Performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-Derived Ni(OH)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activated Carbon, Biochar and Charcoal: Linkages and Synergies Across Pyrogenic Carbon’S Abcs
water Review Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon’s ABCs Nikolas Hagemann 1,* ID , Kurt Spokas 2 ID , Hans-Peter Schmidt 3 ID , Ralf Kägi 4, Marc Anton Böhler 5 and Thomas D. Bucheli 1 1 Agroscope, Environmental Analytics, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland; [email protected] 2 United States Department of Agriculture, Agricultural Research Service, Soil and Water Management Unit, St. Paul, MN 55108, USA; [email protected] 3 Ithaka Institute, Ancienne Eglise 9, CH-1974 Arbaz, Switzerland; [email protected] 4 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Process Engineering, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; [email protected] 5 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Application and Development, Department Process Engineering, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-58-462-1074 Received: 11 January 2018; Accepted: 1 February 2018; Published: 9 February 2018 Abstract: Biochar and activated carbon, both carbonaceous pyrogenic materials, are important products for environmental technology and intensively studied for a multitude of purposes. A strict distinction between these materials is not always possible, and also a generally accepted terminology is lacking. However, research on both materials is increasingly overlapping: sorption and remediation are the domain of activated carbon, which nowadays is also addressed by studies on biochar. Thus, awareness of both fields of research and knowledge about the distinction of biochar and activated carbon is necessary for designing novel research on pyrogenic carbonaceous materials. Here, we describe the dividing ranges and common grounds of biochar, activated carbon and other pyrogenic carbonaceous materials such as charcoal based on their history, definition and production technologies. -
Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999
United States Office of Wastewater EPA/833B-99/002 Environmental Protection Management August 1999 Agency Washington DC 20460 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants Office of Wastewater Management U.S. Environmental Protection Agency Washington, D.C. 20460 Notice and Disclaimer The U.S. Environmental Protection Agency, through its Office of Water, has funded, managed, and collaborated in the development of this guidance, which was prepared under order 7W-1235-NASX to Aquatic Sciences Consulting; order 5W-2260-NASA to EA Engineering, Science and Technology, Inc.; and contracts 68-03-3431, 68-C8-002, and 68-C2-0102 to Parsons Engineering Science, Inc. It has been subjected to the Agency's peer and administrative review and has been approved for publication. The statements in this document are intended solely as guidance. This document is not intended, nor can it be relied on, to create any rights enforceable by any party in litigation with the United States. EPA and State officials may decide to follow the guidance provided in this document, or to act at variance with the guidance, based on an analysis of site-specific circumstances. This guidance may be revised without public notice to reflect changes in EPA policy. ii Foreword This document is intended to provide guidance to permittees, permit writers, and consultants on the general approach and procedures for conducting toxicity reduction evaluations (TREs) at municipal wastewater treatment plants. TREs are important tools for Publicly Owned Treatment Works (POTWs) to use to identify and reduce or eliminate toxicity in a wastewater discharge. -
Thermochemical Conversion of Biomass in the Presence of Molten Alkali-Metal Carbonates Under Reducing Environments of N2 and CO2
energies Article Thermochemical Conversion of Biomass in the Presence of Molten Alkali-Metal Carbonates under Reducing Environments of N2 and CO2 Tahereh Jalalabadi, Behdad Moghtaderi and Jessica Allen * School of Chemical Engineering, University of Newcastle, Callaghan, NSW 2308, Australia; [email protected] (T.J.); [email protected] (B.M.) * Correspondence: [email protected]; Tel.: +612-40-339-359 Received: 15 September 2020; Accepted: 12 October 2020; Published: 15 October 2020 Abstract: The impact of N2 and CO2 atmospheres on the interaction between Eucalyptus pilularis biomass and a ternary molten carbonate eutectic (Li2CO3: Na2CO3:K2CO3) has been investigated at 600 ◦C and 900 ◦C. For lower temperature conversion under CO2, prevention of volatile release in the eutectic treated biomass is slightly higher than under N2 injection; however, similar bubble-shaped morphology of the remnant char is observed under both carrier gases. By increasing the temperature to 900 ◦C under CO2, the reverse Boudouard reaction begins to consume carbon fuel, while molten carbonate gasification also accelerates the reaction to a lower temperature set point (shifted from ~735 ◦C to ~640 ◦C). The mass loss of carbonate under CO2 and N2 at 900 ◦C is 0 (negligible) and 18 wt.%, respectively. In the absence of carbon particles, the decomposition of carbonate to M2O (l) and CO2 (g), as well as molten salt vaporization, are the sole potential routes of weight loss in an inert gas. Previous observations of biomass and eutectic mixture thermochemical conversion under N2 have suggested carbon/carbonate gasification is dominant at elevated temperatures, with production of CO expected. -
