Vascular Plant List on the Andrews Experimental Forest and Nearby
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
April 26, 2019
April 26, 2019 Theodore Payne Foundation’s Wild Flower Hotline is made possible by donations, memberships, and the generous support of S&S Seeds. Now is the time to really get out and hike the trails searching for late bloomers. It’s always good to call or check the location’s website if you can, and adjust your expectations accordingly before heading out. Please enjoy your outing, and please use your best flower viewing etiquette. Along Salt Creek near the southern entrance to Sequoia National Park, the wildflowers are abundant and showy. Masses of spring flowering common madia (Madia elegans) are covering sunny slopes and bird’s-eye gilia (Gilia tricolor) is abundant on flatlands. Good crops of owl’s clover (Castilleja sp.) are common in scattered colonies and along shadier trails, woodland star flower (Lithophragma sp.), Munz’s iris (Iris munzii), and the elegant naked broomrape (Orobanche uniflora) are blooming. There is an abundance of Chinese houses (Collinsia heterophylla) and foothill sunburst (Pseudobahia heermanii). This is a banner year for the local geophytes. Mountain pretty face (Tritelia ixiodes ssp. anilina) and Ithuriel’s spear (Triteliea laxa) are abundant. With the warming temperatures farewell to spring (Clarkia cylindrical subsp. clavicarpa) is starting to show up with their lovely bright purple pink floral display and is particularly noticeable along highway 198. Naked broom rape (Orobanche uniflora), foothill sunburst (Pseudobahia heermanii). Photos by Michael Wall © Theodore Payne Foundation for Wild Flowers & Native Plants, Inc. No reproduction of any kind without written permission. The trails in Pinnacles National Park have their own personality reflecting the unusual blooms found along them. -
Title Studies in the Morphology and Systematics of Berberidaceae (V
Studies in the Morphology and Systematics of Berberidaceae Title (V) : Floral Anatomy of Caulophyllum MICHX., Leontice L., Gymnospermium SPACH and Bongardia MEY Author(s) Terabayashi, Susumu Memoirs of the Faculty of Science, Kyoto University. Series of Citation biology. New series (1983), 8(2): 197-217 Issue Date 1983-02-28 URL http://hdl.handle.net/2433/258852 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University MEMolRs OF THE FAcuLTy ol" SclENCE, KyOTO UNIvERslTy, SERMS OF BIoLoGy Vol. VIII, pp. 197-217, March l983 Studies in the Morphology and Systematics of Berberidaceae V. Floral Anatomy ef Cauloplrytlum MICHX., Leontice L., Gymnospermium SpACH and Bongardia MEY. Susumu TERABAYASHI (Received iNovember 13, l981) Abstract The floral anatomy of CauloPh71tum, Leontice, G"mnospermittm and Bongardia are discussed with special reference given to vasculature. Comparisons offloral anatomy are made with the other genera og the tribe Epimedieae. The vasculature in the receptacle of Caulopnjilum, Leontice and G]mnospermiitm is similar, but that of Bongardia differs in the very thick xylem of the receptacular stele and in the independent origin ef the traces to the sepals, petals and stamens from the stele. A tendency is recognized in that the outer floral elements receive traces ofa sing]e nature in origin from the stele while the inner elements receive traces ofa double nature. The traces to the inner e}ements are often clerived from common bundles in Caulop/tyllttm, Leontice and G"mnospermittm. A similar tendency is observed in the trace pattern in the other genera of Epimedieae, but the adnation of the traces is not as distinct as in the genera treated in this study. -
North American Flora Volume 17
VO LUM E 1 7 PART 7 NO RTH AMERICAN FLO RA (P OALE S) PO ACEAE (pars) 1 ALB ERT SPEAR Hn‘ cncocx sc i i n P ice Sub r pt o r , e ar a e C ies S p t op , PUBLI SHE D BY . THE N E W YORK BOTAN I CAL GAR DEN H 3 1 1 93 M ARC , 7 (btRLHfl! A RT 7 1 93 7 AC A P , ] PO E E Coll a r glabrou s (throa t of she a th more or ss s a u su a s le pilo e) ; p nicle lly ex erted , 7 n e . n s 3 S . do m s i . a s . n rrow , conden ed i g a s s a t as a t s s Coll r den ely pilo e . le t the ide ; p anicle u su a lly inclu ded a t bas e (sometimes entirely inclu ded) . — u s bu s 1 2 s a s C lm ro t , meter t ll ; pike — nl en 8 . a . 3 . S i s let s 3 mm . long . g g u s s s s s a C lm more lender , mo tly le th n s 2 1 meter ta ll ; s pikelet mm . long . a a P nicle open , often l rge , the bra nches a nd bra nchlet s fle xu o us s s s ar , the pikelet loo ely 9 . exuo us . 3 . S s ra nged . fl a a P nicle open or comp ct , if open , the spikelets crowded on the t branchle s . -
