Video Processing & Its Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital TV Framework High Performance Transcoder & Player Frameworks for Awesome Rear Seat Entertainment
SOLUTION BRIEF In-Car Digital TV Framework High performance transcoder & player frameworks for awesome rear seat entertainment INTRODUCTION Ittiam offers a complete Digital TV Framework that brings media encapsulated in the latest Digital TV broadcast standards to the automotive dashboard and rear seat. Our solution takes input from the TV tuner including video, audio, subtitle, EPG, and Teletext, and transcodes iton the automotive head unit for display by the Rear Seat Entertainment (RSE) units. By connecting several software components including audio/video decoding, encoding and post processing, and control inputs, our transcoder and player frameworks deliver SUMMARY high performance audio and video playback. PRODUCT Transcoder framework that runs on Head Unit OVERVIEW OF FEATURES Player framework that runs on RSE unit Supports a wide range of terrestrial broadcast standards – DVB-T / DVB-T2, SBTVD, T-DMB, ISDBT and ISDB-T 1seg HIGHLIGHTS Transcoder Input is a MPEG-2 TS stream; and output is an MPEG-2 TS stream containing H.264 Supports an array of terrestrial video @ 720p30 and AAC audio broadcast standards Split HEVC decoder (ARM + EVE) . Supports MPEG-2, H.264 / SL-H264, H.265 input video formats . on TI Jacinto6 platform Supports MPEG 1/2 Layer I, MPEG-1/2 Layer II, MP3, AAC / HE-AAC/ SL-AAC, BSAC, MPEG Supports video overlay and Surround, Dolby AC3 and Dolby EAC3 input audio formats . Supports dynamic switching between 1-seg and 12-seg ISDB-T streams blending Free from any open source code Includes audio post-processing (down mix, -
PRACTICAL METHODS to VALIDATE ULTRA HD 4K CONTENT Sean Mccarthy, Ph.D
PRACTICAL METHODS TO VALIDATE ULTRA HD 4K CONTENT Sean McCarthy, Ph.D. ARRIS Abstract Yet now, before we hardly got used to HD, we are talking about Ultra HD (UHD) with at Ultra High Definition television is many least four times as many pixels as HD. In things: more pixels, more color, more addition to and along with UHD, we are contrast, and higher frame rates. Of these getting a brand new wave of television parameters, “more pixels” is much more viewing options. The Internet has become a mature commercially and Ultra HD 4k TVs rival of legacy managed television distribution are taking their place in peoples’ homes. Yet, pipes. Over-the-top (OTT) bandwidth is now Ultra HD content and service offerings are often large enough to support 4k UHD playing catch-up. We don’t yet have enough exploration. New compression technologies experience to know what good Ultra HD 4k such as HEVC are now available to make content is nor do we know how much better use of video distribution channels. And bandwidth to allocate to deliver great Ultra the television itself is no longer confined to HD experiences to consumers. In this paper, the home. Every tablet, notebook, PC, and we describe techniques and tools that could smartphone now has a part time job as a TV be used to validate the quality of screen; and more and more of those evolved- uncompressed and compressed Ultra HD 4k from-computer TVs have pixel density and content so that we can plan bandwidth resolution to rival dedicated TV displays. -
Video Processing and Its Applications: a Survey
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS) Web Site: www.ijettcs.org Email: [email protected] Volume 6, Issue 4, July- August 2017 ISSN 2278-6856 Video Processing and its Applications: A survey Neetish Kumar1, Dr. Deepa Raj2 1Department of Computer Science, BBA University, Lucknow, India 2Department of Computer Science, BBA University, Lucknow, India Abstract of low quality video. The common cause of the degradation A video is considered as 3D/4D spatiotemporal intensity pattern, is a challenging problem because of the various reasons like i.e. a spatial intensity pattern that changes with time. In other low contrast, signal to noise ratio is usually very low etc. word, video is termed as image sequence, represented by a time The application of image processing and video processing sequence of still images. Digital video is an illustration of techniques is to the analyze the video sequences in