The Role of the Medullary Collecting Ducts in Postobstructive Diuresis

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Medullary Collecting Ducts in Postobstructive Diuresis The Role of the Medullary Collecting Ducts in Postobstructive Diuresis H. SONNENBERG and D. R. WISON From the Departments of Physiology and Medicine, University of Toronto, Ontario, Canada A B S T R A C T Medullary collecting duct function was mal nephron; (b) the net addition of sodium to the studied by direct microcatheterization techniques in rats medullary collecting duct observed during postobstruc- undergoing postobstructive diuresis. Significant net ad- tive diuresis is probably a direct effect of obstruction, dition of water and sodium to the duct was demonstrated since it was found during postobstructive diuresis after during postobstructive diuresis after relief of 24-h bi- relief of bilateral or unilateral ureteral ligation, but not lateral ureteral ligation. This striking abnormality in with urine reinfusion alone; and (c) blood-borne fac- function was associated with reduced delivery of sodium tors are important in the development of postobstructive and water to the collecting duct compared to sham- natriuresis and diuresis, and probably act by increasing operated controls. To examine the role of circulating the fraction of filtered sodium and water delivered from factors in this phenomenon, another group of rats was the proximal and distal tubule to the collecting duct. studied that underwent 24 h of total urine reinfusion into the femoral vein. Natriuresis and diuresis were INTRODUCTION similar to the postobstructive group, but absolute collect- Decreased salt and water reabsorption in the proximal, ing duct reabsorption of sodium and water was normal. and particularly in the distal nephron, has been demon- The natriuresis and diuresis in rats with urine reinfu- strated during postobstructive diuresis by micropuncture sion resulted from increased delivery of fluid and sodium methods (1-3). Impaired reabsorption in the collecting to the medullary collecting duct. A third group of rats ducts and disproportionate impairment of function in the was studied with 24-h unilateral ureteral ligation as deep as compared to the superficial nephrons of the post- well as urine reinfusion from the contralateral normal obstructive kidney have also been suggested indirectly kidney. Without urine reinfusion there was no diuresis- by these studies. Blood-borne factors, including. accumu- natriuresis but with urine reinfusion the diuresis and lation of urea, probably have a major role in producing natriuresis after relief of unilateral obstruction was sim- postobstructive diuresis, as indicated by recent urine re- ilar to that after relief of bilateral obstruction. More- infusion (4) and cross-circulation experiments (5). over, net addition of sodium and no significant water The importance of the collecting ducts in determining reabsorption were demonstrated in the medullary collect- urinary excretion of salt and water during saline-induced ing duct of such animals. natriuresis has recently been demonstrated by Sonnen- The results indicate that (a) the medullary collecting berg (6, 7), using a method of direct cannulation of the duct is the critical nephron segment affected by ureteral medullary collecting ducts (8) in the rat. This technique obstruction, since postobstructive diuresis occurred measures the contribution of both superficial and deep despite reduced delivery of fluid from the more proxi- nephrons to the final urine, thus eliminating any changes due to abnormalities in distribution of nephron function. This work was presented in part at the National Meeting Accordingly, it was decided to directly study collecting of the American Federation for Clinical Research in At- duct function in the postobstructive kidney after relief lantic City, May 1975 and published in abstract form of bilateral or unilateral ureteral ligation, and to further (Clin. Res. 23: 377A. 1975.) examine the role of circulating natriuretic factors in Dr. Wilson's address is: Division of Nephrology, Toronto General Hospital, Toronto, Ontario, Canada M5G 1L7. postobstructive diuresis. Received for publication 5 May 1975 and in revised fortn The results indicate that the marked diuresis-natriure- 5 February 1976. sis after relief of bilateral ureteral ligation is associated 1564 The Journal of Clinical Investigation Volume 57 June 1976-1564-1574 with net addition of sodium and water to the medullary ,lCi over the course of the experiment. A 40-min equilibra- collecting duct, presumably due to decreased reabsorp- tion was allowed before beginning the collection of urine and samples of collecting duct fluid. In both groups III and tion and increased back diffusion. An increase in the IV the patency of the ureterovenous shunt was confirmed fraction of filtered sodium remaining along the collecting before and after the experiment by injection of small vol- duct of the postobstructive kidney was found despite umes of dyed saline into the reinfusion line. Several rats reduced absolute delivery of fluid to the duct. Unilateral could not be used for experiments because urine flow in urine reinfusion