Supplemental Information.Pdf
SUPPORTING INFORMATION Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary Kevin Vanneste1,2, Guy Baele3, Steven Maere1,2,*, and Yves Van de Peer1,2,4,* 1 Department of Plant Systems Biology, VIB, Ghent, Belgium 2 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium 3 Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium 4 Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria, South Africa *Corresponding authors Yves Van de Peer Steven Maere VIB / Ghent University VIB / Ghent University Technologiepark 927 Technologiepark 927 Gent (9052), Belgium Gent (9052), Belgium Tel: +32 (0)9 331 3807 Tel: +32 (0)9 331 3805 Fax: +32 (0)9 331 3809 Fax: +32 (0)9 331 3809 E-mail: [email protected] E-mail: [email protected] Overview Species grouping topology ................................................ 3 Calibrations and constraints .............................................. 5 Alternative calibrations and constraints ............................ 13 Relative rate tests ............................................................. 27 Re-dating the Pyrus bretschneideri WGD ......................... 30 WGD age estimates from literature ................................... 33 Eschscholzia californica and Acorus americanus ............. 34 2 Species grouping topology In order to date the node joining the homeologous pair, orthogroups were constructed consisting of both homeologs and orthologs from other plant species for which full genome sequence information was available. Different plant species were grouped into ‘species groups’ for which one ortholog was selected and added to the orthogroup, in order to keep the orthogroup topology fixed and to facilitate automation on the one hand, but also to allow enough orthogroups to be constructed on the other hand (see Material and methods). -
The Vascular Flora of the Upper Santa Ana River Watershed, San Bernardino Mountains, California
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281748553 THE VASCULAR FLORA OF THE UPPER SANTA ANA RIVER WATERSHED, SAN BERNARDINO MOUNTAINS, CALIFORNIA Article · January 2013 CITATIONS READS 0 28 6 authors, including: Naomi S. Fraga Thomas Stoughton Rancho Santa Ana B… Plymouth State Univ… 8 PUBLICATIONS 14 3 PUBLICATIONS 0 CITATIONS CITATIONS SEE PROFILE SEE PROFILE Available from: Thomas Stoughton Retrieved on: 24 November 2016 Crossosoma 37(1&2), 2011 9 THE VASCULAR FLORA OF THE UPPER SANTA ANA RIVER WATERSHED, SAN BERNARDINO MOUNTAINS, CALIFORNIA Naomi S. Fraga, LeRoy Gross, Duncan Bell, Orlando Mistretta, Justin Wood1, and Tommy Stoughton Rancho Santa Ana Botanic Garden 1500 North College Avenue Claremont, California 91711 1Aspen Environmental Group, 201 North First Avenue, Suite 102, Upland, California 91786 [email protected] All Photos by Naomi S. Fraga ABSTRACT: We present an annotated catalogue of the vascular flora of the upper Santa Ana River watershed, in the southern San Bernardino Mountains, in southern California. The catalogue is based on a floristic study, undertaken from 2008 to 2010. Approximately 65 team days were spent in the field and over 5,000 collections were made over the course of the study. The study area is ca. 155 km2 in area (40,000 ac) and ranges in elevation from 1402 m to 3033 m. The study area is botanically diverse with more than 750 taxa documented, including 56 taxa of conservation concern and 81 non-native taxa. Vegetation and habitat types in the area include chaparral, evergreen oak forest and woodland, riparian forest, coniferous forest, montane meadow, and pebble plain habitats. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Conservation Strategy for Allotropa Virgata (Candystick), U.S
