IDEAL: Image DEnoising AcceLerator Mostafa Mahmoud Bojian Zheng Alberto Delmás Lascorz University of Toronto University of Toronto University of Toronto
[email protected] [email protected] [email protected] Felix Heide Jonathan Assouline Paul Boucher Stanford University/Algolux Algolux Algolux
[email protected] [email protected] [email protected] Emmanuel Onzon Andreas Moshovos Algolux University of Toronto
[email protected] [email protected] ABSTRACT CCS CONCEPTS Computational imaging pipelines (CIPs) convert the raw output • Computer systems organization → Special purpose systems; of imaging sensors into the high-quality images that are used for Neural networks; Real-time system architecture; Single instruction, further processing. This work studies how Block-Matching and multiple data; 3D filtering (BM3D), a state-of-the-art denoising algorithm canbe implemented to meet the demands of user-interactive (UI) appli- KEYWORDS cations. Denoising is the most computationally demanding stage Computational imaging, image denoising, accelerator, neural net- of a CIP taking more than 95% of time on a highly-optimized soft- works ware implementation [29]. We analyze the performance and energy ACM Reference format: consumption of optimized software implementations on three com- Mostafa Mahmoud, Bojian Zheng, Alberto Delmás Lascorz, Felix Heide, modity platforms and find that their performance is inadequate. Jonathan Assouline, Paul Boucher, Emmanuel Onzon, and Andreas Moshovos. Accordingly, we consider two alternatives: a dedicated acceler- 2017. IDEAL: Image DEnoising AcceLerator. In Proceedings of MICRO-50, ator, and running recently proposed Neural Network (NN) based Cambridge, MA, USA, October 14–18, 2017, 14 pages. approximations of BM3D [9, 27] on an NN accelerator.