Highly Resonant Wireless Power Transfer: Safe, Efficient, and Over Distance

Total Page:16

File Type:pdf, Size:1020Kb

Highly Resonant Wireless Power Transfer: Safe, Efficient, and Over Distance Highly Resonant Wireless Power Transfer: WiTricity Safe, Efficient, and over Distance Dr. Morris Kesler WiTricity Corporation ©WiTricity Corporation, 2013 WiTricity Highly Resonant Wireless Power Transfer: Safe, Efficient, and over Distance Introduction Driving home from the airport, Marin noticed his new smart phone was low on battery once again. Its HD display, and apps using GPS, Bluetooth, and LTE/4G data communications conspired to drain the battery quickly. Without looking, he dropped his phone into an open cup-holder in the center console. Hidden several centimeters below the console, a wireless power source sensed the presence of the phone, and queried the device to determine whether or not it was wireless power enabled. The phone gave a valid response and configured itself for resonant wireless power transfer. Under the console, the source electronics turned on and began charging the phone wirelessly—with no need for a charging cradle, power cord, or especially accurate placement of the phone. Marin relaxed when he heard the recharging chime and focused his attention on the road ahead. After exiting the highway, Marin was surprised to see that the price of gasoline had climbed to over $4.00 per gallon, as it had been months since he had last filled his tank of his new car-- a wirelessly charged hybrid electric vehicle. Since installing a wireless 3.3 kW charger in his home and office garage, his car’s traction battery was fully charged every morning before work and every evening as he began his commute home. As Marin’s car silently pulled into his driveway, it communicated with the wireless charger in his garage. The wall mounted charger electronics ran through its diagnostics and sent a low-power pulse to the mat on the garage floor. Sensors in the mat confirmed it was safe to begin charging. As Marin drove into the garage, he simply parked his car as usual. The resonant charger had enough positioning tolerance that it would work without needing any special parking procedures. Marin smiled upon the realization that he no longer had to recharge or refuel two of his most important high tech devices, his smart phone and his hybrid vehicle. Highly resonant wireless ©WiTricity Corporation, 2013 pg. 2 WiTricity power transfer had succeeded to make these essential products more available, convenient, and reliable. Although the story above is fictitious, the wireless power technology described is very real. This article explores the advances in wireless power technology enabled by the use of highly resonant wireless power transfer, how those advances are being applied across a broad spectrum of applications, and how they address the safety concerns in typical applications. Background The idea of transmitting power through the air has been around for over a century, with Nikola Tesla’s pioneering ideas and experiments perhaps being the most well-known early attempts to do so [1]. He had a vision of wirelessly distributing power over large distances using the earth’s ionosphere. Most approaches to wireless power transfer use an electromagnetic (EM) field of some frequency as the means by which the energy is sent. At the high frequency end of the spectrum are optical techniques that use lasers to send power via a collimated beam of light to a remote detector where the received photons are converted to electrical energy. Efficient transmission over large distances is possible with this approach; however, complicated pointing and tracking mechanisms are needed to maintain proper alignment between moving transmitters and/or receivers. In addition, objects that get between the transmitter and receiver can block the beam, interrupting the power transmission and, depending on the power level, possibly causing harm. At microwave frequencies, a similar approach can be used to efficiently transmit power over large distances using the radiated EM field from appropriate antennas [2]. However, similar caveats about safety and system complexity apply for these radiative approaches. It is also possible to transmit power using non-radiative fields. As an example, the operation of a transformer can be considered a form of wireless power transfer since it uses the principle of magnetic induction to transfer energy from a primary coil to a secondary coil without a direct electrical connection. Inductive chargers, such as those found commonly in electric ©WiTricity Corporation, 2013 pg. 3 WiTricity toothbrushes, operate on this same principle. However, for these systems to operate efficiently, the primary coil (source) and secondary coil (device) must be located in close proximity and carefully positioned with respect to one another. From a technical point of view, this means the magnetic coupling between the source and device coils must be large for proper operation. But what about going over somewhat larger distances or having more freedom in positioning the source and device relative to each other? That’s the question that a group at the Massachusetts