New Trends in the Conversion of CO2 to Cyclic Carbonates

Total Page:16

File Type:pdf, Size:1020Kb

New Trends in the Conversion of CO2 to Cyclic Carbonates catalysts Review New Trends in the Conversion of CO2 to Cyclic Carbonates Erivaldo J.C. Lopes, Ana P.C. Ribeiro * and Luísa M.D.R.S. Martins * Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; [email protected] * Correspondence: [email protected] (A.P.C.R.); [email protected] (L.M.D.R.S.M.); Tel.: +351-21-841-9201 (A.P.C.R.); +351-21-841-9264 (L.M.D.R.S.M.) Received: 1 April 2020; Accepted: 26 April 2020; Published: 27 April 2020 Abstract: This work concerns recent advances (mainly in the last five years) in the challenging conversion of carbon dioxide (CO2) into fine chemicals, in particular to cyclic carbonates, as a meaningful measure to reduce CO2 emissions in the atmosphere and subsequent global warming effects. Thus, efficient catalysts and catalytic processes developed to convert CO2 into different chemicals towards a more sustainable chemical industry are addressed. Cyclic carbonates can be produced by different routes that directly, or indirectly, use carbon dioxide. Thus, recent findings on CO2 cycloaddition to epoxides as well as on its reaction with diols are reviewed. In addition, indirect sources of carbon dioxide, such as urea, considered a sustainable process with high atom economy, are also discussed. Reaction mechanisms for the transformations involved are also presented. Keywords: carbon dioxide; cyclic carbonate; diol; epoxide; catalysis; CO2 conversion 1. Introduction Modern life is sustained by an unremitting stream of energy delivered to final users as fuels, electricity and heat. Currently, over 80% of the world’s primary energy supply is provided by fossil fuels carbon sources (oil, coal or natural gas). Since the industrial revolution, i.e., for the last two centuries, fossil fuels, generated from biomass over millions of years, have been extensively used in anthropic activities, thereby increasing carbon dioxide emission into the atmosphere. Over the last few decades it has become clear that carbon dioxide released in this way is affecting the climate stability of the biosphere (see Figure1) with countless consequences. Scientists predict social, environmental, economic and health issues if the actual trend continues: melting glaciers, droughts, early snowmelt, extreme weather changing, wildfires, water shortages, rising sea level, new pests, infectious diseases and air pollution, just to mention a few [1–4]. In December 2015, the United Nations conference on climate change (the 21st Conference of the Parties, COP21) brought public awareness to the steps required to slow down global warming and set a framework to mitigate climate change by agreeing on 17 sustainable development goals. Moreover, the Intergovernmental Panel on Climate Change (IPCC) set as a goal to keep the warming under 2 ◦C above preindustrial levels and pursuing efforts to limit the temperature increase to 1.5 ◦C above preindustrial levels [3]. Thus, it is urgent to adopt behaviors to reduce anthropogenic emissions of carbon dioxide. Among all the measures, there are four considered more significant: (i) the reduction of energy consumption by increasing its efficiency; (ii) the replacement of fossil fuels with renewable energy sources; (iii) CO2 capture and storage (CCS) and (iv) CO2 capture and usage (CCU). Catalysts 2020, 10, 479; doi:10.3390/catal10050479 www.mdpi.com/journal/catalysts Catalysts 2020, 10, 479 2 of 14 Catalysts 2020, 10, x FOR PEER REVIEW 2 of 15 Figure 1.1. EvolutionEvolution of of Earth’s Earth’s average average temperature temperature in comparison in comparison with thewith atmospheric the atmospheric carbon dioxidecarbon dioxideover the lastover decades. the last Reproduced decades. Reproduced with permission with frompermission [4], copyright from 2020,[4], c NOAAopyright Climate.gov 2020, NOAA. Climate.gov. While CCS is currently the most efficient way to reduce CO2 emissions in the atmosphere, the recyclingIn Decemberof carbon 2015, dioxide,the United that Nations is, CO 2conferenceconversion on into climate valuable change chemicals (the 21st would Conference be the of most the promisingParties, COP21) one asbrought it decreases public thisawareness greenhouse to the gas steps emissions required making to slow itdown a part global of the warming solution and as setcarbon a framework feedstock [to1, 5mitigate]. In fact, climate as a readily change available, by agreein cost-eg onfficient, 17 sustainable non-toxic, development non-flammable goals and. Moreover,sustainable the carbon Intergovernmental feedstock, CO Panel2 is an on attractive Climate Change raw material (IPCC) as set a C1-buildingas a goal to keep block. the However,warming underCO2 is 2 also°C above a challenging preindustrial molecule levels toand activate pursuing as itefforts is thermodynamically to limit the temperature stable increase (carbon to is 1.5 in ° itsC abovehighest preindustri oxidational state) levels and [3]. kinetically inert (requires the input of a large amount of energy) in many knownThus, transformations. it is urgent to adopt behaviors to reduce anthropogenic