CONSERVATION STRATEGY FOR ALLOTROPA VIRGATA (CANDYSTICK), U.S. FOREST SERVICE, NORTHERN AND INTERMOUNTAIN REGIONS by Juanita Lichthardt Conservation Data Center Natural Resource Policy Bureau October, 1995 Idaho Department of Fish and Game 600 South Walnut, P.O. Box 25 Boise, Idaho 83707 Jerry M. Conley, Director Cooperative Challenge Cost-share Project Nez Perce National Forest Idaho Department of Fish and Game Purchase Order No.:95-17-20-001 ACKNOWLEDGMENTS I am grateful to the following Forest Service sensitive plant coordinators and botanists who went out of their way to provide valuable consultation, maps, and data: Leonard Lake, Linda Pietarinen, Jim Anderson, Quinn Carver, Alexia Cochrane, and John Joy. These same people are largely responsible for our current level of knowledge about Allotropa virgata. Special thanks to Janet Johnson and Marilyn Olson who found the time to show me Allotropa sites on the Bitterroot and Payette National Forests, respectively. Steve Shelly, Montana Natural Heritage Program/US Forest Service, initiated this project and provided thoughtful review. I hope that this document provides both the practical guidance and theoretical basis needed for a coordinated effort by management agencies toward conservation of Allotropa virgata. i ABSTRACT This conservation strategy provides recommendations for management of National Forest lands supporting and adjoining populations of Allotropa virgata (candystick), a plant species designated as sensitive in Regions 1 and 4 of the US Forest Service. Allotropa virgata presents a special conservation challenge because it is part of a three-way symbiosis involving conifers and their ectomycorrhizal fungi. First, the current state of our knowledge of the species is summarized, including distribution, habitat, ecology, population biology, monitoring results, past impacts, and perceived threats. -
National Wetlands Inventory Map Report for Quinault Indian Nation
National Wetlands Inventory Map Report for Quinault Indian Nation Project ID(s): R01Y19P01: Quinault Indian Nation, fiscal year 2019 Project area The project area (Figure 1) is restricted to the Quinault Indian Nation, bounded by Grays Harbor Co. Jefferson Co. and the Olympic National Park. Appendix A: USGS 7.5-minute Quadrangles: Queets, Salmon River West, Salmon River East, Matheny Ridge, Tunnel Island, O’Took Prairie, Thimble Mountain, Lake Quinault West, Lake Quinault East, Taholah, Shale Slough, Macafee Hill, Stevens Creek, Moclips, Carlisle. • < 0. Figure 1. QIN NWI+ 2019 project area (red outline). Source Imagery: Citation: For all quads listed above: See Appendix A Citation Information: Originator: USDA-FSA-APFO Aerial Photography Field Office Publication Date: 2017 Publication place: Salt Lake City, Utah Title: Digital Orthoimagery Series of Washington Geospatial_Data_Presentation_Form: raster digital data Other_Citation_Details: 1-meter and 1-foot, Natural Color and NIR-False Color Collateral Data: . USGS 1:24,000 topographic quadrangles . USGS – NHD – National Hydrography Dataset . USGS Topographic maps, 2013 . QIN LiDAR DEM (3 meter) and synthetic stream layer, 2015 . Previous National Wetlands Inventories for the project area . Soil Surveys, All Hydric Soils: Weyerhaeuser soil survey 1976, NRCS soil survey 2013 . QIN WET tables, field photos, and site descriptions, 2016 to 2019, Janice Martin, and Greg Eide Inventory Method: Wetland identification and interpretation was done “heads-up” using ArcMap versions 10.6.1. US Fish & Wildlife Service (USFWS) National Wetlands Inventory (NWI) mapping contractors in Portland, Oregon completed the original aerial photo interpretation and wetland mapping. Primary authors: Nicholas Jones of SWCA Environmental Consulting. 100% Quality Control (QC) during the NWI mapping was provided by Michael Holscher of SWCA Environmental Consulting. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt. -
Download The