traffic moving visual images in the form of encoded digital data. flow, traffic data collection and road traffic monitoring. Digital video standards are required for exchanging of digital Various methods are present including the inductive loop, video among different products, devices and applications. the sonar and microwave detectors has their own Pros and Fundamental consumer applications for digital video comprise Cons. Video sensors are relatively cost effective installation digital TV broadcasts, video playback from DVD, digital with little traffic interruption during maintenance. cinema, as well as videoconferencing and video streaming over Furthermore, they administer wide area monitoring the Internet. In this paper, various literatures related to the granting analysis of traffic flows and turning movements, video processing are exploited and analysis of the various speed measurement, multiple point vehicle counts, vehicle aspects like compression, enhancement of video are performed. -
Real-Time HDR/WCG Conversion with Colorfront Engine™ Video Processing
Real-time HDR/WCG Conversion with Colorfront Engine™ Video Processing $7,995 US MSRP* Real time HDR Conversion for 4K/UHD/2K/HD Find a Reseller 4-Channel 2K/HD/SD or 1-Channel 4K/UltraHD HDR and WCG frame synchronizer and up, down, cross-converter FS-HDR is a HDR to SDR, SDR to HDR and Bulletproof reliability. Incredible Conversion Power. connectivity including 4x 3G-SDI with fiber options**, as well as 6G-SDI HDR to HDR universal converter/frame and 12G-SDI over copper or fiber**. synchronizer, designed specifically to FS-HDR is your real world answer for up/down/cross conversions meet the HDR (High Dynamic Range) and realtime HDR transforms, built to AJA’s high quality and reliability In single channel mode, FS4 will up scale your HD or SD materials to and WCG (Wide Color Gamut) needs of standards. 4K/UltraHD and back, with a huge array of audio channels over SDI, AES, broadcast, OTT, post and live event AV and MADI for an incredible 272 x 208 matrix of audio possibilities. In four environments. Powered by Colorfront Engine, FS-HDR’s extensive HDR and WCG channel mode, independent transforms can be applied to each 2K/HD or SD channel. FS-HDR offers two modes for processing support enables real time processing of a single channel of comprehensive HDR/WCG conversion 4K/UltraHD/2K/HD including down-conversion to HD HDR or up to four and signal processing. Single channel channels of 2K/HD simultaneously. FS-HDR also enables the conversion Maintaining Perceptual Integrity. mode provides a full suite of 4K/UltraHD of popular camera formats from multiple vendors into the HDR space, processing and up, down, cross- plus conversion to-and-from BT.2020/BT.709, critical for the widespread FS-HDR’s HDR/WCG capabilities leverage video and color space processing conversion to and from 2K, HD or SD. -
Performance of Image and Video Processing with General-Purpose
Performance of Image and Video Processing with General-Purpose Processors and Media ISA Extensions y Parthasarathy Ranganathan , Sarita Adve , and Norman P. Jouppi Electrical and Computer Engineering y Western Research Laboratory Rice University Compaq Computer Corporation g fparthas,sarita @rice.edu [email protected] Abstract Media processing refers to the computing required for the creation, encoding/decoding, processing, display, and com- This paper aims to provide a quantitative understanding munication of digital multimedia information such as im- of the performance of image and video processing applica- ages, audio, video, and graphics. The last few years tions on general-purpose processors, without and with me- have seen significant advances in this area, but the true dia ISA extensions. We use detailed simulation of 12 bench- promise of media processing will be seen only when ap- marks to study the effectiveness of current architectural fea- plications such as collaborative teleconferencing, distance tures and identify future challenges for these workloads. learning, and high-quality media-rich content channels ap- Our results show that conventional techniques in current pear in ubiquitously available commodity systems. Fur- processors to enhance instruction-level parallelism (ILP) ther out, advanced human-computer interfaces, telepres- provide a factor of 2.3X to 4.2X performance improve- ence, and immersive and interactive virtual environments ment. The Sun VIS media ISA extensions provide an ad- hold even greater promise. ditional 1.1X to 4.2X performance improvement. The ILP One obstacle in achieving this promise is the high com- features and media ISA extensions significantly reduce the putational demands imposed by these applications. -