from the contra- the reinfusion line had stopped during the previous 24 h. ureteral ligation with However, cessation of urine flow in the bladder-femoral vein lateral kidney produced a similar diuresis-natriuresis and (reinfusion) line did not occur during any of the experi- net addition of sodium to the medullary collecting duct. ments. Urine was collected from the left kidney for 7-10 Total urine reinfusion for 24 h also resulted in a marked consecutive 20-min periods and arterial blood samples (0.05 diuresis-natriuresis but was associated with increased ml) were taken at the midpoint of each period. The technique of sampling of collecting duct fluid was delivery of fluid to the collecting duct and no intrinsic as described previously (6, 7). Briefly, fine polyethylene abnormality in duct function. catheters (outside diameter 16-40 ,um) were inserted to We conclude (a) that the medullary collecting duct varying distances into different collecting ducts via the is the critical nephron segment affected by ureteral ob- previously exposed papilla tip. It was occasionally possible to obtain paired samples in the same collecting duct system struction; (b) that the net addition of sodium to the from near the papillary tip and deep in the medulla. In collecting duct during postobstructive diuresis is prob- each animal an average of 12 samples of fluid (range 5-16) ably a direct effect of obstruction, and (c) that circu- were obtained with controlled suction just sufficient to lating factors are important in the development of post- overcome the tip resistance of the catheter (6). Previous diuresis and probably act by decreasing frac- experiments have shown that deliberate alterations in flow obstructive dynamics in the catheterized duct, by increasing or de- tional reabsorption in the nephron proximal to the col- creasing suction, could produce detectable changes in re- lecting duct. absorption, but such changes were not statistically sig- nificant and did not obscure net sodium and water secretion METHODS in the medullary duct during intravenous fluid loading (7). Male Sprague-Dawley rats (weight range 202-278 g) were The depth of insertion of the catheter was measured during maintained on Purina lab chow (Ralston Purina Co., St. withdrawal with a micrometer and was related to medullary Louis, Mo.) and water ad lib. 24 h before an experiment, length obtained from a post-mortem saggital section of animals were lightly anesthetized with pentobarbital and the kidney. subjected to one of four surgical procedures as follows: Sodium and potassium concentrations in plasma and urine sham operation (group I), both ureters were exposed but were determined by flame photometry and [3H] inulin de- not ligated through a midline suprapubic incision; bilateral termination was by liquid scintillation counting in a toluene- ureteral ligation (group II), both ureters were ligated based scintillant. Urinary excretion of sodium (UNaV) and through a midline suprapubic incision; urine reinfusion potassium (UKV) were calculated, as was glomerular fil- (group III), the bladder was cannulated through a midline tration rate. Sodium and potassium concentration in por- incision and the catheter was passed through the body wall tions (10 nl) of tubular fluid were determined in an Aminco in the groin area and inserted into a femoral vein; uni- helium glow photometer (American Instrument Co., Tra- lateral ureteral ligation with urine reinfusion (group IV), venol Laboratories Inc., Silver Spring, Md., and [3H] inulin the left ureter was ligated, and a bladder catheter connected (30 nl) by liquid scintillation counting. A Clifton nanoliter to a femoral vein as in group II to allow reinfusion of osmometer (Clifton Technical Physics, Hartford, N. Y.) urine from the right, nonobstructed kidney. Rats with uni- was used to measure total solute concentration in tubular lateral ureteral ligation were also prepared but insufficient fluid and urine samples. For each tubular fluid sample, the urine flow was obtained from left kidney to conduct satis- fluid to plasma concentration ratio of inulin (TF/Pi.) was factory collecting duct studies. Subsequently, animals of calculated, as were the fractions of filtered sodium ([TF/ the four groups were not allowed food or water and lost PNJ]/[TF/PIn]) and potassium ([TF/PK/[TF/Pin]) re- 6-10% of body weight before the experiment. maining at the collection site. Linear regression and t test 24 h after surgical preparations, rats were anesthetized analyses were used for statistical evaluation of data. with Inactin (Promonta, Hamburg, W. Germany) (10 mg/ 100 g body wt, i.p.), a tracheostomy was performed, and RESULTS a jugular vein and femoral artery were cannulated for in- Clearance The clearance results and the ex- fusion and for blood pressure measurement and sampling, data. respectively. After a priming dose of 1.5 ml of Ringer's cretion of solute, sodium, potassium, and water in the solution, a constant intravenous infusion (1.5 ml/h) was four experimental groups are shown in Table I. Glo- maintained. The left kidney was exposed and mobilized merular filtration rate was markedly decreased in the through a flank incision, and placed in a Lucite cup.
