Board Presentation Template

Total Page:16

File Type:pdf, Size:1020Kb

Board Presentation Template CONFIDENTIAL. FOR INTERNAL USE ONLY. SMUD Smart Charging Pilot Program EPRI Infrastructure Working Council March 28, 2012 Dwight MacCurdy Powering forward. Together. DOE Smart Grid Investment Grant (SGIG) Acknowledgement • Acknowledgement: “This material is based upon work supported by the Department of Energy under Award Number OE000214.” • Disclaimer: “This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.” 2 SACRAMENTO MUNICIPAL UTILITY DISTRICT • 595,000 accounts 527,000 residential accounts Peak demand of 3,299 MW in 2006 Service area population 1.4 million ~ 100,000 participants in SMUD’S Air Conditioning Load Management Program ~ 70,000 transformers 3 SMART CHARGING PILOT PROGRAM: RESEARCH DESIGN • Up to 180 Participants in 3 or 4 treatment groups • For 2012 -- 2 or 3 new experimental rate offerings • Whole house EV TOU rate for Level 1 charging (not Level 2) • Submetered EV TOU rate (not whole house) with demand charge penalty above 2 kW for charging during peak hours on event days (12 days) for Level 1 or Level 2 charging • BUT, how can participants easily adjust to event-day dynamic pricing? What type of manual or automated control is needed in the car, or the EVSE, to make this effortless? • Possibly one other submetered rate offering for L1 and L2 4 Annual System Upgrade Costs $10,000,000 $20,000,000 $30,000,000 $40,000,000 $50,000,000 $60,000,000 $0 100% Coincidence Except for Sequential Smart Charging Smart Sequential for Except Coincidence 100% 2011 - (500 EV's) Costs Upgrade System Annual 2012 - (1,000 EV's) 2013 - (2,000 EV's) 2014 - (5,000 EV's) 2015 - (10,000 EV's) Year (Cumulative (Cumulative # EV's Installed) Year 2016 - (15,000 EV's) 2017 - (21,000 EV's) 2018 - (30,000 EV's) 2019 - (40,000 EV's) 2020 - (51,000 EV's) 2021 - (70,000 EV's) for Residential Charging for Residential 2022 - (90,000 EV's) 2023 - (115,000 EV's) 2024 - (140,000 EV's) 2025 - (164,000 EV's) 2026 - (194,4000 EV's) 2027 - (224,800 EV's) 2028 - (255,200 EV's) 8 P.M. 8 2029 - (285,600 EV's) MANAGED CHARGING MANAGED 2030 - (316,000 EV's) (6.6 2 A.M. 2 A.M. 12 A.M. 2 P.M. 8 A.M. 12 P.M. 8 2 A.M. 12 KW) A.M. (2.0 (3.3 (2.0 (3.3 (6.6 (2.0 (3.3 (6.6 KW) KW) KW) KW) KW KW) KW) KW) ) SMART CHARGING PILOT PROGRAM: RESEARCH DESIGN • For 2013 -- Submetered EV TOU rate with “managed” charging during the summer. Communicating EVSE provided at no or low cost for up to 60 participants. • Shed signal from DRMS to EVSE • Billing systems will be fully interoperable. • Pricing info via gateway to EVSE in 2014 • SMUD DRMS will trigger load shed events for up to 12 days/summer that drops Level 2 EVSE load to 1. 4 kW during peak (Level 1 equivalent, 6A @ 240V) • Summer peak from 2 pm to 2 am on critical days (12 event days, e.g. > 100 F) • Summer peak from 2 pm to midnight on non-critical days (non-event days) 6 SMART CHARGING PILOT PROGRAM: RESEARCH DESIGN A B C 7 • Radio 8 • Radio 9 Communication Paths for EVSE with “Managed Charging”: Dispatched by DRMS • Radio SMART CHARGING PILOT FUTURE Preferred Zigbee SEP1.1 “Direct To AutoDR through SEP1.1 over Grid” SSN Zigbee Radio 2.0 DRAS Broadband: Protocol in EVSE Wifi Radio Radio in Server To Talks to EV In EVSE for NIC Module EVSE EVSE Submeter Shed Signal in EVSE for with PLC DRAS To Receive through Load Shed Bridge Client Load Shed HAN Commands To with PLC Commands Gateway 1/ with HCM Vehicle to PEV 1/ Must Be SMUD Broadband Head End Software 10 Where Is the Win-Win for the Customer and the Utility ? • Leverage existing utility AMI infrastructure investment • Encourage off peak charging – lowest cost of service for all • Convey pricing signals – transformer replacement cost • Allow for Customer choice – customer satisfaction 11 Where Is the Win-Win for the Customer and the Utility ? • To minimize cost/complexity, the EVSE communications path is tied to DRMS communications path – zigbee / SEP2.0 / PLC, open standards, but with backups in mind • Zigbee communications to EVSE represents the most ubiquitous & flexible solution with AMI • In the long run how do we simplify metering and maintain revenue grade metrology? 