emissions of carbon dioxide. AmongOne all approach the measures, to surpass there the are carbon four considered dioxide chemical more inertiasignificant: would (i) bethe the reduction use of energy-rich of energy consumptionsubstrates such by asincreasing epoxides its or efficiency; aziridines ( thatii) the would replacement defeat the of highfossil energetic fuels with activation renewable barrier energy to sources;originate (iii heterocycles.) CO2 capture Strong and storage nucleophiles (CCS) (e.g., and Grignard(iv) CO2 capture reagents, and organoboranes, usage (CCU). organolithium or organozincWhile CCS compounds) is currently could the also most be efficient used to formway to new reduce C–C C bondsO2 emissions with carbon in the dioxide. atmosphere However,, the recyclingoften such of procedures carbon dioxide require, highthat pressuresis, CO2 conversion and harsh reactioninto valuable conditions, chemicals thus limiting would theirbe the practical most promisingapplications one in theas it chemical decreas industry.es this greenhouse gas emissions making it a part of the solution as carbonTo feedstock overcome [ CO1,5].2 ’sIn kinetic fact, a stability,s a readily catalysts available, and cost catalytic-efficient, processes non-toxic have, non been-flamma developedble and to quicklysustainable achieve carbon the reactionfeedstock, equilibrium CO2 is an allowing attractive the reactionraw material to take as place a C1 under-building mild block. conditions. However, Thus, COa significant2 is also a number challenging of successful molecule researches to activate on theas it coordination is thermodynamically chemistry of stable CO2 with(carbon the ultimateis in its highestaim of discoveringoxidation state) new catalystsand kinetically for CO inert2 conversion (requires has the been input reported of a large [6] (seeamount Scheme of 1energy)). In this in manyrespect, known homogeneous transformations catalysis. is important and its potential for CO2 conversion was already discussed in severalOne approach reviews [ 7to– 10surpass]. Added-value the carbon chemicals dioxide chemical including inertia organic would carbonates be the [use11] urethanesof energy- [rich12], substratescarbamates such [10], as lactones epoxides [10 or], pyrenesaziridines [10 that], formic would acid defeat and the its high derivatives energetic [13 activation] are well-known barrier to originatebe synthesized heterocycles. by homogeneous Strong nucleophiles catalytic processes. (e.g., Grignard However, reagents, onlya organoboranes few energy-effi, cientorganolithium processes oremploying organozinc CO 2compounds)have been commercialized. could also be used to form new C–C bonds with carbon dioxide. However,Two main often approaches such procedures to convert require carbon high dioxide pressures into and fine harsh chemicals reaction can conditions, be considered thus according limiting theirto their practical energetics. applications One is the in the reductive chemical CO industry.2 conversion that requires a large amount of energy and quiteTo powerful overcome reducing CO2’s agents,kinetic suchstability, as hydrogen, catalysts andand itcatalytic is used toprocesses produce have chemicals been likedeveloped methanol to quicklyor formic achieve acid [8 the,14]. reaction The other equilibrium one is non-reductive allowing the (the reaction+4-oxidation to take stateplace of under carbon mild is maintained), conditions. Thus,either a moderately significant endothermicnumber of successful or exothermic, research andes widely on the used coordination to provide chemistry products of like CO carbonates,2 with the polycarbonates,ultimate aim of discovering urea, polyurethanes, new catalysts carboxylates, for CO2 pyrenes,conversion lactones has been or carbamatesreported [6 []8 (see,10,15 Scheme,16]. 1). In this respect, homogeneous catalysis is important and its potential for CO2 conversion was already discussed in several reviews [7–10]. Added-value chemicals including organic carbonates [11] urethanes [12], carbamates [10], lactones [10], pyrenes [10], formic acid and its derivatives [13] are Catalysts 2020, 10, x FOR PEER REVIEW 3 of 15 well-known to be synthesized by homogeneous catalytic processes. However, only a few energy-efficient processes employing CO2 have been commercialized. Catalysts 2020, 10, x FOR PEER REVIEW 3 of 15 Catalysts 2020, 10, 479
Recommended publications
  • Catalysis Science & Technology
    Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/catalysis Page 1 of 10 Catalysis Science & Technology Catalysis Science & Technology RSC Publishing ARTICLE Carbonates as reactants for the production of fine chemicals: the synthesis of 2-phenoxyethanol Cite this: DOI: 10.1039/x0xx00000x P. Ziosi a,b , T. Tabanelli a, G. Fornasari, a S. Cocchi a, F. Cavani a,b,* , P. Righi a,b,* Manuscript Received, The solventless and heterogeneously catalysed synthesis of 2-phenoxyethanol (ethylene glycol monophenyl ether) via the reaction between phenol and ethylene carbonate was investigated DOI: 10.1039/x0xx00000x using Na-mordenite catalysts, as an alternative to the industrial process using ethylene oxide and homogeneous basic conditions.
