topic of concern after reports of the devices catching fire due to battery failure. Making safer batteries is of utmost importance, and several researchers are trying to modify various aspects in the battery to make it safer without affecting the performance of the battery. Electrolytes are one of the most important parts of the battery since they are responsible for the conduction of ions between the electrodes. In this paper, we discuss the different non- flammable electrolytes that were developed recently for safer lithium-ion battery applications. Keywords: lithium-ion battery; non-flammable; electrolyte; safety; battery fire 1. Introduction Rechargeable lithium-ion (Li-ion) batteries are widely used in portable electronic devices and are considered as the most potential power source for electric vehicles due to their high energy density and long cycle life. A Li-ion battery consists of a positively charged cathode, negatively charged anode, separator, electrolyte, and positive and negative current collectors. While discharging, the lithium ions travel from the anode to the cathode through the electrolyte, thus generating an electric current, and, while charging the device, lithium ions are released by the cathode and then go back to the anode.
    [Show full text]
  • A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate
    A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy Guorong V. Zhuanga,*,z Hui Yangb,*, Berislav Blizanaca, and Philip N. Ross, Jr.a,* Materials Sciences Divisiona and Environmental Energy Technologies Divisionb Lawrence Berkeley National Laboratory Berkeley, CA 94720 Abstract We present results testing the hypothesis that there is a different reaction pathway for the electrochemical reduction of PC versus EC-based electrolytes at graphite electrodes with LiPF6 as the salt in common. We examined the reduction products formed using ex-situ Fourier Transform Infrared (FTIR) spectroscopy in attenuated total reflection (ATR) geometry. The results show the pathway for reduction of PC leads nearly entirely to lithium carbonate as the solid product (and presumably propylene gas as the co-product) while EC follows a path producing a mixture of organic and inorganic compounds. Possible explanations for the difference in reaction pathway are discussed. ________________________________________________________________________ * Electrochemical Society Active Member Z Corresponding author e-mail: [email protected] 1 It is well known in the literature that there is a considerable imbalance of cathodic versus anodic total charge for the carbon/graphite negative electrode in a Li-ion battery during the first few (formation) cycles1. This charge imbalance or irreversible capacity has been attributed to solvent co-intercalation, electrolyte reduction, SEI layer formation, and other side reactions accompanying intercalation and deintercalation of carbon/graphite electrodes2. Most of this irreversible capacity occurs in the potential region > 0.5 V (vs. Li/Li+), and in the case of graphite can be distinguished from the charge for intercalation/deintercalation which produces three well-defined sharp peaks in the differential capacity curve < 0.5 V (vs.
    [Show full text]
  • Hydrothermal Conversion of Ethylene Carbonate to Ethylene Glycol
    international journal of hydrogen energy 41 (2016) 9118e9122 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/he Hydrothermal conversion of ethylene carbonate to ethylene glycol Jun Fu a, Naimeng Jiang c, Dezhang Ren a, Zhiyuan Song a,LuLia, * Zhibao Huo a,b, a School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China c School of Chemistry and Chemical Engineering, Guangxi University, 100 University Road, Nanning 530004, China article info abstract Article history: A novel process for the conversion of ethylene carbonate (EC) to ethylene glycol (EG) in high Received 13 October 2015 temperature water was investigated. As a result, even there is no external catalyst and Received in revised form additive, the reaction of EC proceeded well and provided the desired EG in 99% yield with 13 December 2015 25% water filling at 250 C for 2 h. Moreover, only CO2 as by-product was observed in the Accepted 14 December 2015 process. High temperature water exhibits an unique merits and plays an catalytic role for Available online 6 January 2016 EC conversion. From viewpoint of practice, this work provides a simple, environmentally benign, catalyst/additive-free process for the production of ethylene glycol from ethylene Keywords: carbonate. Carbon dioxide © 2015 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. Ethylene carbonate Ethylene glycol High temperature water No catalyst/additive production from petroleum-derived ethylene via hydration of Introduction the intermediate ethylene oxide [2].
