Non-Fossil Fuel Process for Production of Hydrogen and Oxygen

Total Page:16

File Type:pdf, Size:1020Kb

Non-Fossil Fuel Process for Production of Hydrogen and Oxygen United States Patent mi [in 3,802,993 von Fredersdorff, deceased et al. [45] Apr. 9, 1974 [54] NON-FOSSIL FUEL PROCESS FOR 86,248 1/1869 Phillips 423/579 PRODUCTION OF HYDROGEN AND OTHER PUBLICATIONS OXYGEN James V. Quagliano, Chemistry Second Edition, Au- [75] Inventors: Claus George von Fredersdorff, gust, 1963, Prentice-Hall Inc., pp. 108-117. deceased, late of Oak Park, 111.; by George C. von Fredersdorff, Primary Examiner—Harvey E. Behrend administrator, Des Plaines, 111. Attorney, Agent, or Firm—Molinare, Allegretti, Newitt [73] Assignee: Institute of Gas Technology, & Witcoff Chicago, 111. [22] Filed: Dec. 27, 1971 [57] ABSTRACT [21] Appl. No.. 211,960 Hydrogen and oxygen production by fissiochemical decomposition of carbon dioxide to produce carbon monoxide and oxygen, followed by subsequent separa- [52] U.S. CI 176/37, 176/39, 423/219, tion of the oxygen from the carbon monoxide, and 423/579, 423/658 production of hydrogen by the action of steam on iron [51] Int. CI G21c 9/00 at elevated temperature followed by regeneration of [58] Field of Search 176/10, 37, 38, 39, 92 R; the product iron oxide by carbon monoxide as sepa- 204/129; 423/648, 656, 657, 579, 594, 219, rated from the fissiochemical decomposition products 248; 252/301.1; 23/204, 221, 210-214 issuing from the nuclear reactor. The oxygen may be separated from the fissiochemical decomposition [56] References Cited products by the formation of metal oxide by reaction UNITED STATES PATENTS with reactive metals such as iron, chromium, manga- 2,558,756 7/1951 Jackson et al 423/579 nese and mercury. The process also employs steps for 2,671,013 3/1954 Watson 423/657 preventing build-up of oxygen concentrations to ex- 3,228,850 1/1966 Fellows 252/301.1 R plosive levels, steps for recovery of radioisotopes, and 3,335.062 8/1967 Feates et a! 176/92 R the generation of steam. 3,442,620 5/1969 Huebler et al .....423/658 3,535,082 10/1970 Nurnberg et al 423/657 18 Claims, 1 Drawing Figure HYDROGEN A? onro? PURGE —* 62 dS MAKE-OP PATENTEOAPR 9 1974 3.802.993 -N MAKE-UP HYDROGEN- COZ MAKE-UP- 2 SI AS MAKE-UP INVENTOR: CLAUS GEORGE VONFREDERSDORFF BY ATT'YS 3,802,993 1 2 NON-FOSSIL FUEL PROCESS FOR PRODUCTION OF HYDROGEN AND OXYGEN SUMMARY OF THE INVENTION According to this invention, hydrogen and oxygen is produced by fissiochemical decomposition of carbon FIELD OF THE INVENTION 5 dioxide to yield carbon monoxide and oxygen. This is This invention relates to a process for generation of followed by separation of the oxygen from the carbon hydrogen and oxygen from water and involving fissio- monoxide. Thereafter hydrogen is produced by the ac- chemical decomposition of carbon dioxide. The hydro- tion of steam on iron at elevated temperature wherein gen produced may be used as a fuel to augment fossil the product iron oxide is regenerated by the carbon fuel supplies which are being rapidly depleted. The ox- 10 monoxide which was separated from the fissiochemical ygen may be used in a variety of industrial processes, decomposition products issuing from the nuclear reac- such as steel making, glass making, and the like. tor. The oxygen may be separated from the fissiochemi- cal decomposition products by the formation of metal BACKGROUND oxide by reaction with reactive metals such as iron, Attempts to produce hydrogen gas by the reduction 15 chromium, manganese, mercury and barium. The pro- of water in chemical nuclear reactors have been unsuc- cess also employs steps for preventing build-up of oxy- cessful primarily because the decomposition of water in gen concentrations to explosive levels, the recovery of such reactors yields an explosive mixture of hydrogen radioisotopes, and the generation of steam. and oxygen. Further, the separation of the two gases is 20 DETAILED DESCRIPTION OF THE PREFERRED extremely difficult. Chemical scavenging of either of EMBODIMENT the two gases tends to induce an explosion of the un- separated mixture. Likewise, purely mechanical-ther- Referring now to the FIGURE, letters A, B and C modynamic separating techniques such as palladium- refer to the three major sections of the entire system: foil-diffusers also produce a similar effect. A refers to the nuclar fissiochemical decomposition of 25 C0 section, B refers to