3 meters? Primary meter, EV submeter, PV submeter? Or, single integrated meter with multiple metrology boards/circuits? • SMUD direction -- PLC from EVSE to EV 12 THANK YOU! Dwight MacCurdy [email protected] IWC – Atlanta, GA March 28th, 2012 FACTS ABOUT DUKE ENERGY 150+ years of service 4 million customers 5 states: NC, SC, IN, KY, OH Fortune 500 $50 billion in assets Stock dividends for 80+ years Traded on NYSE as DUK Dow Jones Sustainability Index 2 PEV NPD Project : Duke Energy PROPRIETARY – Use pursuant to Company instructions. Utility testing through vehicle telematics • In a lab test with Onstar, we were able to: • Determine the customer preferences loaded in the vehicle • Determine the current state of charge of the vehicle • Determine which program the customer was enrolled in • Reduce the charge of the vehicle to 1.2 kw, to match the output of the solar panels in the lab 3 PEV NPD Project : Duke Energy PROPRIETARY – Use pursuant to Company instructions. Utility testing through an “intelligent” EVSE NOTE: the intelligent EVSE was tested against many more use cases than the testing done with Onstar. These preliminary recommendations should not be interpreted that the vehicle telematics solution is more robust than the intelligent charging station solution. • Use cases: • Start/Stop Commands • Curtailment Commands • Override Capabilities • Conflict Scenarios – Vehicle vs. EVSE • Results: • Overall testing went well. Basic functionality worked as expected • Preliminary Recommendations: • Provide customer override functionality • During a load shed event the EVSE should show an indication of the event. • Ensure that DR functionality works independent of whether the vehicle is tethered at the time the event is called 4 PEV NPD Project : Duke Energy PROPRIETARY – Use pursuant to Company instructions. What is the right solution for a Utility and the Customer? Car “Smarts” EVSE “Smarts” Fusion Challenges Challenges Many car companies to consider Many EVSE companies to consider OEM desire to answer simple External sub metering is expensive question, “How much does it cost to High cost of equipment, installation charge”? and communications Long term implications of telematics Proprietary / non standard interfaces contracts expiring communications Proprietary / non standard interfaces communications 5 PEV NPD Project : Duke Energy PROPRIETARY – Use pursuant to Company instructions. “Focus and simplicity. Simple can be harder than complex” - Steve Jobs • In the near term, utilities should look for low cost, flexible solutions • Utilities have been managing the load of air conditioners for years with simple, low cost commodity load control devices • As we move to two way communications and AMI, do we need a solution similar to what the USB port was to the PC years ago? • When possible, avoid a separate meter for PEV rates • Whole house TOU rates that incent PEV owners to charge on off peak hours • Challenge your rates department and PUCs to consider non-traditional metering approaches • Vehicle and EVSE OEMs should continue to innovate to further evolve the customer experience for PEV drivers • Onstar opening up their API’s to cultivate innovation in mobile applications and customer experience 6 PEV NPD Project : Duke Energy PROPRIETARY – Use pursuant to Company instructions. It seems like it was just yesterday…wasn’t it???? • Johnny Carson retires and Jay Leno became host of NBC Tonight Show • The largest shopping mall in the US was constructed..."Mall of America" • Sinéad O'Connor rips a photo of Pope John Paul II on Saturday Night Live, causing huge controversy. • The Bodyguard, starring Kevin Costner and Whitney Houston, debuts in cinemas; • Governor Bill Clinton became the 42nd President of the United States. That was 20 years ago!!! We have time!!!! 7 PEV NPD Project : Duke Energy PROPRIETARY – Use pursuant to Company instructions. Stay focused and stay engaged…we are making a difference! 8 PEV NPD Project : Duke Energy PROPRIETARY – Use pursuant to Company instructions. PEV PLC Communications (IEC/ISO, SAE Standardization) Slav Berezin General Motors PEV Communications topology Else Grid/ Owner Operators PEV EVSE HAN/EMS (AC/DC) PEV will be communicating with all! March 28, 2012 Slav Berezin 2 PLC standard • PLC is standardized as the primary PEV Communications protocol – Utilities specified PLC as the most reliable solution (August 2008) • Association with EUMD/ESI is needed to offer EV services/tariffs – OEMs have agreed to PLC as the international standard (May 2011) • PLC is absolutely required to facilitate communications with DC Off-board charger – HomePlug GP has been selected by ISO/IEC (January 2012) and SAE (March 2012) as a PLC technology of choice. • IEC/ISO and SAE are harmonizing on a single international PLC solution for PEV Communications – Premise is the same stack support PEV to EVSE/Utility communications and DC Off-board Charging • Minimizes development and integration costs • Provides better economies of scale and ensures interoperability – Provides simple uniformity to the utility industry for integration of PEV with their architectures March 28, 2012 Slav Berezin 3 ISO/IEC to SAE documents mapping Layer ISO/IEC 15118 Vehicle to grid communication interface SAE J2836/1, J2836/2 Part 1: General information and Use cases for Communications.