Recommended publications
  • Kidney, Renal Tubule – Dilation
    Kidney, Renal Tubule – Dilation Figure Legend: Figure 1 Kidney, Renal tubule - Dilation in a male B6C3F1 mouse from a chronic study. Dilated tubules are noted as tracts running through the cortex and outer medulla. Figure 2 Kidney, Renal tubule - Dilation in a male F344/N rat from a chronic study. Tubule dilation is present throughout the outer stripe of the outer medulla, extending into the cortex. Figure 3 Kidney, Renal tubule - Dilation in a male B6C3F1 mouse from a chronic study. Slight tubule dilation is associated with degeneration and necrosis. Figure 4 Kidney, Renal tubule - Dilation in a male F344/N rat from a chronic study. Tubule dilation is associated with chronic progressive nephropathy. Comment: Renal tubule dilation may occur anywhere along the nephron or collecting duct system. It may occur in focal areas or as tracts running along the entire length of kidney sections (Figure 1). 1 Kidney, Renal Tubule – Dilation Renal tubule dilation may occur from xenobiotic administration, secondary mechanisms, or an unknown pathogenesis (see Kidney – Nephropathy, Obstructive (Figure 2). Dilation may result from direct toxic injury to the tubule epithelium interfering with absorption and secretion (Figure 3). It may also occur secondary to renal ischemia or from prolonged diuresis related to drug administration. Secondary mechanisms of tubule dilation may result from lower urinary tract obstruction, the deposition of tubule crystals, interstitial inflammation and/or fibrosis, and chronic progressive nephropathy (Figure 4). A few dilated tubules may be regarded as normal histologic variation. Recommendation: Renal tubule dilation should be diagnosed and given a severity grade. The location of tubule dilation should be included in the diagnosis as a site modifier.
    [Show full text]
  • Renal Aquaporins
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 49 (1996), pp.1712—1717 Renal aquaporins MARK A. KNEPPER, JAMES B. WADE, JAMES TERRIS, CAROLYN A. ECELBARGER, DAVID MARPLES, BEATRICE MANDON, CHUNG-LIN CHOU, B.K. KISHORE, and SØREN NIELSEN Laborato,y of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Matyland, USA; Department of Cell Biology, Institute of Anatomy, University of Aarhus, Aarhus, Denmark; and Department of Physiology, University of Maiyland College of Medicine, Baltimore, and Department of Physiology, Unifornied Services University of the Health Sciences, Bethesda, Maiyland, USA Renal aquaporins. Aquaporins (AQPs) are a newly recognized family of gate the localization and regulation of the four renal aquaporins transmembrane proteins that function as molecular water channels. At (AQP1, AQP2, AQP3 and AQP4). least four aquaporins are expressed in the kidney where they mediate Urine is concentrated as a result of the combined function of rapid water transport across water-permeable epithelia and play critical roles in urinary concentrating and diluting processes. AQP1 is constitu- the loop of Henle, which generates a high osmolality in the renal tively expressed at extremely high levels in the proximal tubule and medulla by countercurrent multiplication, and the collecting duct, descending limb of Henle's loop. AQP2, -3 and -4 are expressed predom- which, in the presence of the antidiuretic hormone vasopressin, inantly in the collecting duct system. AQP2 is the predominant water permits osmotic equilibration between the urine and the hyper- channel in the apical plasma membrane and AQP3 and -4arefound in the basolateral plasma membrane.