Synthesis and Exploratory Deposition Studies of Isotetrasilane and Reactive Intermediates for Epitaxial Silicon
This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. Article Cite This: Inorg. Chem. 2019, 58, 3050−3057 pubs.acs.org/IC Synthesis and Exploratory Deposition Studies of Isotetrasilane and Reactive Intermediates for Epitaxial Silicon ,† † † † ‡ Barry Arkles,* Youlin Pan, Fernando Jove, Jonathan Goff, and Alain Kaloyeros † Gelest Inc., Morrisville, Pennsylvania 19067, United States ‡ SUNY Polytechnic Institute, Albany, New York 12203, United States ABSTRACT: A synthetic method is presented for the production of isotetrasilane, a higher order perhydridosilane, with the purity and volume necessary for use in extensive studies of the chemical vapor deposition (CVD) of epitaxial silicon (e-Si) thin films. The chemical characteristics, thermodynamic properties, and epitaxial film growth of isotetrasilane are compared with those of other perhydridosi- lanes. A film-growth mechanism distinct from linear perhy- ≤ dridosilanes H(SiH2)nH, where n 4, is reported. Preliminary findings are summarized for CVD of both unstrained e-Si and strained e-Si doped with germanium (Ge) and carbon (C) employing isotetrasilane as the source precursor at temper- atures of 500−550 °C. The results suggest that bis- (trihydridosilyl)silylene is the likely deposition intermediate under processing conditions in which gas-phase depletion reactions are not observed. ■ INTRODUCTION such as trisilane. However, the latter was observed to generate As emerging integrated chip (IC) and solar cell technologies gas-phase particles (silicon hydride clusters) due to its much continue to reduce individual device feature sizes, chemical higher reactivity and lower dissociation energy in comparison 5 vapor deposition (CVD) of epitaxial silicon (e-Si) has emerged to silane and disilane. -
Kinetics of the Uncatalyzed, Alkaline Decomposition of Hydrogen Peroxide Trice Walter Haas Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1960 Kinetics of the uncatalyzed, alkaline decomposition of hydrogen peroxide Trice Walter Haas Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Haas, Trice Walter, "Kinetics of the uncatalyzed, alkaline decomposition of hydrogen peroxide " (1960). Retrospective Theses and Dissertations. 2645. https://lib.dr.iastate.edu/rtd/2645 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. KINETICS OF THE UN CATALYZED, ALKALINE DECOMPOSITION OF HYDROC-EN PEROXIDE by Trice Walter Haas A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa I960 il TABLE OP CONTENTS Page I. INTRODUCTION 1 II. EXPERIMENTAL 8 A. Apparatus 8 B. Quenching Technique 9 C. Analytical Techniques 10 D. Purification Methods 13 III. RESULTS AND DISCUSSION 20 A. The Homogeneous, Uncatalyzed Decomposition 20 1» General 20 2. Impurity effects 20 3* Surface effects 22 L Effect of light 27 5. Inert ions 28 6. Experimental results and discussion 29 7* Sources of error $1 B. -
Activated Carbon from the Graphite with Increased Rate Capability for the Potassium Ion Battery Zhixin Tai University of Wollongong, [email protected]
University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2017 Activated carbon from the graphite with increased rate capability for the potassium ion battery Zhixin Tai University of Wollongong, [email protected] Qing Zhang University of Wollongong, [email protected] Yajie Liu University of Wollongong, [email protected] Hua-Kun Liu University of Wollongong, [email protected] Shi Xue Dou University of Wollongong, [email protected] Publication Details Tai, Z., Zhang, Q., Liu, Y., Liu, H. & Dou, S. (2017). Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon, 123 54-61. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Activated carbon from the graphite with increased rate capability for the potassium ion battery Abstract Activated carbon has been synthesized by a high-temperature annealing route using graphite as carbon source and potassium hydroxide as the etching agent. Many nanosized carbon sheets formed on the particles could be of benefit for ar pid intercalation/de-intercalation of potassium ions. Moreover, the d-spacing in the (100) crystal planes of the as-prepared active carbon is enlarged to 0.335 nm, even some formed carbon nanosheets can reach 0.358 nm, and the diffusion coefficient of K ion is also improved by 7 times as well. The as-prepared activated carbon electrode can deliver a high reversible capacity of 100 mAh g ¿1 after 100 cycles (at a high current density of 0.2 A g ¿1 ), and exhibits increased rate performance. -
An Example of Decomposition Reaction