    [Show full text]
  • Oregon Department of Human Services HEALTH EFFECTS INFORMATION
    Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: Department of Human Services ENVIRONMENTAL TOXICOLOGY SECTION Office of Environmental Public Health OCTOBER, 1998 CALCIUM CARBONATE "lime, limewater” For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information CALCIUM CARBONATE, "lime, limewater@ Page 2 SYNONYMS: Lime, ground limestone, dolomite, sugar lime, oyster shell, coral shell, marble dust, calcite, whiting, marl dust, putty dust CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: CaCO3 - White solid, crystals or powder, may draw moisture from the air and become damp on exposure - Odorless, chalky, flat, sweetish flavor (Do not confuse with "anhydrous lime" which is a special form of calcium hydroxide, an extremely caustic, dangerous product. Direct contact with it is immediately injurious to skin, eyes, intestinal tract and respiratory system.) WHERE DOES CALCIUM CARBONATE COME FROM? Calcium carbonate can be mined from the earth in solid form or it may be extracted from seawater or other brines by industrial processes. Natural shells, bones and chalk are composed predominantly of calcium carbonate. WHAT ARE THE PRINCIPLE USES OF CALCIUM CARBONATE? Calcium carbonate is an important ingredient of many household products. It is used as a whitening agent in paints, soaps, art products, paper, polishes, putty products and cement. It is used as a filler and whitener in many cosmetic products including mouth washes, creams, pastes, powders and lotions.
    [Show full text]
  • Download Author Version (PDF)
    Chemical Science Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/chemicalscience Page 1 of 5 Chemical Science Uptake of one and two molecules of CO2 by the molybdate dianion: a soluble, molecular oxide model system for carbon dioxide fixation†‡ Ioana Knopf,a Takashi Ono,a Manuel Temprado,b Daniel Tofan,a and Christopher C. Cummins ∗;a Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX First published on the web Xth XXXXXXXXXX 200X DOI: 10.1039/b000000x 2− Tetrahedral [MoO4] readily binds CO2 at room tem- herein we report the finding that molybdate absorbs not just perature to produce a robust monocarbonate complex, one but two equivalents of CO2 (the second, reversibly) to- 2 2− [MoO3(k -CO3)] , that does not release CO2 even at gether with complete characterization including single-crystal modestly elevated temperatures (up to 56 ◦C in solution X-ray diffraction studies of the resulting mono- and dicarbon- and 70 ◦C in the solid state).