Institute of Technology asked themselves. They explored many techniques for transmitting power over “mid-range” distances and arrived at a non-radiative approach that uses resonance to enhance the efficiency of the energy transfer (see Physics of Highly Resonant Power Transfer for details) [3]-[6]. High quality factor resonators enable efficient energy transfer at lower coupling rates, i.e., at greater distances and/or with more positional freedom than is otherwise possible (and therefore, this approach is sometimes referred to as “highly resonant” wireless energy transfer or “highly resonant” wireless power transfer (HR-WPT)). The MIT team demonstrated the highly resonant technique using a magnetic field to transfer energy over a mid-range distance of 2 meters, and an industry was born. In some instances, this technology is also referred to as “magnetic resonance”, and it is often contrasted to “induction” for its ability to efficiently transfer power over a range of distances and with positional and orientational offsets. Since that initial demonstration, the use of HR-WPT, or magnetic resonance, has enabled efficient wireless energy transfer in a wide range of applications that was not possible before. System Description Across an application space that spans power levels from less than a watt to multiple kilowatts, a wireless energy transfer system based on HR-WPT often has a common set of functional blocks. A general diagram of such a system is shown in Figure 1. ©WiTricity Corporation, 2013 pg. 4 WiTricity Figure 1: Block diagram of a wireless energy transfer system. Progressing from left to right on the top line of the diagram, the input power to the system is usually either wall power (AC mains) which is converted to DC in an AC/DC rectifier block, or alternatively, a DC voltage directly from a battery or other DC supply. In high power applications a power factor correction stage may also be included in this block. A high efficiency switching amplifier converts the DC voltage into an RF voltage waveform used to drive the source resonator. Often an impedance matching network (IMN) is used to efficiently couple the amplifier output to the source resonator while enabling efficient switching-amplifier operation. Class D or E switching amplifiers are suitable in many applications and generally require an inductive load impedance for highest efficiency. The IMN serves to transform the source resonator impedance, loaded by the coupling to the device resonator and output load, into such an impedance for the source amplifier. The magnetic field generated by the source resonator couples to the device resonator, exciting the resonator and causing energy to build up in it. This energy is coupled out of the device resonator to do useful work, for example, directly powering a load or charging a battery. A second IMN may be used here to efficiently couple energy from the resonator to the load. It may transform the actual load impedance into ©WiTricity Corporation, 2013 pg. 5 WiTricity an effective load impedance seen by the device resonator which more closely matches the loading for optimum efficiency (Equation 5). For loads requiring a DC voltage, a rectifier converts the received AC power back into DC. In the earliest work at MIT, the impedance matching was accomplished by inductively coupling into the source resonator and out of the device resonator [3]. This approach provides a way to tune the input coupling, and therefore the input impedance, by adjusting the alignment between the source input coupling coil and the source resonator, and similarly, a way to tune the output coupling, and therefore the output impedance, by adjusting the alignment between the device output coupling coil and the device resonator. With proper adjustment of the coupling values, it was possible to achieve power transfer efficiencies approaching the optimum possible efficiency (Equation 6). Figure 2 shows a schematic representation of an inductive coupling approach to impedance matching. In this circuit M g is adjusted to properly load the source resonator with the generator’s output resistance. The device resonator is similarly loaded by adjusting ML , the mutual coupling to the load. Series capacitors may be needed in the input and output coupling coils to improve efficiency unless the reactances of the coupling inductors are much less than the generator and load resistances. M g M ML Rg LS LD Vg Lg CS CD LL RL RS RD Input Coupling Source Device Output Coupling Coil Resonator Resonator Coil Figure 2: Schematic representation of inductively coupling into and out of the resonators. ©WiTricity Corporation, 2013 pg. 6 WiTricity It is also possible to directly connect the generator and load to the respective resonators with a variety of IMNs. These generally comprise components (capacitors and inductors) that are arranged in “T” and/or “pi” configurations. The values of these components may be chosen for optimum efficiency at a particular source-to-device coupling and load condition (“fixed tuned” impedance matching) or they may be adjustable to provide higher performance over a range of source-to-device positions and load conditions (“tunable” impedance matching).
