List of Common Frogs and Toads Found at Gurukula Botanical Sanctuary. Toads Bufo Melanostictus Frogs Species Preferred Habitat A

Total Page:16

File Type:pdf, Size:1020Kb

List of Common Frogs and Toads Found at Gurukula Botanical Sanctuary. Toads Bufo Melanostictus Frogs Species Preferred Habitat A List of Common Frogs and Toads found at Gurukula Botanical Sanctuary. Toads Species Preferred Habitat at GBS Notes Common Indian Toad Garden Uncommon. Terrestrial. 60mm Bufo melanostictus in length (but can be larger). Nocturnal. Hides in cool dark crannies during day. Brown-grey with reddish patches in colour and skin has many black spine- tipped warts. Frogs Species Preferred Habitat at GBS Notes Common Tree Frog Trees in Garden Common. Arboreal. Polypedates maculatus Brown-yellow frog, with yellow spots on back on thighs. 50-80mm in length. Seen often at night near ponds at breeding time. Malabar Gliding Frog Trees in Garden Common. Arboreal. Green Rhacophorus malabaricus above and whitish under, with red webbing between toes. 67-78mm in length. Seen often at night near ponds at breeding time. Beddome’s Frog Garden Uncommon. Terrestrial. Up Indirana beddomii to 50mm in Indian Cricket Frog Garden Common. Terrestrial. Limnonectes limnocharis Brown with darker markings and warty, sometimes with cream vertebral stripe. 35mm in length. Seen on paths in lower garden. Good jumper! Bicoloured Frog Everywhere, Old forest Most common frog here. Rana curtipes Terrestrial. Pinkish, dead- leaf colour with black spots above and black below. 50mm in length. Mostly seen in leaf-litter. Sluggish movements. Bronze Frog Garden, Crenita ponds Common. Semi-aquatic. Rana temporalis 50-80mm in length. Light- brown above, cream below, and limbs with dark cross bands. NB: Due to inadequate literature available on amphibians these are the only frogs we have been able to identify, though there are several remaining species to be correctly identified. References: Daniel, J.C.; 2002; ‘The Book of Indian Reptiles and Amphibians’; BNHS & Oxford University Press, UK.
Recommended publications
  • Diet Composition and Overlap in a Montane Frog Community in Vietnam
    Herpetological Conservation and Biology 13(1):205–215. Submitted: 5 November 2017; Accepted: 19 March 2018; Published 30 April 2018. DIET COMPOSITION AND OVERLAP IN A MONTANE FROG COMMUNITY IN VIETNAM DUONG THI THUY LE1,4, JODI J. L. ROWLEY2,3, DAO THI ANH TRAN1, THINH NGOC VO1, AND HUY DUC HOANG1 1Faculty of Biology and Biotechnology, University of Science, Vietnam National University-HCMC, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam 2Australian Museum Research Institute, Australian Museum,1 William Street, Sydney, New South Wales 2010, Australia 3Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia 4Corresponding author, e-mail: [email protected] Abstract.—Southeast Asia is home to a highly diverse and endemic amphibian fauna under great threat. A significant obstacle to amphibian conservation prioritization in the region is a lack of basic biological information, including the diets of amphibians. We used stomach flushing to obtain data on diet composition, feeding strategies, dietary niche breadth, and overlap of nine species from a montane forest in Langbian Plateau, southern Vietnam: Feihyla palpebralis (Vietnamese Bubble-nest Frog), Hylarana montivaga (Langbian Plateau Frog), Indosylvirana milleti (Dalat Frog), Kurixalus baliogaster (Belly-spotted Frog), Leptobrachium pullum (Vietnam Spadefoot Toad), Limnonectes poilani (Poilane’s Frog), Megophrys major (Anderson’s Spadefoot Toad), Polypedates cf. leucomystax (Common Tree Frog), and Raorchestes gryllus (Langbian bubble-nest Frog). To assess food selectivity of these species, we sampled available prey in their environment. We classified prey items into 31 taxonomic groups. Blattodea was the dominant prey taxon for K.