Ultra High Definition 4K Television User's Guide
Ultra High Definition 4K Television User’s Guide: 65L9400U 58L8400U If you need assistance: Toshiba's Support Web site support.toshiba.com For more information, see “Troubleshooting” on page 173 in this guide. Owner's Record The model number and serial number are on the back and side of your television. Print out this page and write these numbers in the spaces below. Refer to these numbers whenever you communicate with your Toshiba dealer about this Television. Model name: Serial number: Register your Toshiba Television at register.toshiba.com Note: To display a High Definition picture, the TV must be receiving a High Definition signal (such as an over- the-air High Definition TV broadcast, a High Definition digital cable program, or a High Definition digital satellite program). For details, contact your TV antenna installer, cable provider, or GMA300039012 satellite provider. 12/14 2 CHILD SAFETY: PROPER TELEVISION PLACEMENT MATTERS TOSHIBA CARES • Manufacturers, retailers and the rest of the consumer electronics industry are committed to making home entertainment safe and enjoyable. • As you enjoy your television, please note that all televisions – new and old – must be supported on proper stands or installed according to the manufacturer’s recommendations. Televisions that are inappropriately situated on dressers, bookcases, shelves, desks, speakers, chests, carts, etc., may fall over, resulting in injury. TUNE IN TO SAFETY • ALWAYS follow the manufacturer’s recommendations for the safe installation of your television. • ALWAYS read and follow all instructions for proper use of your television. • NEVER allow children to climb on or play on the television or the furniture on which the television is placed. -
Video Denoising, Deblocking and Enhancement Through Separable
1 Video Denoising, Deblocking and Enhancement Through Separable 4-D Nonlocal Spatiotemporal Transforms Matteo Maggioni, Giacomo Boracchi, Alessandro Foi, Karen Egiazarian Abstract—We propose a powerful video filtering algorithm that the nonlocal similarity between patches at different locations exploits temporal and spatial redundancy characterizing natural within the data [5], [6]. Algorithms based on this approach video sequences. The algorithm implements the paradigm of have been proposed for various signal-processing problems, nonlocal grouping and collaborative filtering, where a higher- dimensional transform-domain representation of the observations and mainly for image denoising [4], [6], [7], [8], [9], [10], [11], is leveraged to enforce sparsity and thus regularize the data: [12], [13], [14], [15]. Specifically, in [7] has been introduced 3-D spatiotemporal volumes are constructed by tracking blocks an adaptive pointwise image filtering strategy, called non- along trajectories defined by the motion vectors. Mutually similar local means, where the estimate of each pixel xi is obtained volumes are then grouped together by stacking them along an as a weighted average of, in principle, all the pixels x of additional fourth dimension, thus producing a 4-D structure, j termed group, where different types of data correlation exist the noisy image, using a family of weights proportional to along the different dimensions: local correlation along the two the similarity between two neighborhoods centered at xi and dimensions of the blocks, temporal correlation along the motion xj. So far, the most effective image-denoising algorithm is trajectories, and nonlocal spatial correlation (i.e. self-similarity) BM3D [10], [6], which relies on the so-called grouping and along the fourth dimension of the group. -
Set-Top Box Capable of Real-Time Video Processing