    [Show full text]
  • Embryology of the Kidney Rizaldy Paz Scott | Yoshiro Maezawa | Jordan Kreidberg | Susan E
    1 Embryology of the Kidney Rizaldy Paz Scott | Yoshiro Maezawa | Jordan Kreidberg | Susan E. Quaggin CHAPTER OUTLINE MAMMALIAN KIDNEY DEVELOPMENT, 2 MOLECULAR GENETICS OF MODEL SYSTEMS TO STUDY KIDNEY NEPHROGENESIS, 22 DEVELOPMENT, 8 GENETIC ANALYSIS OF MAMMALIAN KIDNEY DEVELOPMENT, 15 KEY POINTS • The development of the kidney relies on reciprocal signaling and inductive interactions between neighboring cells. • Epithelial cells that comprise the tubular structures of the kidney are derived from two distinct cell lineages: the ureteric epithelia lineage that branches and gives rise to collecting ducts and the nephrogenic mesenchyme lineage that undergoes mesenchyme to epithelial transition to form connecting tubules, distal tubules, the loop of Henle, proximal tubules, parietal epithelial cells, and podocytes. • Nephrogenesis and nephron endowment requires an epigenetically regulated balance between nephron progenitor self-renewal and epithelial differentiation. • The timing of incorporation of nephron progenitor cells into nascent nephrons predicts their positional identity within the highly patterned mature nephron. • Stromal cells and their derivatives coregulate ureteric branching morphogenesis, nephrogenesis, and vascular development. • Endothelial cells track the development of the ureteric epithelia and establish the renal vasculature through a combination of vasculogenic and angiogenic processes. • Collecting duct epithelia have an inherent plasticity enabling them to switch between principal and intercalated cell identities. MAMMALIAN KIDNEY DEVELOPMENT The filtration function of the kidneys is accomplished by basic units called nephrons (Fig. 1.1). Humans on average have 1 million nephrons per adult kidney but the range of ANATOMIC OVERVIEW OF THE 4 MAMMALIAN KIDNEY total nephrons is highly variable across human populations. Each mouse kidney may contain up to 12,000–16,000 nephrons The kidney is a sophisticated, highly vascularized organ that depending on the strain.5 This wide range in nephron number plays a central role in overall body homeostasis.
    [Show full text]
  • Kaplan USMLE Step 1 Prep: Distribution Ion Channel Protein in Kidney
    Kaplan USMLE Step 1 prep: Distribution ion channel protein in kidney FEB 3, 2020 Staff News Writer If you’re preparing for the United States Medical Licensing Examination® (USMLE®) Step 1 exam, you might want to know which questions are most often missed by test-prep takers. Check out this example from Kaplan Medical, and read an expert explanation of the answer. Also check out all posts in this series. This month’s stumper An investigator is examining the distribution of an ion channel protein in the kidney. Slices of kidney tissue are incubated in a dilute solution of a specific antibody directed against the protein. The immunoperoxidase method is then used to localize the ion channel proteins. In one area, the investigator notes epithelial cells with a brush border that are positive for the ion channel protein. Which of the following areas is most likely to show these microscopic characteristics? A. Collecting duct. B. Descending thin limb of the loop of Henle. C. Distal convoluted tubule. D. Glomerulus. E. Proximal convoluted tubule. URL: https://www.ama-assn.org/residents-students/usmle/kaplan-usmle-step-1-prep-distribution-ion-channel-protein- kidney Copyright 1995 - 2021 American Medical Association. All rights reserved. The correct answer is E. Kaplan Medical explains why The proximal convoluted tubule (PCT) is the only portion of the renal tubule in which the epithelial cells have a "brush border." The brush border is composed of microvilli, which greatly increases apical membrane surface area and thereby enhances epithelial reabsorptive capacity. The PCT recovers almost 100% of filtered organic solutes (e.g., glucose, amino acids, proteins) and about 67% of electrolytes and water, amounting to about 120 L of the daily filtered load.