    [Show full text]
  • Process for Cosynthesis of Ethylene Glycol and Dimethyl Carbonate
    ~" ' MM II II II Ml Ml II I Ml I II II I II J European Patent Office _ _ _ _ _ © Publication number: 0 255 252 B1 Office_„. europeen des brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 16.09.92 © Int. CI.5: C07C 68/06, C07C 69/96 © Application number: 87306054.5 @ Date of filing: 08.07.87 © Process for cosynthesis of ethylene glycol and dimethyl carbonate. ® Priority: 31.07.86 US 891093 © Proprietor: TEXACO DEVELOPMENT CORPO- RATION @ Date of publication of application: 2000 Westchester Avenue 03.02.88 Bulletin 88/05 White Plains, New York 10650(US) © Publication of the grant of the patent: @ Inventor: Knlfton, John Frederick 16.09.92 Bulletin 92/38 10900 Catsklll Trail Austin Texas 78750(US) © Designated Contracting States: BE DE FR GB NL © Representative: Ben-Nathan, Laurence Albert © References cited: et al EP-A- 0 000 880 Urquhart-Dykes & Lord 91 Wlmpole Street EP-A- 0 001 082 London W1M 8AH(GB) EP-A- 0 001 083 DE-A- 3 445 555 DE-B- 2 740 242 PATENT ABSTRACTS OF JAPAN, vol. 3, no. 87 (C-53) 25 July 1979 & JP-A-63023 METHODEN DER ORGANISCHEN CHEMIE vol. ^_ (HOUBEN-WEYL), 8, part 3, Georg (Q Thleme Verlag, 1952, EUGEN MUELLER et al CM m CM m m CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person Q_ may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition LLI shall be filed in a written reasoned statement.
    [Show full text]
  • Preparation of Ethylene Oxide And/Or Ethylene Carbonate Using Ethylene Carbonate As an Absorbent
    Europaisch.es Patentamt European Patent Office 0 Publi cation number: 0 024 628 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION © Application number: 80104769.7 ©mt ci 3: C 07 D 301/32 C 07 D 301/10, C 07 D 303/04 © Date of filing: 12.08.80 C 07 D 317/38 © Priority: 17.08.79 US 67580 ©Applicant: THE DOW CHEMICAL COMPANY 24.10.79 US 87841 2030 Abbott Road Post Office Box 1967 Midland, Michigan 48640(US) © Date of publication of application: © Inventor: Tsang, Albert Cheuk-kei 11.03.81 Bulletin 81/10 1718 Boulevard De Province Baton Rouge Louisiana(US) © Designated Contracting States: BE DE FR GB IT NL © Inventor: Ainsworth, Oliver Clarence 3552 Bahin Court Baton Rouge Louisiana(US) © Inventor: Raines, Dale A. 55 Harlan Lakewood ColoradofUS) © Representative: BUREAU D.A. CASALONGA 8, Avenue Percier F-75008 Paris(FR) (w) Preparation of ethylene oxide and/or ethylene carbonate using ethylene carbonate as an absorbent. Ethylene oxide (EO) separated from effluent gases from EO reactor by absorption in ethylene carbonate (EC) and sepa- rated by treating EC with inert stripping gas, i.e., CO2 or N2. Used in integrated process where EO and CO2 are reacted with strong anion-exchange resin to prepare EC, part of which is used as above absorbent for EO. The process of manufacturing ethylene oxide (EO) by oxidation of ethylene with oxygen in the vapor phase produces a product stream which is very dilute in ethylene oxide, i.e., one to two percent. The ethylene oxide is normally recovered by absorbing in water and employs a large counter-current tower for the purpose.