Recommended publications
  • Witricity:Wireless Power Transfer by Non-Radiative Method Ajey Kumar
    International Journal of Engineering Trends and Technology (IJETT) – Volume 11 Number 6 - May 2014 WiTricity:Wireless Power Transfer By Non-radiative Method Ajey Kumar. R1, Gayathri. H. R2, Bette Gowda. R3, Yashwanth. B4 1Dept. of ECE, Malnad College of Engineering, Hassan, India 2Centre for Emerging Technologies, Jain University, Bangalore, India 3Dept. of EEE, Basaveshwara College of Engineering, Bagalkot, India 4Dept. of ECE, BVB College of Engineering & Technology, Hubli, India Abstract— A non-radiative energy transfer, commonly referred Thanks to the advent in power electronics, inductive charging, as WiTricity and based on ‘strong coupling’ between two coils also known as wireless charging, has found much successes which are separated physically by medium-range distances, is and is now receiving increasing attention by virtue of its proposed to realize efficient wireless energy transfer. WiTricity simplicity and efficiency. The most important distinctive idea is spear-headed by MIT researcher Marin Soljacic, which structural difference between contactless transformers and describes the ability to provide electricity to remote objects without wires. The advent of WiTricity technology is though old conventional transformers is that the two ‘coils’ in the former of 1899, explored by Nikola Tesla, but has founded its grip in are separated by a large air gap. Compared with plug and recent years with numerous gadgets and there snaking cables socket (i.e., conductive) charging, the primary advantage of around us. The technology is in turn expels E-waste and will free the inductive charging approach is that the system can work us from the power cords. WiTricity depends upon strong coupled with no exposed conductors, no interlocks and no connectors, resonance between transmitter and receiver coils.
    [Show full text]
  • Bi-Directional Study Be Driven by the Ground Side Inverter
    2018-01-0669 Published 03 Apr 2018 Feasibility Study of Bi-directional Wireless Charging for Vehicle-to-Grid Kosuke Tachikawa Honda R&D Americas, Inc. Morris Kesler and Oguz Atasoy WiTricity Corporation Citation: Tachikawa, K., Kesler, M., and Atasoy, O., “Feasibility Study of Bi-directional Wireless Charging for Vehicle-to-Grid,” SAE Technical Paper 2018-01-0669, 2018, doi:10.4271/2018-01-0669. Abstract periods. The authors have performed an architectural design ehicle-to-Grid (V2G) technology is expected to play and a modeling and simulation study for a bi-directional a role in addressing the imbalance between periods wireless charging system for V2G applications. This research Vof peak demand and peak supply on the electricity activity aims to adapt an existing SAE J2954 compatible uni- grid. V2G technology enables two-way power flow between directional system design to enable bi-directional wireless the grid and the high-power, high-capacity propulsion power transfer with minimum impact to system cost, while batteries in an electrified vehicle. That is, V2G allows the maintaining full compatibility with the requirements of vehicle to store electricity during peak supply periods, and SAE J2954. then discharge it back into the grid during peak demand Introduction In addition, the authors have performed an architectural n an effort to address environmental concerns and enhance design and a modeling and simulation study for a bi-direc- energy security, automakers have been developing electri- tional wireless charging system for V2G applications. This Ified products such as plug-in hybrid vehicles (PHEVs) and research activity aims to adapt an existing SAE J2954 compat- battery electric vehicles (BEVs) for the past several years, and ible uni-directional system design to enable bi-directional they are gaining momentum.