    [Show full text]
  • Summary Conservation Action Plans for Mongolian Reptiles and Amphibians
    Summary Conservation Action Plans for Mongolian Reptiles and Amphibians Compiled by Terbish, Kh., Munkhbayar, Kh., Clark, E.L., Munkhbat, J. and Monks, E.M. Edited by Munkhbaatar, M., Baillie, J.E.M., Borkin, L., Batsaikhan, N., Samiya, R. and Semenov, D.V. ERSITY O IV F N E U D U E T C A A T T S I O E N H T M ONGOLIA THE WORLD BANK i ii This publication has been funded by the World Bank’s Netherlands-Mongolia Trust Fund for Environmental Reform. The fi ndings, interpretations, and conclusions expressed herein are those of the author(s) and do not necessarily refl ect the views of the Executive Directors of the International Bank for Reconstruction and Development / the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colours, denominations, and other information shown on any map in this work do not imply any judgement on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. The World Conservation Union (IUCN) have contributed to the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, providing technical support, staff time, and data. IUCN supports the production of the Summary Conservation Action Plans for Mongolian Reptiles and Amphibians, but the information contained in this document does not necessarily represent the views of IUCN. Published by: Zoological Society of London, Regent’s Park, London, NW1 4RY Copyright: © Zoological Society of London and contributors 2006.
    [Show full text]
  • Hylidae, Anura) and Description of Ocellated Treefrog Itapotihyla Langsdorffii Vocalizations
    Current knowledge on bioacoustics of the subfamily Lophyohylinae (Hylidae, Anura) and description of Ocellated treefrog Itapotihyla langsdorffii vocalizations Lucas Rodriguez Forti1, Roseli Maria Foratto1, Rafael Márquez2, Vânia Rosa Pereira3 and Luís Felipe Toledo1 1 Laboratório Multiusuário de Bioacústica (LMBio) e Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil 2 Fonoteca Zoológica, Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain 3 Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura (CEPAGRI), Universidade Estadual de Campinas, Campinas, SP, Brazil ABSTRACT Background. Anuran vocalizations, such as advertisement and release calls, are informative for taxonomy because species recognition can be based on those signals. Thus, a proper acoustic description of the calls may support taxonomic decisions and may contribute to knowledge about amphibian phylogeny. Methods. Here we present a perspective on advertisement call descriptions of the frog subfamily Lophyohylinae, through a literature review and a spatial analysis presenting bioacoustic coldspots (sites with high diversity of species lacking advertisement call descriptions) for this taxonomic group. Additionally, we describe the advertisement and release calls of the still poorly known treefrog, Itapotihyla langsdorffii. We analyzed recordings of six males using the software Raven Pro 1.4 and calculated the coefficient Submitted 24 February 2018 of variation for classifying static and dynamic acoustic properties. Accepted 30 April 2018 Results and Discussion. We found that more than half of the species within the Published 31 May 2018 subfamily do not have their vocalizations described yet. Most of these species are Corresponding author distributed in the western and northern Amazon, where recording sampling effort Lucas Rodriguez Forti, should be strengthened in order to fill these gaps.
    [Show full text]
  • Iowa's Frogs and Toads on the Ground a Log Gradually Be­ "The Sweet, Warm Llps of Early Comas Partially Imbedded in the by REEVE M
    VOLUME 3 APRI L 1.s, 1944 NUM BE R 4 Log Rolling, a Iowa State Parks Provide Relaxation Pleasurable and • Profitable Pastime From Stress and Strain of War ~ffort By H. H. KNIGHT Dept. of Zoology and Entomology Iowa State College The fisherman in search of bait No Iowan Farther or the entomologist in search of insect specimens may often re­ Than 40 Miles from sort to rolling old logs for col­ lecting purposes. The writer has Recreational Spot been rolling logs periodically during the past 25 years, chiefly By G. l. ZIEMER in search of insects whtle con­ Chief lands and Waters Division ducting field trips with classes It 1s often said that a nation at in entomology. With this back­ war must see that its people-all ground as an mtroduction we will of its people-get healthful recre­ proceed with the subject m hand. ation, diversion, and relaxation to Within and beneath old logs promote individual health and na­ we find a varied assortment of tional morale. With each succeed­ animal life, in fact we find one ing day of war this fact becomes of the important ecological situ­ more evident. Regardless of ations in wooded areas. The age what phase of the current strug­ of a log and the species of tree it gle a person is engaged in, he is represents are chief factors de­ a more efficient worker for Un­ termining what may be in or cle Sam if periodically he is re­ under the log examined. Biolo­ leased from the high mental and gists have studied logs from the physical tension of war work.