Set-Top Box Capable of Real-Time Video Processing Second Prize Set-Top Box Capable of Real-Time Video Processing Institution: Xi’an University of Electronic Science and Technology Participants: Fei Xiang, Wen-Bo Ning, and Wei Zhu Instructor: Wan-You Guo Design Introduction The set-top box (STB) played an important role in the early development of digital TV. As the technology develops, digital TV will undoubtedly replace analog TV. This paper describes an FPGA- based STB design capable of real-time video processing. Combining image processing theories and an extraction algorithm, the design implements real-time processing and display, audio/video playback, an e-photo album, and an infrared remote control. Background The television, as a home appliance and communications medium, has become a necessity for every family. Digital TV is favored for its high-definition images and high-fidelity voice quality. The household digital TV penetration rate in Europe, America, and Japan is almost 50%. In August 2006, the Chinese digital TV standards (ADTB-T and DMB-T) were officially released. In 2008, our country will offer digital media broadcasting (DMB) during the Beijing Olympic games, signaling the end of analog TV. However, the large number of analog TVs in China means that digital TVs and analog TVs will co-exist for a long time. The STB transforms analog TV signals into digital TV signals and it will play a vital role in this transition phase. There are four types of STBs: digital TV STBs, satellite TV STBs, network STBs, and internet protocol television (IPTV) STBs. Their main functions are TV program broadcasting, electronic program guides, data broadcasting, network access, and conditional access. -
ICIP 2007 Session Index
ICIP 2007 Session Index Monday Morning MA-L1: Video Coding for Next Generation Displays MA-L2: Image And Video Segmentation I MA-L3: Video Coding I MA-L4: Image and Video Restoration MA-L5: Biometrics I MA-L6: Image and Video Storage and Retrieval I MA-P1: Stereoscopic and 3D Processing I: Coding and Processing MA-P2: Active-Contour, Level-Set, and Cluster-Based Segmentation Methods MA-P3: Image and Video Denoising MA-P4: Biometrics II: Human Activity, Gait, Gaze Analysis MA-P5: Security I: Authentication and Steganography MA-P6: Image and Video Multiresolution Processing MA-P7: Motion Detection and Estimation I MA-P8: Image and Video Enhancement Monday Afternoon MP-L1: Distributed Source Coding I: Low Complexity Video Coding MP-L2: Image And Video Segmentation II: Texture Segmentation MP-L3: Interpolation and Superresolution I MP-L4: Image and Video Modeling I MP-L5: Security II MP-L6: Image Scanning, Display, Printing, Color and Multispectral Processing I MP-P1: Image and Video Storage and Retrieval II MP-P2: Morphological, Level-Set, and Edge or Color Image/Video Segmentation MP-P3: Scalable Video Coding MP-P4: Image Coding I MP-P5: Biometrics III: Fingerprints, Iris, Palmprints MP-P6: Biomedical Imaging I MP-P7: Motion Detection and Estimation II MP-P8: Stereoscopic and 3D Processing II: 3D Modeling & Synthesis Tuesday Morning TA-L1: Distributed Source Coding II: Distributed Image and Video Coding and Their Applications TA-L2: Image and Video Segmentation III: Edge or Color Segmentation TA-L3: Stereoscopic and 3D Processing III TA-L4: -
Video Processing - Challenges and Future Research CASS
UGC Approval No:40934 CASS-ISSN:2581-6403 HEB Video Processing - Challenges and Future Research CASS D. Mohanapriya1, K.Rajalakshmi2 , N.Geetha3, N.Gayathri4 and Dr.K.Mahesh Ph.D Research Scholar, Department of Computer Applications, Alagappa University, Karaikudi Address for Correspondence: [email protected] ABSTRACT Video has become an essential component of today’s multimedia applications because of its rich content. In producing the digital video documents, the real challenge for computer vision is the development of robust tools for their utilization. It involves the tasks such as video indexing, browsing or searching. This paper is a complete survey of different video processing techniques and large number of related application in diverse disciplines, including medical, pedestrian protection, biometrics, moving object tracking, vehicle detection and monitoring and Traffic queue detection algorithm for processing various real time image processing challenges. Video Processing are hot topics in the