    [Show full text]
  • Ethylene Glycol
    Ethylene glycol Ethylene glycol (IUPAC name: ethane-1,2-diol) is an organic Ethylene glycol compound with the formula (CH2OH)2. It is mainly used for two purposes, as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odorless, colorless, sweet-tasting, viscous liquid. Contents Production Industrial routes Biological routes Historical routes Uses Coolant and heat-transfer agent Antifreeze Precursor to polymers Other uses Dehydrating agent Hydrate inhibition Applications Chemical reactions Toxicity Environmental effects Names Notes Preferred IUPAC name References Ethane-1,2-diol External links Other names Ethylene glycol 1,2-Ethanediol Production Ethylene alcohol Hypodicarbonous acid Monoethylene glycol Industrial routes 1,2-Dihydroxyethane Ethylene glycol is produced from ethylene (ethene), via the Identifiers intermediate ethylene oxide. Ethylene oxide reacts with water to CAS Number 107-21-1 (http produce ethylene glycol according to the chemical equation: s://commonche mistry.cas.org/d C2H4O + H2O → HO−CH2CH2−OH etail?cas_rn=10 7-21-1) 3D model (JSmol) Interactive This reaction can be catalyzed by either acids or bases, or can occur image (https://ch at neutral pH under elevated temperatures. The highest yields of emapps.stolaf.e ethylene glycol occur at acidic or neutral pH with a large excess of du/jmol/jmol.ph water. Under these conditions, ethylene glycol yields of 90% can be p?model=OCC achieved. The major byproducts are the oligomers diethylene glycol, O) triethylene glycol, and tetraethylene glycol. The separation of these oligomers and water is energy-intensive. About 6.7 million tonnes 3DMet B00278 (http://w are produced annually.[4] ww.3dmet.dna.af frc.go.jp/cgi/sho A higher selectivity is achieved by use of Shell's OMEGA process.
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • US5349077.Pdf
    |||||||||||||||| USOO5349077A United States Patent (19) 11 Patent Number: 5,349,077 Doya et al. 45 Date of Patent: Sep. 20, 1994 54 PROCESS FOR PRODUCING ALKYLENE 5,003,084 3/1991 Su et al. .............................. 549/230 CARBONATES FOREIGN PATENT DOCUMENTS 75 Inventors: Masaharu Doya; Takashi Ohkawa; Yutaka Kanbara; Aksushi Okamoto; 0443758 8/1991 European Pat. Off. Kenichi Kimizuka, all of Niigata, OTHER PUBLICATIONS Japan Chemical Abstracts, vol. 82, No. 23, Jun. 9, 1975, Co 73 Assignee: Mitsubishi Gas Chemical Company, lumbus, Ohio; Sergio Fumasoni et al. Inc., Tokyo, Japan Primary Examiner-José G. Dees 21 Appl. No.: 99,461 Assistant Examiner-Joseph M. Conrad, III 22 Filed: Jul. 30, 1993 Attorney, Agent, or Firm-Wenderoth, Lind & Ponack (30) Foreign Application Priority Data (57) ABSTRACT Jul. 31, 1992 JP Japan .................................. 4-205362 A process for producing alkylene carbonates which Jul. 31, 1992 (JP) Japan .......................... ... 4-205363 comprises reacting urea and glycols described by the Jul. 31, 1992 JP Japan .......................... ... 4-205364 general formula RCH(OH) CH2OH; wherein R repre Jun. 30, 1993 JP Japan .................................. 5-161857 sents hydrogen or an alkyl group containing 1 to 4 51) Int. Cl. .............................................. CO7C 69/96 carbons, using a catalyst containing zinc, magnesium, 52 U.S. Cl. .................................... 558/260; 549/229; lead or calcium at reduced pressures. The alkylene 549/230 carbonates are produced with high yield easily using 58 Field of Search ................. 558/260; 549/229, 230 raw materials which are comparatively inexpensive with a mild reaction that does not involve explosive or 56) References Cited hazardous materials. U.S. PATENT DOCUMENTS 2,773,881 12/1956 Dunn et al.