the oxygen rcovery section, The purpose of producing hydrogen by action of nu- 2 and C refers to the hydrogen production section. clear energy is to augment the rapidly depleting sources of fossil fuel supplies. In addition, sources of hydrogen In Section A, under the influence of nuclear fission are needed for applications in fuel cell technology, in- energy, carbon dioxide chemically decomposes into its dustrial processes, and the like. monoxide and oxygen via the overall reaction: 30 CO i CO + % 0 .1 In contrast to prior nuclear energy generation of hy- g Ionizatio 2 drogen, conventional water-electrolysis hydrogen gen- Carbon dioxide is preferably decomposed in this sec- tion by direct exposure to high-velocity fission frag- erating processes effectively separate the oxygen of the ments. The ionizing ability of these fragments strips water from the hydrogen by actual physical separtion atomic oxygen from the dioxide. The nuclear fissio- through production of the two components at different 35 chemical decomposition Section A comprises an as- locations. In steam-hydrocarbon processes or steam- sembly 1 having an exterior neutron reflector shielding metal processes the two components are separated by 2, and a centrally disposed nuclear reactor Section 3. chemical binding, which requires further processing to The nuclear reactor Section 3 is cooled by the carbon release the desired products. These processes however dioxide incoming through line 4 which moderates the utilize fossil fuels, generally in excess of the fuel value 40 temperature of the reactor to run at about 1,000° to achieved in the hydrogen production. 1,100°F. Disposed between the central nuclear reactor section core 3, and the outer neutron reflector shield- OBJECTS OF THIS INVENTION ing 2 is a COz decomposition section or sections 5, Therefore, it is an object of this invention to produce which operate at about 600°F. hydrogen from water without the use of fossil fuel as 45 In operation, the carbon dioxide to be ionizingly de- either a reactant or a source of power. composed in the nuclear fissiochemical decomposition It is another object to provide a method of producing Section A comes in through line 6 and passes into the hydrogen as a fuel from water and carbon dioxide, decomposition sections 5 and 5'. The inlet C02 is ap- which process employs nuclear energy without the proximately 400°F., but this temperature may be varied prior art dangers, inefficiences and difficulties. to provide optimum process conditions in Section C. In It is another object of this invention to provide a the COz decomposition sections 5 and 5', the ionizing novel process of producing both hydrogen and oxygen radiation and temperature operate to decompose the from carbon dioxide and water utilizing nuclear energy C02 to carbon monoxide and oxygen pursuant to reac- in a safe, easily controlled process. 55 tion 1 above. At the same time, C02 gas being recycled It is another object of this invention to provide a nu- from line 4 moderates the central nuclear reactor sec- clear energy-utilizing process which produces as prod- tion 3, which is of conventional design. Recycle COz is ucts from water and carbon dioxide, hydrogen, oxygen, exhausted out line 7, and returned to other portions of isotopes and steam. the process system as described below. Make-up C02 Still a further object of this invention will be apparent 6Q may be added to the entire process convieniehtly at that stage through line 8, or at such other plate as will assist from the description which follows. in optimizing the overall process. The following detailed description has reference to a drawing in which: In the C02 decomposition sections, the ionizing radi- The FIGURE shows one embodiment, in schematic ation may also result in the formation of carbon and flow sheet form, of a process for hydrogen and oxygen 65 carbon sub-oxide deposits via a sequence of reactions production from nuclear decomposition of carbon di- as follows: oxide and the utilization of water as a hydrogen source. CO, ionization C + 2 O — ,2 C02 ionization CO + O — ,3 3,802,993 3 4 CO + C thermal C20— ,4 The C02 decomposition stream leaves the reactor via C20 + CO thermal c302 — , 5 the lines 11 and 11' at temperature below 1,000° F. and Carbonaceous deposits are undesirable in the process preferably in the range of 500-700° F., e.g., about 600° since they hinder the continuous operation