    [Show full text]
  • Urea Permeability of Mammalian Inner Medullary Collecting Duct System and Papillary Surface Epithelium
    Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J M Sands, M A Knepper J Clin Invest. 1987;79(1):138-147. https://doi.org/10.1172/JCI112774. Research Article To compare passive urea transport across the inner medullary collecting ducts (IMCDs) and the papillary surface epithelium (PSE) of the kidney, two determinants of passive transport were measured, namely permeability coefficient and surface area. Urea permeability was measured in isolated perfused IMCDs dissected from carefully localized sites along the inner medullas of rats and rabbits. Mean permeability coefficients (X 10(-5) cm/s) in rat IMCDs were: outer third of inner medulla (IMCD1), 1.6 +/- 0.5; middle third (IMCD2), 46.6 +/- 10.5; and inner third (IMCD3), 39.1 +/- 3.6. Mean permeability coefficients in rabbit IMCDs were: IMCD1, 1.2 +/- 0.1; IMCD2, 11.6 +/- 2.8; and IMCD3, 13.1 +/- 1.8. The rabbit PSE was dissected free from the underlying renal inner medulla and was mounted in a specially designed chamber to measure its permeability to urea. The mean value was 1 X 10(-5) cm/s both in the absence and presence of vasopressin (10 nM). Morphometry of renal papillary cross sections revealed that the total surface area of IMCDs exceeds the total area of the PSE by 10-fold in the rat and threefold in the rabbit. We conclude: the IMCD displays axial heterogeneity with respect to urea permeability, with a high permeability only in its distal two-thirds; and because the urea permeability and surface area of the PSE are relatively small, passive transport across […] Find the latest version: https://jci.me/112774/pdf Urea Permeability of Mammalian Inner Medullary Collecting Duct System and Papillary Surface Epithelium Jeff M.
    [Show full text]
  • In Developing Mouse Kidneys, Orientation of Loop of Henle Growth Is Adaptive and Guided by Long-Range Cues from Medullary Collecting Ducts
    Edinburgh Research Explorer In developing mouse kidneys, orientation of loop of Henle growth is adaptive and guided by long-range cues from medullary collecting ducts Citation for published version: Chang, C-H & Davies, J 2019, 'In developing mouse kidneys, orientation of loop of Henle growth is adaptive and guided by long-range cues from medullary collecting ducts', Journal of Anatomy. https://doi.org/10.1111/joa.13012 Digital Object Identifier (DOI): 10.1111/joa.13012 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Anatomy General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Journal of Anatomy J. Anat. (2019) doi: 10.1111/joa.13012 In developing mouse kidneys, orientation of loop of Henle growth is adaptive and guided by long-range cues from medullary collecting ducts C-Hong Chang1,2 and Jamie A. Davies1 1Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK 2Yale University School of Medicine, Medicine, New Haven, CT, USA Abstract The path taken by the loop of Henle, from renal cortex to medulla and back, is critical to the ability of the kidney to concentrate urine and recover water.
    [Show full text]
  • K+ Transport in Toad Perfused Collecting Tubules and Ducts 899
    The Journal of Experimental Biology 205, 897–904 (2002) 897 Printed in Great Britain © The Company of Biologists Limited JEB3774 K+ transport in the mesonephric collecting duct system of the toad Bufo bufo: microelectrode recordings from isolated and perfused tubules Nadja Møbjerg*, Erik Hviid Larsen and Ivana Novak August Krogh Institute, Department of Zoophysiology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark *Author for correspondence (e-mail: [email protected]) Accepted 7 January 2001 Summary + We studied the mechanisms of K transport in cells membrane. In collecting tubules and collecting ducts a Vbl from isolated and perfused collecting tubules and ducts of –70±3 mV and –73±3 mV depolarized by 11±3 mV and from the mesonephric kidney of the toad Bufo bufo. Cells 16±3 mV, respectively (N=11; 11). This conductance could 2+ were impaled with microelectrodes across the basal cell also be inhibited by Ba , which depolarized a Vbl of –71±5 membrane. The basolateral membrane potential (Vbl) mV by 9±3 mV (N=5). The pump inhibitor ouabain + –1 depolarized upon change of bath [K ] from 3 to (1 mmol l ) depolarized Vbl, but addition of furosemide to –1 + + 20 mmol l demonstrating a large K conductance in this bath solution did not affect Vbl. The [K ] in urine varied –1 membrane. In collecting tubules and collecting ducts a Vbl from 1.3 to 22.8 mmol l . In conclusion, we propose that of –66±2 mV and –74±4 mV depolarized by 30±2 mV and the collecting duct system of B.