    [Show full text]
  • Species Account
    SPECIES ACCOUNT AMPHIBIA I. Family MEGOPHRYIDAE Megophrys acera s Horned Frog This was a leaf litter frog, which inhabited forest floor of closed-canopy evergreen forests at Gunung Tujuh. It occurs from the lowlands at about 750 meters asl up to mountain forests over 1500 meters asl (Mistar, 2003). At Gunung Tujuh it was found at elevation 1200 meters asl. This is a rare species, which was only found at Gunung Tujuh survey site. This species is known from Peninsular Thailand through most of Peninsular Malaysia (Berry, 1975) and Sumatra (Mistar, 2003). Figure 21. M. aceras from Gunung Tujuh (Photograph by J. Holden). Megophrys nasuta Bornean Horned Frog, Malayan Horned Frog, Horned Toad, Large Horned Frog It was a leaf litter frog, which inhabited intact lowland and sub mountain rainforest, generally near forest streams. Adults are terrestrial in habits, but tadpoles live in clear forest streams. It occurred about 500 meters asl up to 1000 meters asl. It was regularly encountered, and its characteristic call was frequently heard in suitable habitat. It was uncommon in Tapan, Lumayang, Sungai Durian, Muara Kambang, Muara Sako, Muara Labuh and Lubuk Selasih survey sites. This species is known from southern, throughout Peninsular Malaysia (Berry, 1975), Tioman Island, Singapore (Lim and Lim, 1992), Sumatra, Bintan, all parts of Borneo and the Natuna Islands (Inger and Stuebing, 2005; Mistar, 2003). Figure 22. M. nasuta from Tapan (Photograph by J. Holden). Megophrys paralella Megophrys paralella was described by Inger and Iskandar (2005). Type locality of the species is Lubuk Selasih, West Sumatra, at elevation 1289 meters asl.
    [Show full text]
  • BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
    The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls
    [Show full text]
  • Field Guide to the Amphibians and Turtles of the Deramakot and Tangkulap Pinangah Forest Reserves
    Field guide to the amphibians and turtles of the Deramakot and Tangkulap Pinangah Forest Reserves Created by: Sami Asad, Victor Vitalis and Adi Shabrani INTRODUCTION The island of Borneo possesses a diverse array of amphibian species with more than 180 species currently described. Despite the high diversity of Bornean amphibians, data on their ecology, behaviour, life history and responses to disturbance are poorly understood. Amphibians play important roles within tropical ecosystems, providing prey for many species and predating invertebrates. This group is particularly sensitive to changes in habitat (particularly changes in temperature, water quality and micro-habitat availability). As such, the presence of a diverse amphibian community is a good indicator of a healthy forest ecosystem. The Deramakot (DFR) and Tangkulap Pinangah Forest Reserves (TPFR) are located in Sabah’s north Kinabatangan region (Figure. 1). The DFR is certified by the Forest Stewardship Council (FSC) and utilizes Reduced Impact Logging (RIL) techniques. The neighbouring TPFR has utilized Conventional Logging (CL) techniques. Conventional logging ceased in the TPFR in 2001, and the area’s forests are now at varying stages of regeneration. Previous research by the Leibniz Institute for Zoo and Wildlife Research (IZW), shows that these concessions support very high mammalian diversity. Figure. 1: Location of the Deramakot (DFR) and Tangkulap Pinangah Forest Reserves (TPFR) in Sabah, Malaysian Borneo. Between the years 2017 – 2019, an amphibian and reptile research project conducted in collaboration between the Museum für Naturkunde Berlin (MfN), IZW and the Sabah Forestry Department (SFD) identified high amphibian diversity within the reserves. In total 52 amphibian species have been recorded (including one caecilian), constituting 27% of Borneo’s total amphibian diversity, comparable to two neighbouring unlogged sites (Maliau basin: 59 sp, Danum Valley: 55 sp).