Recommended publications
  • Design and Testing of Collimators for Use in Measuring X-Ray Attenuation
    DESIGN AND TESTING OF COLLIMATORS FOR USE IN MEASURING X-RAY ATTENUATION By RAJESH PANTHI Master of Science (M.Sc.) in Physics Tribhuvan University Kathmandu, Nepal 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2017 DESIGN AND TESTING OF COLLIMATORS FOR USE IN MEASURING X-RAY ATTENUATION Thesis Approved: Dr. Eric R. Benton Thesis Adviser and Chair Dr. Eduardo G. Yukihara Dr. Mario F. Borunda ii ACKNOWLEDGEMENTS I would like to express the deepest appreciation to my thesis adviser As- sociate Professor Dr. Eric Benton of the Department of Physics at Oklahoma State University for his vigorous guidance and help in the completion of this work. He provided me all the academic resources, an excellent lab environment, financial as- sistantship, and all the lab equipment and materials that I needed for this project. I am grateful for many skills and knowledge that I gained from his classes and personal discussion with him. I would like to thank Adjunct Profesor Dr. Art Lucas of the Department of Physics at Oklahoma State University for guiding me with his wonderful experience on the Radiation Physics. My sincere thank goes to the members of my thesis committee: Professor Dr. Eduardo G. Yukihara and Assistant Professor Dr. Mario Borunda of the Department of Physics at Oklahoma State University for generously offering their valuable time and support throughout the preparation and review of this document. I would like to thank my colleague Mr. Jonathan Monson for helping me to access the Linear Accelerators (Linacs) in St.
    [Show full text]
  • Board Presentation Template
    CONFIDENTIAL. FOR INTERNAL USE ONLY. SMUD Smart Charging Pilot Program EPRI Infrastructure Working Council March 28, 2012 Dwight MacCurdy Powering forward. Together. DOE Smart Grid Investment Grant (SGIG) Acknowledgement • Acknowledgement: “This material is based upon work supported by the Department of Energy under Award Number OE000214.” • Disclaimer: “This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.” 2 SACRAMENTO MUNICIPAL UTILITY DISTRICT • 595,000 accounts 527,000 residential accounts Peak demand of 3,299 MW in 2006 Service area population 1.4 million ~ 100,000 participants in SMUD’S Air Conditioning Load Management Program ~ 70,000 transformers 3 SMART CHARGING PILOT PROGRAM: RESEARCH DESIGN • Up to 180 Participants in 3
    [Show full text]
  • Repeating Fast Radio Bursts Caused by Small Bodies Orbiting a Pulsar Or a Magnetar Fabrice Mottez1, Philippe Zarka2, and Guillaume Voisin3,1
    A&A 644, A145 (2020) Astronomy https://doi.org/10.1051/0004-6361/202037751 & c F. Mottez et al. 2020 Astrophysics Repeating fast radio bursts caused by small bodies orbiting a pulsar or a magnetar Fabrice Mottez1, Philippe Zarka2, and Guillaume Voisin3,1 1 LUTH, Observatoire de Paris, PSL Research University, CNRS, Université de Paris, 5 Place Jules Janssen, 92190 Meudon, France e-mail: [email protected] 2 LESIA, Observatoire de Paris, PSL Research University, CNRS, Université de Paris, Sorbonne Université, 5 Place Jules Janssen, 92190 Meudon, France 3 Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Manchester M19 9PL, UK Received 16 February 2020 / Accepted 1 October 2020 ABSTRACT Context. Asteroids orbiting into the highly magnetized and highly relativistic wind of a pulsar offer a favorable configuration for repeating fast radio bursts (FRB). The body in direct contact with the wind develops a trail formed of a stationary Alfvén wave, called an Alfvén wing. When an element of wind crosses the Alfvén wing, it sees a rotation of the ambient magnetic field that can cause radio-wave instabilities. In the observer’s reference frame, the waves are collimated in a very narrow range of directions, and they have an extremely high intensity. A previous work, published in 2014, showed that planets orbiting a pulsar can cause FRBs when they pass in our line of sight. We predicted periodic FRBs. Since then, random FRB repeaters have been discovered. Aims. We present an upgrade of this theory with which repeaters can be explained by the interaction of smaller bodies with a pulsar wind.