    [Show full text]
  • Gan-Based High Efficiency Transmitter for Multiple-Receiver Wireless Power Transfer
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 GaN-Based High Efficiencyr T ansmitter for Multiple-Receiver Wireless Power Transfer Ling Jiang University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Jiang, Ling, "GaN-Based High Efficiencyr T ansmitter for Multiple-Receiver Wireless Power Transfer. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5466 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Ling Jiang entitled "GaN-Based High Efficiencyr T ansmitter for Multiple-Receiver Wireless Power Transfer." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Electrical Engineering. Daniel Costinett, Major Professor We have read this dissertation and recommend its acceptance: Fred Wang, Leon M. Tolbert, Reid Kress Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) GaN-Based High Efficiency Transmitter for Multiple-Receiver Wireless Power Transfer A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Ling Jiang May 2019 ACKNOWLEDGEMENT I would like to express my sincerest gratitude to my advisor, Dr.
    [Show full text]
  • HEMISPHERE Appendix
    HEMISPHERE Appendix Manouk Verschure Industrial Product Design Fontys University of Applied Sciences Venlo Company: Supervisor: Pim Rosendaal Supervising Lecturer: Estella Stok CHAPTERS 1. Plan of Action p. 3-4 2. Trendresearch 2.1 Trend 1: SOUNDNESS TRAVEL p. 4-5 2.2 Trend 2: MIND MINIMALISM p. 5-6 2.3 Trend 3:FLEXIBLE TOUCH p. 6-7 3. Available wireless technology 3.1 Tesla coil p. 7 3.2 Magnetic Resonance p. 8 3.3 Radio Frequency (RF) p. 8 3.4 SAR regulations p. 9 3.5 Radiation explained p. 9-10 3.6 Infrared p. 10 3.7 WIFI p. 10 3.8 Sound p. 11 3.9 Meeting at Wireless Power Consortium of Philips p. 11-12 4. Contextual Inquiry program p. 13-15 5. Kesselring method p. 16 6. Technical drawings p. 17-24 -2- 1. PLAN OF ACTION Technology - research Demands will be formed. To start with, different technologies available will be investigated. Sketching - phase Then the various abilities of every During this process, sketches will individual technology will be be made on the base of the list of listed. Within this list, unusable wishes and demands. technologies will be crossed out Thereafter it will be investigated if till only the promising technologies the design would fit MANU and to remain. After looking at these the examined target group. Within residual technologies individually, this phase, a large number of as the technology most feasible will many sketches as possible will be be chosen. made to get a feeling of learning which shape would fit best to the Target-group - research target group and MANU.
    [Show full text]
  • The Future Is Electric, Autonomous and Wireless. Wireless Vs
    David Schatz VP Sales & Business Development July 1, 2020 The future is electric, autonomous and wireless. Wireless vs. Wired VS. Touch-free Wireless Charging Electric passenger vehicles Electric people movers Personal mobility vehicles Autonomous delivery Mobile robotics Automatic guided vehicles (AGVs) WiTricity Confidential and Proprietary More than 2/3 of consumers in Germany planning to buy a car are more willing to purchase an EV if they could charge it wirelessly. SOURCE: J.D. Power Mobility Disruptor Study WiTricity’s Magnetic Resonance Technology Broad and foundational IP portfolio Simplicity, driven by invention. 900+ 500+ Patents granted Patent applications worldwide pending Execution Model Vehicle Assembly Deliver customized reference designs to enable Tier 1/OEM fleets • Tech transfer & engineering support • IP licensing • Royalties Ground Pad & Electronics Charging infrastructure providers deploy standards based, ubiquitous charging pads • Level 2, 7 -11 kW • Global interoperability • Full product availability – WiTricity + licensees Plus Tier 1s above WiTricity Confidential and Proprietary Driving Global Standards China National Standards China GB standard published April 2020 SAE to be published 2020 ISO/IEC to be published 2021 UL Standard published March 2020 WATERTOWN LAB Watertown, MA Headquarters China What We Do: Develop and commercialize safe and efficient wireless power transfer over US Development Center distance Core Technology: Highly Resonant Wireless Power Germany Transfer over distances; referred to as magnetic resonance Founded: 2007 Target Markets: Automotive & Industrial Investors: Global corporate investors now include EUROPE DEVELOPMENT CENTER Qualcomm, Toyota, Intel Capital, Delta Electronics Capital, Foxconn, Haier, and Schlumberger. Venture investors include: Stata Ventures, Argonaut Private Equities, Airwaves Wireless Electricity, Korea LLC, Ace & Company, OMZEST Group, Switzerland Stage 1 Ventures, and Haiyin Capital.