field of research and development. Video processing is a particular case of signalprocessing, where the input and output signals are video files or video streams. In This paper, We present Video processing elements and current technologies related Video Processing. Keywords— Video Processing, Video indexing , Object Tracking, Video Encryption,Video Classification, Video Embedding. Access this Article Online http://heb-nic.in/cass-studies Quick Response Code: Received on 10/05/2019 Accepted on 11/05/2019@HEB All rights reserved May 2019 – Vol. 3, Issue- 1, Addendum 10 (Special Issue) Page-47 UGC Approval No:40934 CASS-ISSN:2581-6403 I. INTRODUCTION Video, a rich information source, is generally used for capturing and sharing knowledge in learning systems. -
Universidad Politécnica De Valencia
Universidad Polit´ecnica de Valencia Departamento de Comunicaciones Tesis Doctoral T´ecnicasdean´alisis de secuencias de v´ıdeo. Aplicaci´on a la restauraci´on de pel´ıculas antiguas Presentada por: Valery Naranjo Ornedo Dirigida por: Dr. Antonio Albiol Colomer Valencia, 2002. ALuisyaFran “La mera formulaci´on de un problema suele ser m´as esencial que su soluci´on, la cual puede ser una simple cuesti´on de habilidad matem´atica o experimental. Plantear nuevas preguntas, nuevas posibilidades, contemplar viejos problemas des- de un nuevoangulo, ´ exige imaginaci´on creativa y marca adelantos reales en la ciencia.” Albert Einstein Agradecimientos Es muy dif´ıcil mostrar mi agradecimiento, con unas simples palabras, a todas aquellas personas que han hecho que haya llegado hasta aqu´ı, a´un as´ı, no quer´ıa dejar pasar la opor- tunidad de intentarlo. En primer lugar quiero mostrar mi agradecimiento a Antonio Albiol, que ha sido no s´olo mi director de tesis, sino tambi´en mi amigo, y mi maestro en todo lo que s´e de procesado de se˜nal. A mi familia y amigos por estar ah´ı siempre que los necesito, sin esperar nada a cambio, y sobre todo, por tener fe en m´ı. A Luis, mi marido, que siempre me apoya y me ayuda en todo, y hace que todos los esfuerzos tengan sentido. Amiscompa˜neros del Departamento de Comunicaciones que me han echado una mano en esta empresa: a Jos´e Manuel, por su paciencia, sus consejos y su ayuda desinteresada e inestimable; a Luis Vergara por tantas dudas de tratamiento de se˜nal resueltas, a Mar´ıa y Angel´ por sus observaciones y revisiones, a Paco y Pablo por sus consejos ling¨u´ısticos, y a Juan Carlos por sus consejos burocr´aticos. -
An Overview of H.264 / MPEG-4 Part 10
EC-VIP-MC 2003,4th EURASIP Conference focused on Video I Image Processing and Multimedia Communications, 2-5 July 2003, Zagreb. Croatia AN OVERVIEW OF H.264 I MPEG4 PART 10 (Keynote Speech) A. Tamhankar and K. R. Rao University of Texas at Arlington Electrical Engineering Department Box 19016, Arlington, Texas 76019, USA [email protected], [email protected] Abstract: The video coding standards to date have not been able to address all the needs required by varying bit rates of dflerent applications and the at the same time meeting the quality requirements. An emerging video coding standard named H.264 or UPEG-4 part 10 aims at coding video sequences at approximately half the bit rate compared to UPEG-2 at the same quality. It also aims at having significant improvements in coding eficiency, error robustness and network@iendliness. It makes use of better prediction methods for Intra (I), Predictive (P) and Bi-predictive (B) frames. All these features along with others such as CABAC (Context Based Adaptive Binary Arithmetic Coding) have resulted in having a 2.1 coding gain over UPEG-2 at the cost of increased complexity. 1. INTRODUCTION Two intemational organizations have been heavily involved in the standardization of image, audio and video coding methodologies namely - ISO/IEC and ITU-T. ITU-T Video Coding Experts Group (VCEG) develops intemational standards for advanced moving image coding methods appropriate for conversational and non-conversational audioivideo applications. It caters essentially to real time video applications. ISO/IEC Moving Picture Experts Group (MPEG) develops international standards for compression and coding, decompression, processing, representation of moving pictures, images, audio and their combinations [SI.