    [Show full text]
  • A High Power Microwave Zoom Antenna with Metal Plate Lenses Julie Lawrance
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 1-28-2015 A High Power Microwave Zoom Antenna With Metal Plate Lenses Julie Lawrance Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation Lawrance, Julie. "A High Power Microwave Zoom Antenna With Metal Plate Lenses." (2015). https://digitalrepository.unm.edu/ ece_etds/151 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Julie Lawrance Candidate Electrical Engineering Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Christos Christodoulou , Chairperson Dr. Edl Schamilaglu Dr. Mark Gilmore Dr. Mahmoud Reda Taha i A HIGH POWER MICROWAVE ZOOM ANTENNA WITH METAL PLATE LENSES by JULIE LAWRANCE B.A., Physics, Occidental College, 1985 M.S. Electrical Engineering, 2010 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Engineering The University of New Mexico Albuquerque, New Mexico December, 2014 ii A HIGH POWER MICROWAVE ZOOM ANTENNA WITH METAL PLATE LENSES by Julie Lawrance B.A., Physics, Occidental College, 1985 M.S., Electrical Engineering, University of New Mexico, 2010 Ph.D., Engineering, University of New Mexico, 2014 ABSTRACT A high power microwave antenna with true zoom capability was designed and constructed with the use of metal plate lenses. Proof of concept was achieved through experiment as well as simulation.
    [Show full text]
  • PIC6049F Wireless Charging Module Diagnosis Models
    Bulletin No.: PIC6049F Published date: 02/13/2017 Preliminary Information PIC6049F Wireless Charging Module Diagnosis Models VIN: Brand: Model: Model Years: Engine: Transmissions: from to Buick LaCrosse 2017 All All All All Cadillac ATS 2015 - 2017 All All All All Cadillac CTS VIN A 2015 - 2017 All All All All Cadillac Escalade Models 2015 - 2017 All All All All Cadillac CT6 2016 - 2017 All All All All Cadillac ELR 2016 - 2017 All All All All Cadillac XTS 2016 - 2017 All All All All Cadillac XT5 2017 All All All All Chevrolet Suburban 2015 - 2017 All All All All Chevrolet Camaro 2016 - 2017 All All All All Chevrolet Cruze 2016 - 2017 All All All All Chevrolet Impala 2016 - 2017 All All All All Chevrolet Malibu 2016 - 2017 All All All All Chevrolet Volt 2016 - 2017 All All All All Chevrolet Silverado HD 2016 - 2017 All All All All Chevrolet Colorado 2017 All All All All GMC Yukon Models 2016 - 2017 All All All All GMC Sierra HD 2016 - 2017 All All All All GMC Acadia 2017 All All All All GMC Canyon 2017 All All All All Chevrolet Equinox 2018 All All All With Inductive Portable Wireless Device Charger (RPO K4C) Supersession Statement: This PI was superseded to end a part restriction and update EL 51755 ‘Inductive Charging Test Tool’ with new sleeve diagnostics and add the 2018 Chevrolet Equinox. Please discard PIC6049E The following diagnosis might be helpful if the vehicle exhibits the symptom(s) described in this PI. Condition / Concern The following procedure REQUIRES the use of EL 51755 ‘Inductive Charging Test Tool’ which is an essential tool shipped to every GM store earlier this year.