    [Show full text]
  • Highly Resonant Wireless Power Transfer: Safe, Efficient, and Over Distance
    Highly Resonant Wireless Power Transfer: WiTricity Safe, Efficient, and over Distance Dr. Morris Kesler WiTricity Corporation ©WiTricity Corporation, 2013 WiTricity Highly Resonant Wireless Power Transfer: Safe, Efficient, and over Distance Introduction Driving home from the airport, Marin noticed his new smart phone was low on battery once again. Its HD display, and apps using GPS, Bluetooth, and LTE/4G data communications conspired to drain the battery quickly. Without looking, he dropped his phone into an open cup-holder in the center console. Hidden several centimeters below the console, a wireless power source sensed the presence of the phone, and queried the device to determine whether or not it was wireless power enabled. The phone gave a valid response and configured itself for resonant wireless power transfer. Under the console, the source electronics turned on and began charging the phone wirelessly—with no need for a charging cradle, power cord, or especially accurate placement of the phone. Marin relaxed when he heard the recharging chime and focused his attention on the road ahead. After exiting the highway, Marin was surprised to see that the price of gasoline had climbed to over $4.00 per gallon, as it had been months since he had last filled his tank of his new car-- a wirelessly charged hybrid electric vehicle. Since installing a wireless 3.3 kW charger in his home and office garage, his car’s traction battery was fully charged every morning before work and every evening as he began his commute home. As Marin’s car silently pulled into his driveway, it communicated with the wireless charger in his garage.
    [Show full text]
  • Leave the Filling Station Behind: Wireless, Distributed, 7-11 Kw Charging Changes How, When and Where Evs Will “Fill Up” — and Makes Charging Easy As Parking a Car
    Leave the Filling Station Behind: Wireless, distributed, 7-11 kW charging changes how, when and where EVs will “fill up” — and makes charging easy as parking a car WiTricity Corporation ©WiTricity Corporation Leave the Filling Station Behind: Wireless, distributed, 7-11 kW charging changes how, when and where EVs will “fill up” — and makes charging easy as parking a car In 1973 and again in 1979, cars lined up sometimes for blocks on end at filling stations — with gas rationing and consumer panic replacing the laws of supply and demand. Electric vehicle (EV) owners today, by contrast, don’t face shortages or supply crises over their fuel. Electricity is of course not nearly as volatile a commodity as oil. Yet, relying too heavily on the “filling station” mindset risks the downsides of filling stations too. Level 3, DC Fast Charging (DCFC) kiosks at gas stations, rest areas and shopping centers will undoubtedly be crucial EV range extenders. However, according to Gas lines, 1973 studies by the National Renewable Energy Laboratory, DCFC will only be needed 4% of the time, when EVs are used for longer trips that extend beyond their battery capacity. [1] For the vast majority of EV use — the other 96% of the time — DCFC will be overkill and likely anywhere from an inconvenience to a hassle to the kind of miserable, queuing experience drivers regularly faced in 1973 and ’79. This time, though, rather than a shortage of fuel, a shortage of DCFC stations would be the cause of any lines at the “pump.” EVs can in fact leave the filling station experience nearly completely behind — at least 96% in the rearview mirror.