An Example Of Decomposition Reaction Wes remains unhorsed after Thatch stiffen tantalisingly or holings any Tissot. Certificated Wye sometimes deoxygenated any layabout chats botanically. Rab sicks sunnily if dirtier Apostolos unthaw or philter. It catches fire or exothermic reaction is described by energy input it later as decomposition of an reaction to logged in the case for the number of food. A decomposition reaction produces multiple products from every single reactant Combustion reactions are the combination of some compound whereas oxygen would make oxides of cotton other elements as products although nitrogen atoms react to make N 2. You dive into silver metal is an example of reaction! In chemical equations so how data for the example of the iupac name and alkynes: when carbonates and vinegar stoichiometry and. CBSE 10th Board Exam 2021 Check Revision Notes for. Hydrogen peroxide decomposes to an example of decomposition reaction below contains the first game code required for disproving the products? The reactant is decomposed by energy sources such as though, Upper bound, it decomposes to give potassium chloride and oxygen. Stoichiometry Lab Answer Keyyour experiment. Is an example reaction! Do not want to delete this image? Chemical decomposition Wikipedia. Worksheet 3 Decomposition Reactions ScienceGeeknet. In order for a chemical equation to be properly balanced, make sure you use real salt, while in a combination reaction two or more substances combine to form one single substance. Make sure equation is balanced. An overturn of decomposition reaction is decomposition of lead nitrate to instead lead oxide, silver bromide to gets decomposed. Set solution being a wet acid. -
Single-Dose Activated Charcoal
Clinical Toxicology ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: http://www.tandfonline.com/loi/ictx20 Position Paper: Single-Dose Activated Charcoal American Academy of Clinical Toxicology & European Association of Poisons Centres and Clinical Toxicologists To cite this article: American Academy of Clinical Toxicology & European Association of Poisons Centres and Clinical Toxicologists (2005) Position Paper: Single-Dose Activated Charcoal, Clinical Toxicology, 43:2, 61-87, DOI: 10.1081/CLT-51867 To link to this article: http://dx.doi.org/10.1081/CLT-51867 Published online: 07 Oct 2008. Submit your article to this journal Article views: 655 View related articles Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ictx20 Download by: [UPSTATE Medical University Health Sciences Library] Date: 29 May 2017, At: 09:32 Clinical Toxicology, 43:61–87, 2005 Copyright D Taylor & Francis Inc. ISSN: 0731-3810 print / 1097-9875 online DOI: 10.1081/CLT-200051867 POSITION PAPER Position Paper: Single-Dose Activated Charcoal# American Academy of Clinical Toxicology and European Association of Poisons Centres and Clinical Toxicologists developing serious complications and who might potentially Single-dose activated charcoal therapy involves the oral benefit, therefore, from gastrointestinal decontamination. administration or instillation by nasogastric tube of an aqueous Single-dose activated charcoal therapy involves the oral preparation of activated charcoal after the ingestion of a poison. administration or instillation by nasogastric tube of an Volunteer studies demonstrate that the effectiveness of activated charcoal decreases with time. Data using at least 50 g of activated aqueous preparation of activated charcoal after the ingestion charcoal, showed a mean reduction in absorption of 47.3%, of a poison. -
Research and Development
EPA-600/R-00-083 September 2000 Research and Development PERFORMANCE AND COST OF MERCURY EMISSION CONTROL TECHNOLOGY APPLICATIONS ON ELECTRIC UTILITY BOILERS Prepared for Office of Air and Radiation Prepared by National Risk Management Research Laboratory Research Triangle Park, NC 27711 FOREWORD The U. S. Environmental Protection Agency is charged by Congress with pro- tecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions lead- ing to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental pro- blems today and building a science knowledge base necessary to manage our eco- logical resources wisely, understand how pollutants affect our health, and pre- vent or reduce environmental risks in the future. The National Risk Management Research Laboratory is the Agency's center for investigation of technological and management approaches for reducing risks from threats to human health and the environment. The focus of the Laboratory's research program is on methods for the prevention and control of pollution to air, land, water, and subsurface resources, protection of water quality in public water systems; remediation of contaminated sites and-groundwater; and prevention and control of indoor air pollution. The goal of this research effort is to catalyze development and implementation of innovative, cost-effective environmental technologies; develop scientific and engineering information needed by EPA to support regulatory and policy decisions; and provide technical support and infor- mation transfer to ensure effective implementation of environmental regulations and strategies. -
Non-Fossil Fuel Process for Production of Hydrogen and Oxygen