    [Show full text]
  • Laser Collimated Beam Sensor LA SERIES ■■General Terms and Conditions
    1053 Laser Collimated Beam Sensor LA SERIES ■ General terms and conditions ........... F-17 ■ Sensor selection guide ................. P.967~ FIBER Related Information SENSORS ■ About laser beam........................ P.1403~ ■ General precautions ..................... P.1405 LASER SENSORS PHOTOELECTRIC SENSORS Conforming to Conforming to FDA regulations EMC Directive MICRO (LA-511 only) PHOTOELECTRIC SENSORS AREA SENSORS LIGHT CURTAINS PRESSURE / FLOW SENSORS INDUCTIVE PROXIMITY SENSORS PARTICULAR USE SENSORS SENSOR LA-510 is classified as OPTIONS a Class 1 Laser Product SIMPLE in IEC / JIS standards. WIRE-SAVING LA-511 is a Class I Laser UNITS Product in FDA regulations WIRE-SAVING 21 CFR 1040.10. SYSTEMS Do not look at the laser MEASUREMENT beam through optical SENSORS panasonic-electric-works.net/sunx system such as a lens. STATIC CONTROL DEVICES ENDOSCOPE LASER “Class 1” laser beam sensor safe for your eyes MARKERS PLC / TERMINALS BASIC PERFORMANCE FUNCTIONS HUMAN MACHINE INTERFACES Safe laser beam LA-510 Easy laser beam alignment ENERGY CONSUMPTION VISUALIZATION This laser collimated beam sensor conforms to the Four monitoring LEDs help you to easily align the emitter COMPONENTS Class 1 laser stipulated in IEC 60825-1 and JIS C 6802. and the receiver. FA COMPONENTS Hence, safety measures such as protective gear are not necessary. MACHINE VISION Receiver front face SYSTEMS Precise sensing in wide area “DOWN” lights up UV CURING SYSTEMS Sensing area: 15 × 500 mm 0.591 × 19.685 in Minimum sensing object: ø0.1 mm ø0.004 in “LEFT” lights up The monitoring Repeatability: 10 µm 0.394 mil or less system checks whether the incident Sensing range beam falls evenly on Selection Emitter 500 mm 19.685 in Receiver “RIGHT” lights up Guide all the four receiving Laser “UP” lights up elements in the Displacement receiver window.
    [Show full text]
  • Beam Expander Basics: Not All Spots Are Created Equal
    LEARNING – UNDERSTANDING – INTRODUCING – APPLYING Beam Expander Basics: Not All Spots Are Created Equal APPLICATION NOTES www.edmundoptics.com BEAM EXPANDERS A laser beam expander is designed to increase the diameter from well-established optical telescope fundamentals. In such of a collimated input beam to a larger collimated output beam. systems, the object rays, located at infinity, enter parallel to Beam expanders are used in applications such as laser scan- the optical axis of the internal optics and exit parallel to them ning, interferometry, and remote sensing. Contemporary laser as well. This means that there is no focal length to the entire beam expander designs are afocal systems that developed system. THEORY: TELESCOPES Optical telescopes, which have classically been used to view eye, or image created, is called the image lens. distant objects such as celestial bodies in outer space, are di- vided into two types: refracting and reflecting. Refracting tele- A Galilean telescope consists of a positive lens and a negative scopes utilize lenses to refract or bend light while reflecting lens that are also separated by the sum of their focal length telescopes utilize mirrors to reflect light. (Figure 2). However, since one of the lenses is negative, the separation distance between the two lenses is much shorter Refracting telescopes fall into two categories: Keplerian and than in the Keplerian design. Please note that using the Effec- Galilean. A Keplerian telescope consists of positive focal length tive Focal Length of the two lenses will give a good approxima- lenses that are separated by the sum of their focal lengths (Fig- tion of the total length, while using the Back Focal Length will ure 1).