    [Show full text]
  • Chapter 14 the Kidneys and Regulation of Water and Inorganic
    Chapter 14 The Kidneys and Regulation of Water and Inorganic Ions Functions of the kidneys Urea, uric acid, creatinine Drugs, pesticides, food additives Amino acids → glucose Urinary system in a women Gross anatomy of the kidney Kidney: (1) 11 cm long, 6 cm wide, 4 cm deep, 115-170 g (2) Right kidney is lower than left kidney (3) Outer: Cortex → blood filtration 腎錐 Middle: Medulla (8-18 renal pyramids) → urine collection Inner: papilla → minor calyx → major calyx → renal pelvis → 腎乳頭ureter → urinary bladder 腎盞 腎盂 輸尿管 膀胱 Nephron: 腎元 (1) 1,000,000 nephrons/kidney (2) The functionl unit of the kidney (the glomerulus + the renal tubule) 腎小球/腎絲球/絲球體 腎小管 To urinary bladder Section of a human kidney Renal pyramid Minor calyx Major calyx Loops of Henle + Collecting ducts Papilla Basic structure of a nephron 106 nephrons/kidney 腎小體 腎小球 遠曲小管接觸入球微動脈後 鮑氏囊 產生一特化組織 緻密斑 Part of thick segment of ascending limb 亨爾氏套 直管 近髓質腎元 皮質腎元 10-15% 80-85% Nephron types and the collecting duct system Receive 90% of renal blood supply Renal corpuscle; Glomerular capillaries Glomerular capsule Glomerular (Bowman) capsule PCT → PST → DTL → ATL → TAL → DCT → CNT → CCD → OMCD → IMCD Loop of Henle CD Basic structure of a nephron Nephron Anatomy of the renal corpuscle 近腎小球複合體 JGA Thick segment of ascending limb Glomerular filtrate Cell-free, protein-free (20% of the plasma) 足細胞 窗孔 Mesangial cells The glomerulus and its filtration barrier Pore size 70 nm GFR (glomerular filtration rate) = Kf [(PGC-PBS) - (GC-BS)] Hydrostatic Colloid osmotic pressure pressure GC: glomerular
    [Show full text]
  • The Excretory System
    THE EXCRETORY SYSTEM Premedical Biology Pair of kidneys Pair of urethers Urinary bladder Urethra The excretory system The urethers are tubes that carry urine from the pelvis of the kidneys to the urinary bladder. The urinary bladder temporarily stores urine until it is released from the body. The urethra is the tube that carries urine from the urinary bladder to the outside of the body. The outer end of the urethra is controlled by a circular muscle called a sphincter. Kidney Each kidney is composed of three sections: (renal) cortex, (renal) medulla (middle part) and (renal) pelvis. Kidneys are surrounded by adipose tissue – capsula adiposa. Kidney The cortex is where the blood is filtered. The medulla contains the collecting ducts which carry filtrate (filtered substances) to the pelvis. The pelvis is a hollow cavity where urine accumulates and drains into the urether. Kidney essential part of the urinary system nephrons are structural and functional (filtration) units of the kidney Normal kidney contains 800,000 to one million nephrons. Nephron renal corpuscle is filtering component ad consists of glomerulus and Bowman‘s capsule renal tubule is specialized for reabsorption and secretion and consists of proximal tubule, loop of Henle, distal tubule and collecting tubules Renal corpuscle Renal corpuscle is composed of a glomerulus and Bowman's capsule. An afferent arteriole enters the glomerulus and an efferent arteriole leaves it. The glomerulus is composed of a capillary tuft, that receives blood from an afferent arteriole. The tuft is surrounded by Bowman‘s Capsule consisting of visceral (inner) and parietal (outer) layer. Between two layer is space where primary urine is produced.
    [Show full text]
  • The Thiazide-Sensitive Na–Cl Cotransporter Is an Aldosterone-Induced Protein (Fludrocortisone͞sodium Chloride Transport͞distal Convoluted Tubule͞collecting Duct)
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 14552–14557, November 1998 Physiology The thiazide-sensitive Na–Cl cotransporter is an aldosterone-induced protein (fludrocortisoneysodium chloride transportydistal convoluted tubuleycollecting duct) GHEUN-HO KIM*, SHYAMA MASILAMANI*, RACHEL TURNER*, CARTER MITCHELL*, JAMES B. WADE*†, AND MARK A. KNEPPER*‡ *Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and †Department of Physiology, University of Maryland College of Medicine, Baltimore, MD 21201 Edited by Robert W. Berliner, Yale University School of Medicine, New Haven, CT, and approved September 14, 1998 (received for review August 5, 1998) ABSTRACT Although the collecting duct is regarded as situ hybridization (9) and reverse transcription–PCR (10), it the primary site at which mineralocorticoids regulate renal was concluded that TSC mRNA is found virtually exclusively sodium transport in the kidney, recent evidence points to the in the distal convoluted tubule in the rat kidney. Immunohis- distal convoluted tubule as a possible site of mineralocorticoid tochemical studies using fusion protein-derived antibodies to action. To investigate whether mineralocorticoids regulate the TSC also have demonstrated that expression of the TSC expression of the thiazide-sensitive Na–Cl cotransporter protein in the rat kidney is limited to the distal convoluted (TSC), the chief apical sodium entry pathway of distal con- tubule cells (11). voluted tubule cells, we prepared an affinity-purified, peptide- We hypothesize here that aldosterone may act on the distal directed antibody to TSC. On immunoblots, the antibody convoluted tubule to increase the expression of the TSC of the recognized a prominent 165-kDa band in membrane fractions distal convoluted tubule.