of the nu- F. Unreacted C02 in this stream is eventually recycled clear reactor carbon dioxide decomposition section. A 5 to the reactor after passing through the oxygen recov- process of the present invention eliminates or mini- ery process system B. A portion of this COz recycle mizes the elemental carbon and carbon suboxide for- stream, which is separate from C02 recycle stream 4, mation through the use of a gasiform inhibitor such as 7, reenters the nuclcar reactor in a temperature range nitrogen or nitrogen dioxide. of from 200° to 400° F, preferably 300° F, via lines 13 While there is no desire to be bound by theory, it is 10 and 14 as described in more detail below. This direct through that the mechanism for the inhibition is as fol- recycle of low oxygen content gas directly from the ox- lows: ygen recovery system B assists in preventing buildup of N2 ionization*2N 6 oxygen concentration to explosive levels in the decom- • • N + O thermal NO 7 position section of the reactor assembly.
Recommended publications
  • Oregon Department of Human Services HEALTH EFFECTS INFORMATION
    Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: Department of Human Services ENVIRONMENTAL TOXICOLOGY SECTION Office of Environmental Public Health OCTOBER, 1998 CALCIUM CARBONATE "lime, limewater” For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information CALCIUM CARBONATE, "lime, limewater@ Page 2 SYNONYMS: Lime, ground limestone, dolomite, sugar lime, oyster shell, coral shell, marble dust, calcite, whiting, marl dust, putty dust CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: CaCO3 - White solid, crystals or powder, may draw moisture from the air and become damp on exposure - Odorless, chalky, flat, sweetish flavor (Do not confuse with "anhydrous lime" which is a special form of calcium hydroxide, an extremely caustic, dangerous product. Direct contact with it is immediately injurious to skin, eyes, intestinal tract and respiratory system.) WHERE DOES CALCIUM CARBONATE COME FROM? Calcium carbonate can be mined from the earth in solid form or it may be extracted from seawater or other brines by industrial processes. Natural shells, bones and chalk are composed predominantly of calcium carbonate. WHAT ARE THE PRINCIPLE USES OF CALCIUM CARBONATE? Calcium carbonate is an important ingredient of many household products. It is used as a whitening agent in paints, soaps, art products, paper, polishes, putty products and cement. It is used as a filler and whitener in many cosmetic products including mouth washes, creams, pastes, powders and lotions.
    [Show full text]
  • Thermochemical Conversion of Biomass in the Presence of Molten Alkali-Metal Carbonates Under Reducing Environments of N2 and CO2
    energies Article Thermochemical Conversion of Biomass in the Presence of Molten Alkali-Metal Carbonates under Reducing Environments of N2 and CO2 Tahereh Jalalabadi, Behdad Moghtaderi and Jessica Allen * School of Chemical Engineering, University of Newcastle, Callaghan, NSW 2308, Australia; [email protected] (T.J.); [email protected] (B.M.) * Correspondence: [email protected]; Tel.: +612-40-339-359 Received: 15 September 2020; Accepted: 12 October 2020; Published: 15 October 2020 Abstract: The impact of N2 and CO2 atmospheres on the interaction between Eucalyptus pilularis biomass and a ternary molten carbonate eutectic (Li2CO3: Na2CO3:K2CO3) has been investigated at 600 ◦C and 900 ◦C. For lower temperature conversion under CO2, prevention of volatile release in the eutectic treated biomass is slightly higher than under N2 injection; however, similar bubble-shaped morphology of the remnant char is observed under both carrier gases. By increasing the temperature to 900 ◦C under CO2, the reverse Boudouard reaction begins to consume carbon fuel, while molten carbonate gasification also accelerates the reaction to a lower temperature set point (shifted from ~735 ◦C to ~640 ◦C). The mass loss of carbonate under CO2 and N2 at 900 ◦C is 0 (negligible) and 18 wt.%, respectively. In the absence of carbon particles, the decomposition of carbonate to M2O (l) and CO2 (g), as well as molten salt vaporization, are the sole potential routes of weight loss in an inert gas. Previous observations of biomass and eutectic mixture thermochemical conversion under N2 have suggested carbon/carbonate gasification is dominant at elevated temperatures, with production of CO expected.