    [Show full text]
  • Safe, Sustainable Discharge of Electric Vehicle Batteries As a Pre- Treatment Step to Crushing in the Recycling Process
    Safe, Sustainable Discharge of Electric Vehicle Batteries as a Pre- treatment Step to Crushing in the Recycling Process Nicole Shantelle Nembhard Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology ITM-EX 2019:390 Division of Heat and Power Technology SE-100 44 STOCKHOLM -2- Master of Science Thesis ITM-EX 2019:390 Safe, Sustainable Discharge of Electric Vehicle Batteries as a Pre-treatment Step to Crushing in the Recycling Process Nicole Nembhard Approved Examiner Supervisor Justin Chiu Justin Chiu Commissioner Contact person Northvolt AB Ingrid Karlsson Abstract According to the Intergovernmental Panel on Climate Change, an increase in global temperature to above 1.5°C can be halted but would require immediate intervention to reach net zero emissions in the next 15 years. This intervention would have to make use of sustainable energy technologies such as net-zero carbon systems for automobiles. Electric vehicle (EV) use is set to increase 3000% between 2016 and 2030. Due to the inherent toxicity of the chemicals within Li-ion batteries, they must be recycled to be sustainable. Recycling using energy recovering, hydrometallurgical process reduces greenhouse gas emissions. However, due to the high energy and power density within EV batteries, discharging the batteries is an important safety step in the pre-treatment process. There is no industry standard for discharging EV batteries. Many processes are suggested in literature with little information as to the methods used. The aim of this thesis is to explore four processes that could be suitable for industrial use. A suitable process should be ‘safe’, meaning it reduces the risk to the facility by minimizing the fire or explosion hazard, minimizes or eliminates human interaction with the battery pack and limits voltage rebound of an individual cell to 0.5V.
    [Show full text]
  • Codes and Standards to Support Vehicle Electrification
    Codes and Standards Support for Vehicle Electrification 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 14, 2013 Theodore Bohn (PI) Argonne National Laboratory Sponsored by Lee Slezak Project ID #VSS053 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline Barriers . A. Establishing consensus between competing . Support of PEV-Grid related standards, approaches to intelligently manage vehicle including communication started 2007 charge and communication . SAE J2954 Wireless PEV Charging . B. Interoperability of vehicle-grid standard initiated in 2010 communication and hardware connections is a . SAE J2953 PEV-EVSE Interoperability necessity for effective infrastructure Standard initiated in 2010; ANL Lead deployment committee starting in 2012 . C. Low cost, secure, validated technology and communication standards are required . ISO15118-pt6 Interoperability for DC coincident with PHEV/EV market introductions Charging communication started 2012 Partners Budget . Utilities (DTE Energy, Southern Cal. Edison, Commonwealth Edison, Northeast Utilities, . FY2010- $300k TVA, Communications technology vendors) . FY2011- $400k . EVSE suppliers (Clipper Creek, Coulomb, SPX, Leviton, ECOtality, G.E., Schneider) . FY2012- $280k . Vehicle OEMS (Ford, GM, Chrysler, BMW) . FY2013- $400k . National Labs (INL, PNNL, ORNL, NREL) . NRTL Certification Labs (UL, ETL, TUV SUD) 2 Approach – Direct Participation Compatibility/Interoperability •SAE J2931 (Communication,
    [Show full text]
  • A Perspective on Far-Field and Near-Field Wireless Power Transfer
    A Perspective on Far-Field and Near-Field Wireless Power Transfer Prof. Jenshan Lin University of Florida 1 MTT-26 Technical Committee Wireless Energy Transfer and Conversion • Established on June 7, 2011. • Major activities: – Wireless Power Transfer Conference (WPTC) – started as a workshop in 2011 (Kyoto, Japan), workshop in Japan again in 2012, and expanded into a conference in 2013 (Perugia, Italy), 2014 (Jeju, Korea), 2015 (Boulder, Colorado, USA), 2016 (Aveiro, Portugal), 2017 (Taipei, Taiwan) – Organize workshops and panels in MTT-sponsored conferences – Sponsor Wireless Power Student Design Competition during International Microwave Symposium – Develop Special Issues in publications – IEEE Microwave Magazine, Proceedings of IEEE, IEEE Transactions on Microwave Theory and Techniques 2 Special Issues in Publications March 2015 Feb 2016 March/April 2013 June 2013 April 2014 WPTC2014 WPTC2015 WPT Special Issue mini-special issue mini-special issue 6 papers 18 papers 21 papers 8 papers 7 papers Guest Editors Guest Editors Guest Editors Guest Editors Guest Editors Z. Chen K. Wu L. Roselli J. Kim Z. Popovic S. Kawasaki D. Choudhury S. Kawasaki S. Ahn K. Afridi N. B. Carvalho H. Matsumoto F. Alimenti G. Ponchak 3 Outline • Far-field WPT – An overview of historical developments – Challenges of far-field WPT • Near-field WPT – Overview – Difference between far-field WPT and near-field WPT • Magnetic coupling near-field WPT – Examples • Possible future game-changing applications 4 WPT History - more than one century Ø 1899 – Tesla’s first experiment to transmit power without wires. 150 kHz. Ø 1958 – 1st period of microwave WPT development. Raytheon, Air Force, NASA. Ø 1963 – Brown in Raytheon demonstrated the first microwave WPT system.