United States Patent mi [in 3,802,993 von Fredersdorff, deceased et al. [45] Apr. 9, 1974 [54] NON-FOSSIL FUEL PROCESS FOR 86,248 1/1869 Phillips 423/579 PRODUCTION OF HYDROGEN AND OTHER PUBLICATIONS OXYGEN James V. Quagliano, Chemistry Second Edition, Au- [75] Inventors: Claus George von Fredersdorff, gust, 1963, Prentice-Hall Inc., pp. 108-117. deceased, late of Oak Park, 111.; by George C. von Fredersdorff, Primary Examiner—Harvey E. Behrend administrator, Des Plaines, 111. Attorney, Agent, or Firm—Molinare, Allegretti, Newitt [73] Assignee: Institute of Gas Technology, & Witcoff Chicago, 111. [22] Filed: Dec. 27, 1971 [57] ABSTRACT [21] Appl. No.. 211,960 Hydrogen and oxygen production by fissiochemical decomposition of carbon dioxide to produce carbon monoxide and oxygen, followed by subsequent separa- [52] U.S. CI 176/37, 176/39, 423/219, tion of the oxygen from the carbon monoxide, and 423/579, 423/658 production of hydrogen by the action of steam on iron [51] Int. CI G21c 9/00 at elevated temperature followed by regeneration of [58] Field of Search 176/10, 37, 38, 39, 92 R; the product iron oxide by carbon monoxide as sepa- 204/129; 423/648, 656, 657, 579, 594, 219, rated from the fissiochemical decomposition products 248; 252/301.1; 23/204, 221, 210-214 issuing from the nuclear reactor. The oxygen may be separated from the fissiochemical decomposition [56] References Cited products by the formation of metal oxide by reaction UNITED STATES PATENTS with reactive metals such as iron, chromium, manga- 2,558,756 7/1951 Jackson et al 423/579 nese and mercury. -
Lupus Anticoagulant Detection in Anticoagulated Patients
Received: 22 January 2020 | Accepted: 10 April 2020 DOI: 10.1111/jth.14846 RECOMMENDATIONS AND GUIDELINES Lupus anticoagulant detection in anticoagulated patients. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis Armando Tripodi1 | Hannah Cohen2,3 | Katrien M. J. Devreese4 1Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Abstract Hemophilia and Thrombosis Center and Background: The laboratory detection of lupus anticoagulants (LA) in anticoagulated Fondazione Luigi Villa, Milano, Italy patients represents a challenge and there is no consensus on the types of assays/ 2Haemostasis Research Unit, Department of Haematology, University College London, procedures to be adopted. London, UK Objectives: This communication of the International Society on Thrombosis and 3Department of Haematology, University College London Hospitals NHS Foundation Haemostasis (ISTH), Scientific and Standardization Committee (SSC) aims to give Trust, London, UK guidance on the procedures to be adopted. 4 Coagulation Laboratory, Department of Methods: Members of the ISTH-SSC on Lupus Anticoagulant/Antiphospholipid Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium Antibodies reviewed the literature to search for evidence on the most appropriate assays/procedures to be adopted. Correspondence Armando Tripodi, Foundation IRCCS Ca’ Results: Anticoagulants are able to interfere with the tests used for LA detection, Granda Ospedale Maggiore Policlinico, giving rise to occasional false-positive or false-negative LA. Some commercial tests Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi include in their composition heparin-neutralizers able to quench unfractionated or Villa, Via Pace 9, 20122 Milano, Italy. low molecular weight heparin up to 1.0 U/mL. -
Correction Ratio”; Results Before/After Extraction with the T DOAC Stop Reagent ⁎ T
Thrombosis Research 179 (2019) 69–72 Contents lists available at ScienceDirect Thrombosis Research journal homepage: www.elsevier.com/locate/thromres Full Length Article Clotting test results correlate better with DOAC concentrations when expressed as a “Correction Ratio”; results before/after extraction with the T DOAC Stop reagent ⁎ T. Exnera, , J. Favresseb, S. Lessirec, J. Douxfilsd, F. Mullierb a Haematex Research, Sydney, Australia b Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Institute for Life Sciences (NARILIS), Haematology Laboratory, Yvoir, Belgium c Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Institute for Life Sciences (NARILIS), Department of Anesthesiology, Belgium d Université de Namur, NTHC/NARILIS, Department of Pharmacy, Belgium ARTICLE INFO ABSTRACT Keywords: Introduction: Clotting test results are currently not useful for estimating direct oral anti-coagulant (DOAC) DOACs concentrations because baseline results vary. DOAC Stop is a DOAC extracting agent with no effect on clotting Dabigatran factors. We investigated if aPTT (activated partial thromboplastin time) and dRVVT (dilute Russells viper venom Apixaban time) results might correlate better with DOAC concentrations if results after DOAC extraction were used to Rivaroxaban estimate a “before/after” value (Correction Ratio). Activated partial thromboplastin time (aPTT) Materials and methods: We used activated partial thromboplastin time (aPTT, PTT-LA) and dilute Russells viper Dilute Russells viper venom time (dRVVT) DOAC Stop™ venom time clotting test (dRVVT) results previously recorded on DOAC patient plasmas (25 dabigatran, 15 Correction Ratio apixaban, 19 rivaroxaban) without known thrombotic risk factors before and after DOAC extraction. DOAC concentrations had been determined by standard chromogenic assays.