    [Show full text]
  • Synthesis and Exploratory Deposition Studies of Isotetrasilane and Reactive Intermediates for Epitaxial Silicon
    This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. Article Cite This: Inorg. Chem. 2019, 58, 3050−3057 pubs.acs.org/IC Synthesis and Exploratory Deposition Studies of Isotetrasilane and Reactive Intermediates for Epitaxial Silicon ,† † † † ‡ Barry Arkles,* Youlin Pan, Fernando Jove, Jonathan Goff, and Alain Kaloyeros † Gelest Inc., Morrisville, Pennsylvania 19067, United States ‡ SUNY Polytechnic Institute, Albany, New York 12203, United States ABSTRACT: A synthetic method is presented for the production of isotetrasilane, a higher order perhydridosilane, with the purity and volume necessary for use in extensive studies of the chemical vapor deposition (CVD) of epitaxial silicon (e-Si) thin films. The chemical characteristics, thermodynamic properties, and epitaxial film growth of isotetrasilane are compared with those of other perhydridosi- lanes. A film-growth mechanism distinct from linear perhy- ≤ dridosilanes H(SiH2)nH, where n 4, is reported. Preliminary findings are summarized for CVD of both unstrained e-Si and strained e-Si doped with germanium (Ge) and carbon (C) employing isotetrasilane as the source precursor at temper- atures of 500−550 °C. The results suggest that bis- (trihydridosilyl)silylene is the likely deposition intermediate under processing conditions in which gas-phase depletion reactions are not observed. ■ INTRODUCTION such as trisilane. However, the latter was observed to generate As emerging integrated chip (IC) and solar cell technologies gas-phase particles (silicon hydride clusters) due to its much continue to reduce individual device feature sizes, chemical higher reactivity and lower dissociation energy in comparison 5 vapor deposition (CVD) of epitaxial silicon (e-Si) has emerged to silane and disilane.
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • Kinetics of the Uncatalyzed, Alkaline Decomposition of Hydrogen Peroxide Trice Walter Haas Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1960 Kinetics of the uncatalyzed, alkaline decomposition of hydrogen peroxide Trice Walter Haas Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Haas, Trice Walter, "Kinetics of the uncatalyzed, alkaline decomposition of hydrogen peroxide " (1960). Retrospective Theses and Dissertations. 2645. https://lib.dr.iastate.edu/rtd/2645 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. KINETICS OF THE UN CATALYZED, ALKALINE DECOMPOSITION OF HYDROC-EN PEROXIDE by Trice Walter Haas A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa I960 il TABLE OP CONTENTS Page I. INTRODUCTION 1 II. EXPERIMENTAL 8 A. Apparatus 8 B. Quenching Technique 9 C. Analytical Techniques 10 D. Purification Methods 13 III. RESULTS AND DISCUSSION 20 A. The Homogeneous, Uncatalyzed Decomposition 20 1» General 20 2. Impurity effects 20 3* Surface effects 22 L Effect of light 27 5. Inert ions 28 6. Experimental results and discussion 29 7* Sources of error $1 B.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • An Example of Decomposition Reaction
    An Example Of Decomposition Reaction Wes remains unhorsed after Thatch stiffen tantalisingly or holings any Tissot. Certificated Wye sometimes deoxygenated any layabout chats botanically. Rab sicks sunnily if dirtier Apostolos unthaw or philter. It catches fire or exothermic reaction is described by energy input it later as decomposition of an reaction to logged in the case for the number of food. A decomposition reaction produces multiple products from every single reactant Combustion reactions are the combination of some compound whereas oxygen would make oxides of cotton other elements as products although nitrogen atoms react to make N 2. You dive into silver metal is an example of reaction! In chemical equations so how data for the example of the iupac name and alkynes: when carbonates and vinegar stoichiometry and. CBSE 10th Board Exam 2021 Check Revision Notes for. Hydrogen peroxide decomposes to an example of decomposition reaction below contains the first game code required for disproving the products? The reactant is decomposed by energy sources such as though, Upper bound, it decomposes to give potassium chloride and oxygen. Stoichiometry Lab Answer Keyyour experiment. Is an example reaction! Do not want to delete this image? Chemical decomposition Wikipedia. Worksheet 3 Decomposition Reactions ScienceGeeknet. In order for a chemical equation to be properly balanced, make sure you use real salt, while in a combination reaction two or more substances combine to form one single substance. Make sure equation is balanced. An overturn of decomposition reaction is decomposition of lead nitrate to instead lead oxide, silver bromide to gets decomposed. Set solution being a wet acid.