    [Show full text]
  • RADIATIVE WIRELESS POWER TRANSFER Driven by Nanoelectronics Innovation
    RADIATIVE WIRELESS POWER TRANSFER driven by nanoelectronics innovation Peter Lemmens – General Manager imec (Taiwan) CONFIDENTIAL 1. ENERGY HARVESTING Movement 1831 Faraday dynamo WWII Philips dyno torch Modern dyno torch Piezoelectricity 1880 Curie discovery of RPG7 fuse Enocean wireless switch piezoelectricity Temperature 1821 Seebeck experiment 1948 USSR oil lamp powered radio 1977 Voyager 2 Radioisotope Thermoelectric Generator Light 1839 Becquerel experiment 1954 Bell Labs PV Modern PV CONFIDENTIAL 1. ENERGY HARVESTING Source Available Power Density Typical Harvested Power Density Ambient Light Indoor 0.1 mW/cm2 10 W/cm2 Outdoor 100 mW/cm2 10 mW/cm2 Vibration/Motion Human 0.5 m at 1 Hz 4 W/cm2 1 m/s2 at 50 Hz Industrial 1 m at 5 Hz 100 W/cm2 10 m/s2 at 1 kHz Thermal Human 20 mW/cm2 30 W/cm2 Industrial 100 mW/cm2 1-10 mW/cm2 RF GSM Base Station 0.3 W/cm2 0.1 W/cm2 CONFIDENTIAL 2. WIRELESS POWER TRANSFER (WPT) (Non-Radiative) Near-Field Power Transfer 1961 2007 General Electric Kurs et al., Science Inductively charged toothbrush Wireless Power Transfer via Strongly Coupled Magnetic Resonances (Radiative) Far-Field Power Transfer 1901 1931 Nikola Tesla Westinghouse Idea to wirelessly Wirelessly powering a transfer energy lightbulb at 5m, 15kW CONFIDENTIAL 3. (NON-RADIATIVE) NEAR-FIELD POWER TRANSFER loss R R s r + High power + High efficiency V L + Standard s s Lr RL Cs Cr - Short distance RF source Rectification and - Standard Transmit coil Ls power resonated with Cs management Receive coil Lr resonated with Cr & Asus, Blackberry, Broadcom, Dell, Fairchild, Freescale, Hama, Hitachi, HTC, Acer, Asus, AT&T, Broadcom, Canon, Deutsche Telekom, Dialog, Fairchild, Huawei, IKEA, Keysight, LG, Microsoft, Motorola, Nokia, NXP, Omron, Fujitsu, HP, Hitachi, HTC, Intel, Keysight, Lenovo, LG, Microsoft, Motorola, Panasonic, Philips, Powercast, Qualcomm, Ricoh, Samsung, Sony, TDK, TI, Nordic, NXP, Omron, Panasonic, P&G, Qualcomm, Renesas, Rohm, Toshiba, Toyota, and others Samsung, Starbucks, Sandisk, Sharp, Sony, ST, TDK, TI, Toshiba, Witricity, and others CONFIDENTIAL 4.
    [Show full text]
  • Medium- and Heavy-Duty Vehicle Electrification an Assessment of Technology and Knowledge Gaps
    ORNL/SPR-2020/7 Medium- and Heavy-Duty Vehicle Electrification An Assessment of Technology and Knowledge Gaps (December 2019) ORNL/SPR-2020/7 Medium- and Heavy-Duty Vehicle Electrification An Assessment of Technology and Knowledge Gaps Oak Ridge National Laboratory (ORNL) and National Renewable Energy Laboratory (NREL) December 2019 ORNL: David Smith, Ron Graves, Burak Ozpineci, P. T. Jones NREL: Jason Lustbader, Ken Kelly, Kevin Walkowicz, Alicia Birky, Grant Payne, Cory Sigler, Jeff Mosbacher Contents List of Figures ................................................................................................................................................. v List of Tables ................................................................................................................................................ vii Acknowledgments ........................................................................................................................................ ix Acronyms ...................................................................................................................................................... xi Executive Summary .................................................................................................................................... xiii 1 Introduction ........................................................................................................................................... 1 1.1 Study Purpose.............................................................................................................................
    [Show full text]