SYSTEMATICA OF ARNICA, SUBGENUS AUSTROMONTANA AND A NEW SUBGENUS, CALARNICA (ASTERACEAE:SENECIONEAE) by GERALD BANE STRALEY B.Sc, Virginia Polytechnic Institute, 1968 M.Sc, Ohio University, 1974 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Botany) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1980 © Gerald Bane Straley, 1980 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department nf Botany The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 26 March 1980 ABSTRACT Seven species are recognized in Arnica subgenus Austromontana and two species in a new subgenus Calarnica based on a critical review and conserva• tive revision of the species. Chromosome numbers are given for 91 populations representing all species, including the first reports for Arnica nevadensis. Results of apomixis, vegetative reproduction, breeding studies, and artifi• cial hybridizations are given. Interrelationships of insect pollinators, leaf miners, achene feeders, and floret feeders are presented. Arnica cordifolia, the ancestral species consists largely of tetraploid populations, which are either autonomous or pseudogamous apomicts, and to a lesser degree diploid, triploid, pentaploid, and hexaploid populations. -
Acer Macrophyllum Big Leaf Maple Aceraceae Acer Circinatum Vine
Plant list updated by Cyndy Dillon, Carol Smith, Regina Johnson, Bob Wodsworth Sharon Berquist-Moody, and Lois Sweany - November 2012 Twahnoh Park (Union) Twahnoh Park (Union), Compiled by, Updated 2012 by * non-native Genus/Species Common Name Plant Family Acer macrophyllum Big leaf maple Aceraceae Acer circinatum Vine maple Aceraceae Achlys triphylla vanilla leaf Berberidaceae Actaea rubra Baneberry Ranunculaceae Adenocaulon bicolor pathfinder Asteraceae Adiantum aleuticum maidenhair fern Pteridaceae Alnus rubra red alder Betulaceae Arbutus menziesii Pacific madrone Ericaceae Asarum caudatum wild ginger Aristolochiaceae Athyrium filix-femina lady fern Dryopteridaceae Bellis perennis* English daisy Asteraceae Berberis (Mahonia) aquifolium tall Oregon grape Berberidaceae Berberis (Mahonia)nervosa dull Oregon-grape Berberidaceae Blechnum spicant deer fern Blechnaceae Cardamine hirsuta* hairy bittercress, shotweed Brassicaeae Chamerion angustifolium fireweed Onagraceae Chimophila umbellata pipsissewa, prince's pine Ericaceae Cirsium vulgare* bull thistle Asteraceae Claytonia sibirica Siberian miner's-lettuce Montiaceae Convolvus arvensis* field bindweed. morning glory Convolvulaceae Cornus nuttallii Pacific dogwood Cornaceae Cornus sericea red-osier dogwood Cornaceae Corylus cornuta beaked hazelnut Betulaceae Dactylis glomerata* orchard grass Festuceae Digitalis purpurea* purple foxglove Scrophulariaceae Dryopteris expansa spreading or spiny wood fern Dryopteridaceae Equisetum arvense common, field horsetail Equicetaceae Frangula (Rhamnus) -
Pigment Composition of Putatively Achlorophyllous Angiosperms
Plant Pl. Syst. Evol. 210:105-111 (1998) Systematics and Evolution © Springer-Verlag 1998 Printed in Austria Pigment composition of putatively achlorophyllous angiosperms MICHAEL P. CUMMINGS and NICHOLAS A. WELSCHMEYER Received August 15, 1996; in revised version February 10, 1997 Key words: Angiospermae, Lennoaceae, Monotropaceae, Orobanchaceae, Orchidaceae. - Chlorophyll, carotenoid, pigment, high-performance liquid chromatography. Abstract: Chlorophyll and carotenoid pigment composition was determined for ten species of putatively achlorophyllous angiosperms using high-performance liquid chromatography. Four families were represented: Lennoaceae (Pholisma arenarium); Monotropaceae (Allotropa virgata, Monotropa uniflora, Pterospora andromedea, Sarcodes sanguinea); Orobanchaceae (Epifagus virginiana, Orobanche cooperi, O. unißora); Orchidaceae (Cephalanthera austinae, Corallorhiza maculata). Chlorophyll a was detected in all taxa, but chlorophyll b was only detected in Corallorhiza maculata. The relative amount of chlorophyll and chlorophyll-related pigments in these plants is greatly reduced compared to fully autotrophic angiosperms. One of the most conspicuous features of plants is green coloration conferred by the presence of the pigment chlorophyll. However achlorophyllous plants, as their name implies, are thought to lack chlorophyll and other pigments associated with photosynthesis. This lack of chlorophyll is thought to be associated with the nonphotosynthetic habit, and hence the completely heterotrophic nature of holoparasites