    [Show full text]
  • Performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-Derived Ni(OH)
    www.nature.com/scientificreports OPEN Fabrication of 9.6 V High- performance Asymmetric Supercapacitors Stack Based on Received: 17 August 2018 Accepted: 10 December 2018 Nickel Hexacyanoferrate-derived Published: xx xx xxxx Ni(OH)2 Nanosheets and Bio- derived Activated Carbon Subramani Kaipannan1,2 & Sathish Marappan1,2 Hydrated Ni(OH)2 and activated carbon based electrodes are widely used in electrochemical applications. Here we report the fabrication of symmetric supercapacitors using Ni(OH)2 nanosheets and activated carbon as positive and negative electrodes in aqueous electrolyte, respectively. The asymmetric supercapacitors stack connected in series exhibited a stable device voltage of 9.6 V and delivered a stored high energy and power of 30 mWh and 1632 mW, respectively. The fabricated device shows an excellent electrochemical stability and high retention of 81% initial capacitance after 100,000 charge-discharges cycling at high charging current of 500 mA. The positive electrode material Ni(OH)2 nanosheets was prepared through chemical decomposition of nickel hexacyanoferrate complex. The XRD pattern revealed the high crystalline nature of Ni(OH)2 with an average crystallite size of ~10 nm. The nitrogen adsorption-desorption isotherms of Ni(OH)2 nanosheets indicate the formation of mesoporous Ni(OH)2 nanosheets. The chemical synthesis of Ni(OH)2 results the formation of hierarchical nanosheets that are randomly oriented which was confrmed by FE-SEM and HR-TEM analysis. The negative electrode, activated porous carbon (OPAA-700) was obtained from orange peel waste. The electrochemical properties of Ni(OH)2 nanosheets and OPAA-700 were studied and exhibit a high specifc capacity of 1126 C/g and high specifc capacitance of 311 F/g at current density of 2 A/g, respectively.
    [Show full text]
  • United States Patent Office Patiented Mar
    2,826,613 United States Patent Office Patiented Mar. 11, 1958 smacawakawa 1. 2 Other objects and advantages of the present invention. will be apparent from a further reading of the specifica 2,826,613 tion and of the appended claims. RECOVERY OF SOLD GUANDINE CARBONATE With the above objects in view, the present invention 5 mainly consists in a process of obtaining solid guanidine Otto Grosskinsky, Eifriede thirauf, Water Klempt, and carbonate from Solutions containing the same, compris Her at Umbach, Dortmund-Eving, Germany ing the steps of adding ammonia to a solution com No Drawing. Application July 8, 1954 prising gilanidine carbonate and a solvent therefor, there Serial No. 442,206 by lowering the solubility of the guanidine carbonate in 0. the solvent and causing precipitation of the same from Claims priority, application Germany July 11, 1953 the Solution, and recovering the thus precipitated solid guanidine carbonate. 9 Claims. (CI. 260-564) The present invention is based on our discovery that the Solubility of guanidine carbonate in water or in a The present invention relates to new, useful improve 15 suitable organic solvent therefor is greatly lowered by ments in the recovery of solid guanidine carbonate and the presence of a sufficient amount of free ammonia in Incre particularly to the recovery of solid guanidine car troduced into the solution. This discovery offers the bonate from liquids containing the same in dissolved possibility of recovering solid guanidine carbonate from condition. - its solutions without either the necessity of special vacuum Guanidine carbonate is very readily soluble in water. operating devices or the risk of losses by decomposition.