    [Show full text]
  • Assessment of Riparian Ecosystem on Amphibians Along a Green Corridor in Oil Palm Plantation, Pasoh, Negeri Sembilan, Peninsular
    Sains Malaysiana 43(5)(2014): 655–666 Assessment of Riparian Ecosystem on Amphibians along a Green Corridor in Oil Palm Plantation, Pasoh, Negeri Sembilan, Peninsular Malaysia (Penilaian Ekosistem Riparia terhadap Amfibia di sepanjang Koridor Hijau di Ladang Kelapa Sawit, Pasoh, Negeri Sembilan, Semenanjung Malaysia) A. NORHAYATI*, N. EHWAN & T. OKUDA ABSTRACT The large scale expansion of oil palm plantations nowadays bring huge negative impact on habitat destruction and loss of biodiversity, especially at Pasoh, Negeri Sembilan, Peninsular Malaysia. The monoculture system that was developed since the 1970s has suppressed biodiversity levels because of the lack of suitable microhabitats. In order to assess ecological remediation of plantation, a green corridor was established along Sg. Petekah at Felda Pasoh 2. The assessment was conducted from March to May 2012 at Sg. Petekah green corridor (SPGC) at Felda Pasoh 2 and Felda Pasoh 3 with no green corridor (FP3). Amphibians were sampled for species richness by using fenced pit fall traps and visual encounter surveys. Microhabitat selection of amphibians was identified to come up with recommendations for improvement. The low Shannon-Wiener diversity value, H’ at SPGC (1.82 ± 0.126) was obtained indicating that the remediation is yet to be achieved, but the H’ value was much lower at PF3 (0.62±0.2) indicating a positive projection of remediation. Microhabitat selection study indicated that each amphibian species tend to avoid overlapping of microhabitat based on specific guilds. Based on the results, the green corridor should be widened to allow space for foraging and territorial defence, planted not only with trees but also shrubs and herbs to improve the ground cover for the amphibians and also to include other animal groups, such as birds and mammals.
    [Show full text]
  • Frog Leg Newsletter of the Amphibian Network of South Asia and Amphibian Specialist Group - South Asia
    frog leg Newsletter of the Amphibian Network of South Asia and Amphibian Specialist Group - South Asia No. 13, December 2007 Eggs, hatching and larval development in Ichthyophis cf. malabarensis (Gymnophiona: Ichthyophiidae) In this issue - - Eggs, hatching and larval devel- 1 1 1 1 2 Bapurao V. Jadhav ,*, D.D. Thorat , S.D. Kadam , L.S. Bhingardeve and S.S. Patil opment in Ichthyophis cf. mala- 1 barensis (Gymnophiona: Ichthyo- Department of zoology, Balasaheb Desai College, Patan, Satara 415206, India phiidae) 2 Department of zoology, Krishna Mahavidyalaya, Retare Bk., Satara 415108, India Bapurao V. Jadhav, D.D. Thorat, Email: * [email protected] S.D. Kadam, L.S. Bhingardeve & S.S. Patil, Pp. 1-3. Biology of Western Ghats caecilians is a less explored subject with - - Diversity and distribution of amphibian fauna in Nagarjuna- very rare studies on reproductive behaviour. We describe egg laying, hatching sagar-Srisailam Tiger Reserve, and early development of Ichthyophis cf. malabarensis from Koyana region in Andhra Pradesh C. Srinivasulu, Manju Siliwal, A. northern Western Ghats where a single female with 144 eggs were observed Rajesh, Bhargavi Srinivasulu, P. in captivity. As per our knowledge this is the first complete description of Venkateshwarulu & V. Nagulu, Pp. 3-6. initial developmental in caecilians of Western Ghats. Studies on reproductive biology and reproductive behaviour of cae- - - The comments on record and farther distribution of the Ornate cilians are rare with very few studies from the Western Ghats (Sheshachar, Microhylid Microhyla ornata from 1933, 1942, 1982; Balakrishna et al., 1983). Ichthyophis of family Ichthyo- Gujarat Raju Vyas, P. 6. phiidae and order Gymnophiona is oviparous with internal fertilization (Sheshachar, 1942, 1982; Balakrishna et al., 1983; Pillai & Ravichandran, - - Status and morphometric data of some anurans with reference to 1999).