    [Show full text]
  • JEFFSOL Alkylene Carbonates
    HUNTSMAN Ethylene Carbonate Propylene Carbonate Butylene Carbonate UltraPureTM Ethylene Carbonate UltraPureTM Propylene Carbonate Carbonate Blends JEFFSOL® Alkylene Carbonates HUNTSMAN THE HUNTSMAN MISSION We will operate safe, clean, We have an aggressive growth efficient facilities in an philosophy which reflects the environmentally and socially spirit of free enterprise and responsible manner. maximization of long term profits, the best motives for creating We provide a work environment mutual benefits for customers, that fosters teamwork, employees, suppliers and the innovation, accountability and communities in which we are open communication. located. We will place into society assistance for those who suffer, hope for those who may need inspiration, and education for those who may feel the challenge but do not have the means. TABLE OF CONTENTS HUNTSMAN Glossary of Abbreviations ii Introduction 1 Description 2 Physical Properties 3 Applications 4 Solvents 5 Cleaners / Degreasers 7 Paint Strippers / Removers 11 Chemical Intermediates 15 Handling, Storage and Shipping Information 22 Health and Safety 25 JEFFSOL® Carbonate Literature List 28 Huntsman Sales Offices 29 HUNTSMAN GLOSSARY of ABBREVIATIONS BA Benzyl Alcohol BC 1, 2-Butylene Carbonate DB Diethylene Glycol Butyl Ether DBA Diethylene Glycol Butyl Ether Acetate DBE Dibasic Ester Mixture DMSO Dimethyl Sulfoxide DPM Dipropylene Glycol Methyl Ether EB Ethylene Glycol Butyl Ether EC Ethylene Carbonate EC-25 EC/PC (25/75 by weight) EC-50 EC/PC (50/50 by weight) EC-75 EC/PC (75/25 by weight) EEP 3-Ethoxy Ethyl Propionate EGDA Ethylene Glycol Diacetate FA Furfuryl Alcohol GBL g - Butyrolactone MEK Methyl Ethyl Ketone MIAK Methyl Isoamyl Ketone NAAC N-Amyl Acetate NMP N-Methyl-2-Pyrrolidone PB Propylene Glycol Butyl Ether PC Propylene Carbonate PM Propylene Glycol Methyl Ether PMA Propylene Glycol Methyl Ether Acetate TEG Triethylene Glycol ii INTRODUCTION HUNTSMAN Huntsman Corporation is the The JEFFSOL® Carbonates can be world's largest producer of used as "safe" and alkylene carbonates.
    [Show full text]
  • Chemical Adsorption Strategy for DMC-Meoh Mixture Separation †
    Communication Chemical Adsorption Strategy for DMC-MeOH Mixture Separation † Fucan Zhang 1,2, Ping Liu 1, Kan Zhang 1 and Qing-Wen Song 1,* molecules1 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; [email protected] (F.Z.); [email protected] (P.L.); [email protected] (K.Z.) 2 State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, Communication Chinese China University of Petroleum, Beijing 102249, China * Correspondence: [email protected] Chemical Adsorption† Dedicated Strategy to the 100th anniversary for DMC-MeOH of Chemistry at Nankai MixtureUniversity. Separation † Abstract: The effective separation of dimethyl carbonate (DMC) from its methanol mixture through Fucan Zhang 1,2 , Ping Liu 1simple,, Kan Zhang inexpensive1 and Qing-Wen and low Song energy-input1,* method is a promising and challenging field in the process of organic synthesis. Herein, a reversible adsorption strategy through the assistance of 1superbaseState Key Laboratoryand CO2 of for Coal DMC/methanol Conversion, Institute separation of Coal Chemistry, at ambient Chinese Academy condition of Sciences, was described. The process Taiyuan 030001, China; [email protected] (F.Z.); [email protected] (P.L.); [email protected] (K.Z.) was demonstrated effectively via the excellent CO2 adsorption efficiency. Notably, the protocol was 2 State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, alsoChinese suitable China to University other ofalcohol Petroleum, (i.e., Beijing monohydric 102249, China alcohol, dihydric alcohol, trihydric alcohol) mix- *tures.Correspondence: The study [email protected] provided guidance for potential separation of DMC/alcohol mixture in the † Dedicated to the 100th anniversary of Chemistry at Nankai University.
    [Show full text]