    [Show full text]
  • Calcium Carbonate
    Right to Know Hazardous Substance Fact Sheet Common Name: CALCIUM CARBONATE Synonyms: Calcium Salt of Carbonic Acid, Chalk CAS Number: 1317-65-3 Chemical Name: Limestone RTK Substance Number: 4001 Date: July 2015 DOT Number: NA Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Calcium Carbonate is a white to tan odorless powder or Hazard Summary odorless crystals. It is used in human medicine as an antacid, Hazard Rating NJDOH NFPA calcium supplement and food additive. Other uses are HEALTH 1 - agricultural lime and as additive in cement, paints, cosmetics, FLAMMABILITY 0 - dentifrices, linoleum, welding rods, and to remove acidity in REACTIVITY 0 - wine. REACTIVE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe Reasons for Citation When Calcium Carbonate is heated to decomposition, it Calcium Carbonate is on the Right to Know Hazardous emits acrid smoke and irritating vapors. Substance List because it is cited by OSHA, NIOSH, and Calcium Carbonate is incompatible with ACIDS, EPA. ALUMINUM, AMMONIUM SALTS, MAGNESIUM, HYDROGEN, FLUORINE and MAGNESIUM. Calcium Carbonate mixed with magnesium and heated in a current of hydrogen causes a violent explosion. Calcium Carbonate ignites on contact with FLUORINE. Calcium Carbonate contact causes irritation to eyes and skin. SEE GLOSSARY ON PAGE 5. Inhaling Calcium Carbonate causes irritation to nose, throat and respiratory system and can cause coughing. FIRST AID Eye Contact Immediately flush with large amounts of water for at least 15 Workplace Exposure Limits minutes, lifting upper and lower lids. Remove contact OSHA: The legal airborne permissible exposure limit (PEL) is lenses, if worn, while flushing.
    [Show full text]
  • Mineral Carbonation and Industrial Uses of Carbon Dioxide 319 7
    Chapter 7: Mineral carbonation and industrial uses of carbon dioxide 319 7 Mineral carbonation and industrial uses of carbon dioxide Coordinating Lead Author Marco Mazzotti (Italy and Switzerland) Lead Authors Juan Carlos Abanades (Spain), Rodney Allam (United Kingdom), Klaus S. Lackner (United States), Francis Meunier (France), Edward Rubin (United States), Juan Carlos Sanchez (Venezuela), Katsunori Yogo (Japan), Ron Zevenhoven (Netherlands and Finland) Review Editors Baldur Eliasson (Switzerland), R.T.M. Sutamihardja (Indonesia) 320 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 321 7.3 Industrial uses of carbon dioxide and its emission reduction potential 330 7.1 Introduction 322 7.3.1 Introduction 330 7.3.2 Present industrial uses of carbon dioxide 332 7.2 Mineral carbonation 322 7.3.3 New processes for CO2 abatement 332 7.2.1 Definitions, system boundaries and motivation 322 7.3.4 Assessment of the mitigation potential of CO2 7.2.2 Chemistry of mineral carbonation 323 utilization 333 7.2.3 Sources of metal oxides 324 7.3.5 Future scope 334 7.2.4 Processing 324 7.2.5 Product handling and disposal 328 References 335 7.2.6 Environmental impact 328 7.2.7 Life Cycle Assessment and costs 329 7.2.8 Future scope 330 Chapter 7: Mineral carbonation and industrial uses of carbon dioxide 321 EXECUTIVE SUMMARY This Chapter describes two rather different options for carbon and recycled using external energy sources. The resulting dioxide (CO2) storage: (i) the fixation of CO2 in the form of carbonated solids must be stored at an environmentally suitable inorganic carbonates, also known as ‘mineral carbonation’ or location.
    [Show full text]