    [Show full text]
  • Witricity:Wireless Power Transfer by Non-Radiative Method Ajey Kumar
    International Journal of Engineering Trends and Technology (IJETT) – Volume 11 Number 6 - May 2014 WiTricity:Wireless Power Transfer By Non-radiative Method Ajey Kumar. R1, Gayathri. H. R2, Bette Gowda. R3, Yashwanth. B4 1Dept. of ECE, Malnad College of Engineering, Hassan, India 2Centre for Emerging Technologies, Jain University, Bangalore, India 3Dept. of EEE, Basaveshwara College of Engineering, Bagalkot, India 4Dept. of ECE, BVB College of Engineering & Technology, Hubli, India Abstract— A non-radiative energy transfer, commonly referred Thanks to the advent in power electronics, inductive charging, as WiTricity and based on ‘strong coupling’ between two coils also known as wireless charging, has found much successes which are separated physically by medium-range distances, is and is now receiving increasing attention by virtue of its proposed to realize efficient wireless energy transfer. WiTricity simplicity and efficiency. The most important distinctive idea is spear-headed by MIT researcher Marin Soljacic, which structural difference between contactless transformers and describes the ability to provide electricity to remote objects without wires. The advent of WiTricity technology is though old conventional transformers is that the two ‘coils’ in the former of 1899, explored by Nikola Tesla, but has founded its grip in are separated by a large air gap. Compared with plug and recent years with numerous gadgets and there snaking cables socket (i.e., conductive) charging, the primary advantage of around us. The technology is in turn expels E-waste and will free the inductive charging approach is that the system can work us from the power cords. WiTricity depends upon strong coupled with no exposed conductors, no interlocks and no connectors, resonance between transmitter and receiver coils.
    [Show full text]
  • A Gaussian Beam Shooting Algorithm for Radar Propagation Simulations Ihssan Ghannoum, Christine Letrou, Gilles Beauquet
    A Gaussian beam shooting algorithm for radar propagation simulations Ihssan Ghannoum, Christine Letrou, Gilles Beauquet To cite this version: Ihssan Ghannoum, Christine Letrou, Gilles Beauquet. A Gaussian beam shooting algorithm for radar propagation simulations. RADAR 2009 : International Radar Conference ’Surveillance for a safer world’, Oct 2009, Bordeaux, France. hal-00443752 HAL Id: hal-00443752 https://hal.archives-ouvertes.fr/hal-00443752 Submitted on 4 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A GAUSSIAN BEAM SHOOTING ALGORITHM FOR RADAR PROPAGATION SIMULATIONS Ihssan Ghannoum and Christine Letrou Gilles Beauquet Lab. SAMOVAR (UMR CNRS 5157) Surface Radar Institut TELECOM SudParis THALES Air Systems S.A. 9 rue Charles Fourier, 91011 Evry Cedex, France Hameau de Roussigny, 91470 Limours, France Emails: [email protected] Email: [email protected] [email protected] Abstract— Gaussian beam shooting is proposed as an al- ternative to the Parabolic Equation method or to ray-based techniques, in order to compute backscattered fields in the context of Non-Line-of-Sight ground-based radar. Propagated fields are represented as a superposition of Gaussian beams, which are launched from the emitting antenna and transformed through successive interactions with obstacles.
    [Show full text]
  • Observation and Modeling of Solar Jets
    Observation and Modeling of Solar Jets rspa.royalsocietypublishing.org 1 Yuandeng Shen 1 Invited Review Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650216, China The solar atmosphere is full of complicated transients manifesting the reconfiguration of solar magnetic Article submitted to journal field and plasma. Solar jets represent collimated, beam-like plasma ejections; they are ubiquitous in the solar atmosphere and important for the Subject Areas: understanding of solar activities at different scales, Solar Physics, Plasma Physics, magnetic reconnection process, particle acceleration, Space Science coronal heating, solar wind acceleration, as well as other related phenomena. Recent high spatiotemporal Keywords: resolution, wide-temperature coverage, spectroscopic, Flares, Coronal Mass Ejections, and stereoscopic observations taken by ground-based and space-borne solar telescopes have revealed many Magnetic Fields, valuable new clues to restrict the development of Filaments/Prominences, Solar theoretical models. This review aims at providing the Energetic Particles, Magnetic reader with the main observational characteristics of Reconnection, solar jets, physical interpretations and models, as well Magnetohydrodynamic Simulation as unsolved outstanding questions in future studies. Author for correspondence: Yuandeng Shen 1. Introduction e-mail: [email protected] The dynamic solar atmosphere hosts many jetting phenomena that manifest as collimated plasma beams with a width ranging from several hundred to few times 5 10 km [1–5]; they are frequently accompanied by micro- flares, photospheric magnetic flux cancellations, and type III radio bursts, and can occur in all types of solar regions including active regions, coronal holes, and quiet-Sun regions. Since these jetting activities continuously supply mass and energy into the upper atmosphere, they are thought to be one of the important source for heating coronal plasma and accelerating solar wind [1,6–9].