    [Show full text]
  • The Kinetics of Distal Nephron Injury Michael J Hiatt1,2, Larissa Ivanova3, Peter Trnka4, Marc Solomon1 and Douglas G Matsell1,5
    Laboratory Investigation (2013) 93, 1012–1023 & 2013 USCAP, Inc All rights reserved 0023-6837/13 Urinary tract obstruction in the mouse: the kinetics of distal nephron injury Michael J Hiatt1,2, Larissa Ivanova3, Peter Trnka4, Marc Solomon1 and Douglas G Matsell1,5 Congenital urinary tract obstruction is the single most important cause of childhood chronic kidney disease. We have previously demonstrated that human and primate fetal obstruction impairs the development, differentiation, and maturation of the kidney. Research using postnatal rodent models has primarily focused upon the role of proximal tubular injury, with few reports of collecting duct system pathology or the suitability of the postnatal models for examining injury to the distal nephron. We have employed the mouse unilateral ureteric obstruction (UUO) model and examined time points ranging from 1 to 14 days of obstruction. Many of the key features of fetal collecting duct injury are replicated in the postnatal mouse model of obstruction. Obstruction causes a sixfold increase in myofibroblast accumulation, two- to threefold dilatation of tubules of the distal nephron, 65% reduction of principal cell aquaporin 2 expression, 75% reduction of collecting duct intercalated cell abundance, and disruption of E-cadherin- and bcatenin- mediated collecting duct epithelial adhesion. Notably, these features are shared by the distal and connecting tubules. This work confirms that distal nephron pathology is a significant component of postnatal mouse UUO. We have highlighted the utility of this model for investigating collecting duct and distal tubule injury and for identifying the underlying mechanisms of the distal nephron’s contribution to the repair and fibrosis. Laboratory Investigation (2013) 93, 1012–1023; doi:10.1038/labinvest.2013.90; published online 5 August 2013 KEYWORDS: collecting duct; distal tubule; obstruction; unilateral ureteric obstruction Congenital urinary tract obstruction is the single most availability of transgenic animals.
    [Show full text]
  • Signaling During Kidney Development
    Cells 2015, 4, 112-132; doi:10.3390/cells4020112 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Signaling during Kidney Development Mirja Krause 1, Aleksandra Rak-Raszewska 1, Ilkka Pietilä 1, Susan E. Quaggin 2 and Seppo Vainio 1,* 1 Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu University, 90014 Oulu, Finland; E-Mails: [email protected] (M.K.); [email protected] (A.R.R.); [email protected] (I.P.) 2 Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +358-407-470939. Academic Editor: Christoph Englert Received: 28 February 2015 / Accepted: 30 March 2015 / Published: 10 April 2015 Abstract: The kidney plays an essential role during excretion of metabolic waste products, maintenance of key homeostasis components such as ion concentrations and hormone levels. It influences the blood pressure, composition and volume. The kidney tubule system is composed of two distinct cell populations: the nephrons forming the filtering units and the collecting duct system derived from the ureteric bud. Nephrons are composed of glomeruli that filter the blood to the Bowman’s capsule and tubular structures that reabsorb and concentrate primary urine. The collecting duct is a Wolffian duct-derived epithelial tube that concentrates and collects urine and transfers it via the renal pelvis into the bladder. The mammalian kidney function depends on the coordinated development of specific cell types within a precise architectural framework. Due to the availability of modern analysis techniques, the kidney has become a model organ defining the paradigm to study organogenesis.
    [Show full text]