    [Show full text]
  • Herpetological Journal FULL PAPER
    Volume 27 (October 2017), 307-317 FULL PAPER Herpetological Journal Published by the British Toxicity impact of butachlor on the development of green Herpetological Society toad Bufotes viridis Zahra Mossadeghi, Zeinab Parvaresh, Nazihe Seddighi, Fatemeh Roushenas, Samira Rahimi, Elmira Hasani, Zahra Derakhshan & Mohsen Nokhbatolfoghahai Biology Department, Faculty of Sciences, Shiraz University, Shiraz, Iran Butachlor is the most commonly used herbicide on rice paddy fields in Asian countries. Paddy fields are habitats commonly used for reproduction by many species of amphibians. We examined the effects of butachlor on Bufotes viridis development. Amplectant pairs of B. viridis were kept in the laboratory in an aquarium overnight, and their spawn collected the next morning. Eggs were exposed to butachlor at different concentrations (0.1, 0.2, 0.8, 1, 2, 3.5, 7, 14µg/l), all lower than the concentration used in the area (rice paddy fields) by farmers. Eggs were allowed to develop to Gosner stage 24 and their developmental patterns compared with those reared in normal conditions (control). In order to examine whether jelly coats have a significant role in the protection of developing eggs from the toxin, another group of eggs were de-jellied and treated in the same procedure. The LC50 value of butachlor was calculated as 14μg/l and 7μg/l after 96h for jellied eggs and de-jellied eggs respectively. Butachlor lead to a range of external and internal body malformations. Butachlor concentrations of 2µg/l, 7µg/l and 14µg/l reduced embryonic growth and development. A high mortality rate and both internal and external abnormalities were observed at lower concentrations than used in fields, suggesting that butachlor can have significant negative effects on amphibians where this herbicide is used.
    [Show full text]
  • Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae)
    Zootaxa 4104 (1): 001–109 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4104.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:D598E724-C9E4-4BBA-B25D-511300A47B1D ZOOTAXA 4104 Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae) WILLIAM E. DUELLMAN1,3, ANGELA B. MARION2 & S. BLAIR HEDGES2 1Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045-7593, USA 2Center for Biodiversity, Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1601, USA 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Vences: 27 Oct. 2015; published: 19 Apr. 2016 WILLIAM E. DUELLMAN, ANGELA B. MARION & S. BLAIR HEDGES Phylogenetics, Classification, and Biogeography of the Treefrogs (Amphibia: Anura: Arboranae) (Zootaxa 4104) 109 pp.; 30 cm. 19 April 2016 ISBN 978-1-77557-937-3 (paperback) ISBN 978-1-77557-938-0 (Online edition) FIRST PUBLISHED IN 2016 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/j/zt © 2016 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
    [Show full text]
  • Downloading Material Is Agreeing to Abide by the Terms of the Repository Licence
    Cronfa - Swansea University Open Access Repository _____________________________________________________________ This is an author produced version of a paper published in: The Herpetological Journal Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa36954 _____________________________________________________________ Paper: Raye, L. (2017). Frogs in pre-industrial Britain. The Herpetological Journal, 27(4), 368-378. _____________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. http://www.swansea.ac.uk/library/researchsupport/ris-support/ Volume 27 (October 2017), 368-378 FULL PAPER Herpetological Journal Published by the British Frogs in pre-industrial Britain Herpetological Society Lee Raye Swansea University, Singleton Park, Swansea, SA2 8PP, U.K. This paper examines the pre-industrial historical record of Britain’s anuran species. The records examined include especially the writings of naturalists and physicians, most notably Gerald of Wales (1188), John of Gaddesden (c.1314), Edward Wotton (1552), Timothie Bright (1580), Thomas Brown (1646), Robert Lovell (1660), Christopher Merrett (1667), Robert Sibbald (1684) and John Morton (1712).
    [Show full text]