    [Show full text]
  • Laser Safety
    Laser Safety The George Washington University Office of Laboratory Safety Ross Hall, Suite B05 202-994-8258 LASER LASER stands for: Light Amplification by the Stimulated Emission of Radiation Laser Light Laser light – is monochromatic, unlike ordinary light which is made of a spectrum of many wavelengths. Because the light is all of the same wavelength, the light waves are said to be synchronous. – is directional and focused so that it does not spread out from the point of origin. Asynchronous, multi-directional Synchronous, light. monochromatic, directional light waves Uses of Lasers • Lasers are used in industry, communications, military, research and medical applications. • At GW, lasers are used in both research and medical procedures. How a Laser Works A laser consists of an optical cavity, a pumping system, and a lasing medium. – The optical cavity contains the media to be excited with mirrors to redirect the produced photons back along the same general path. – The pumping system uses various methods to raise the media to the lasing state. – The laser medium can be a solid (state), gas, liquid dye, or semiconductor. Source: OSHA Technical Manual, Section III: Chapter 6, Laser Hazards. Laser Media 1. Solid state lasers 2. Gas lasers 3. Excimer lasers (a combination of the terms excited and dimers) use reactive gases mixed with inert gases. 4. Dye lasers (complex organic dyes) 5. Semiconductor lasers (also called diode lasers) There are different safety hazards associated with the various laser media. Types of Lasers Lasers can be described by: • which part of the electromagnetic spectrum is represented: – Infrared – Visible Spectrum – Ultraviolet • the length of time the beam is active: – Continuous Wave – Pulsed – Ultra-short Pulsed Electromagnetic Spectrum Laser wavelengths are usually in the Ultraviolet, Visible or Infrared Regions of the Electromagnetic Spectrum.
    [Show full text]
  • Wireless Charging Headset Stand HSS-2020 a Tidy Space for Your Headset and Wireless Charger for Your Phone
    HEAR. BE HEARD. Wireless Charging Headset Stand HSS-2020 A Tidy Space for Your Headset and Wireless Charger for Your Phone Save space on your desk while you charge your phone at the same time. • Fast Charging at 10W using your own QC 2.0/3.0 Adapter, if your phone supports it (see below). Adapter is not included in box. • Fast Charging using your own QC 2.0/3.0 Adapter, at 7.5W, for iPhones that support it. • 5W mode compatible with all Qi-enabled devices. • You can also charge your other devices, like Totally Wireless Earbuds, that allow inductive charging. • Stand is sturdy enough to hold virtually any sized headset you want to rest on it. • A micro USB charging cable is included in the box. AC adapter is not included. • Stylish black will continue to look clean and scratch free even with everyday use. • The LED ring on the base will let you know when the device is charging and when the charge is complete. Phone Compatibility • Fast Charging at 10W: Samsung Galaxy Note 9, Note 8, S9, S9 Plus, S8, S8 Plus, S7, S7 Edge, S6 Edge Plus • Fast Charging at 7.5W iPhone XS, iPhone XR, iPhone XS Max, iPhone X, iPhone 8, iPhone 8 plus • Other Qi enabled smartphones Headset and phone for demonstration only and not included • Use with most wired and wireless headsets. Note: Does not charge the Specifications headset. • Material: Anodized Aluminum, TPU and ABS • Input: (QC2.0/3.0) DC5.0V/2A DC9.0V/1.8A • Power: 5W / 7.5W / 10W Model • Charging distance: 0.15” to 0.4” ( ≈ 4-10mm) Part HSS-2020 • Charging efficiency: ≥72% • Package Dim: 5” w x 9” h x 1” d UPC 800807320079 • Master Carton Dim: 18.5” x 6.5” x 5.7” MSRP $24.99 • Master Carton Wt: 4.85 lb • Master Carton Qty: 10 ©2019 SPRACHT® Ph: 650.215.7500 974 Commercial Street, Suite 108 Fx: 650.485.2453 Palo Alto, CA 94303 www.spracht.com HEAR.
    [Show full text]