    [Show full text]
  • N,N-Dimethylformamide
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 31 N,N-DIMETHYLFORMAMIDE Please note that the layout and pagination of this pdf file are not identical to those of the printed CICAD First draft prepared by G. Long and M.E. Meek, Environmental Health Directorate, Health Canada, and M. Lewis, Commercial Chemicals Evaluation Branch, Environment Canada Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 03-Sep-2009 Revision Date 17-Jan-2018 Revision Number 4 1. Identification Product Name N,N-Dimethylformamide Cat No. : D131-1; D131-4 CAS-No 68-12-2 Synonyms DMF Recommended Use Laboratory chemicals. Uses advised against Not for food, drug, pesticide or biocidal product use Details of the supplier of the safety data sheet Company Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100 Emergency Telephone Number CHEMTRECÒ, Inside the USA: 800-424-9300 CHEMTRECÒ, Outside the USA: 001-703-527-3887 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Flammable liquids Category 3 Acute dermal toxicity Category 4 Acute Inhalation Toxicity - Vapors Category 4 Serious Eye Damage/Eye Irritation Category 2 Reproductive Toxicity Category 1B Specific target organ toxicity (single exposure) Category 3 Target Organs - Respiratory system, Central nervous system (CNS). Label Elements Signal Word Danger Hazard Statements Flammable liquid and vapor Harmful in contact with skin Causes serious eye irritation Harmful if inhaled May cause respiratory irritation May cause drowsiness or dizziness May damage the unborn child ______________________________________________________________________________________________ Page 1 / 8 N,N-Dimethylformamide Revision Date 17-Jan-2018 ______________________________________________________________________________________________ Precautionary Statements Prevention Obtain special instructions before use Do not handle until all safety precautions have been read and understood Use personal protective equipment as required Use only outdoors or in a well-ventilated area Wash face, hands and any exposed skin thoroughly after handling Wear eye/face protection Do not breathe dust/fume/gas/mist/vapors/spray Keep away from heat/sparks/open flames/hot surfaces.
    [Show full text]
  • Synergistic Effect of 2-Acrylamido-2-Methyl-1-Propanesulfonic Acid on the Enhanced Conductivity for Fuel Cell at Low Temperature
    membranes Article Synergistic Effect of 2-Acrylamido-2-methyl- 1-propanesulfonic Acid on the Enhanced Conductivity for Fuel Cell at Low Temperature Murli Manohar * and Dukjoon Kim * School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 16419, Korea * Correspondence: [email protected] (M.M.); [email protected] (D.K.) Received: 3 November 2020; Accepted: 10 December 2020; Published: 15 December 2020 Abstract: This present work focused on the aromatic polymer (poly (1,4-phenylene ether-ether-sulfone); SPEES) interconnected/ cross-linked with the aliphatic monomer (2-acrylamido -2-methyl-1-propanesulfonic; AMPS) with the sulfonic group to enhance the conductivity and make it flexible with aliphatic chain of AMPS. Surprisingly, it produced higher conductivity than that of other reported work after the chemical stability was measured. It allows optimizing the synthesis of polymer electrolyte membranes with tailor-made combinations of conductivity and stability. Membrane structure is characterized by 1H NMR and FT-IR. Weight loss of the membrane in Fenton’s reagent is not too high during the oxidative stability test. The thermal stability of the membrane is characterized by TGA and its morphology by SEM and SAXS. The prepared membranes improved 1 proton conductivity up to 0.125 Scm− which is much higher than that of Nafion N115 which is 1 0.059 Scm− . Therefore, the SPEES-AM membranes are adequate for fuel cell at 50 ◦C with reduced relative humidity (RH). Keywords: 2-acrylamido-2-methyl-1-propanesulfonic; proton-exchange membrane; conductivity; cross-linking; temperature 1. Introduction Recently, lots of polymer electrolyte membranes have been prepared from the sulfonation of aromatic polymers such as poly(arylene ether sulfone) [1–4] and modified poly(arylene ether sulfone) [5–7] for the application of electrodialysis and fuel cells as their rigid-rod backbone structures are basically quite stable in thermal and mechanical aspects.
    [Show full text]
  • Divergent Synthesis of Cyclopropane-Containing Fragments and Lead-Like Compounds for Drug Discovery
    Divergent Synthesis of Cyclopropane-Containing Fragments and Lead-Like Compounds for Drug Discovery A Thesis submitted by Stephen John Chawner In partial fulfilment of the requirement for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry Imperial College London South Kensington London SW7 2AZ United Kingdom 2017 1 I confirm that the work presented within this document is my own. Clear acknowledgement has been made when referring to the work of others, or where help has been received. The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 2 Acknowledgements Firstly, I would like to thank Imperial College London and Eli Lilly whose combined generosity through a CASE award made my PhD financially possible. I would like to thank my academic supervisor Dr James Bull for providing me with the opportunity to undertake a PhD in his group. I am grateful for the chemistry knowledge that he has shared, his encouragement to present at conferences and the freedom to follow new project ideas. In addition to funding, the CASE award provided me with the opportunity to collaborate with Dr Manuel Cases-Thomas at Erl Wood. Manuel was a constant source of enthusiasm throughout my PhD and has been a joy to work with.
    [Show full text]