Serglycin: a Structural and Functional Chameleon with Wide Impact on Immune Cells

Total Page:16

File Type:pdf, Size:1020Kb

Serglycin: a Structural and Functional Chameleon with Wide Impact on Immune Cells Serglycin: A Structural and Functional Chameleon with Wide Impact on Immune Cells This information is current as Svein O. Kolset and Gunnar Pejler of September 25, 2021. J Immunol 2011; 187:4927-4933; ; doi: 10.4049/jimmunol.1100806 http://www.jimmunol.org/content/187/10/4927 Downloaded from References This article cites 63 articles, 37 of which you can access for free at: http://www.jimmunol.org/content/187/10/4927.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Serglycin: A Structural and Functional Chameleon with Wide Impact on Immune Cells Svein O. Kolset* and Gunnar Pejler† Among the different proteoglycans expressed by mam- where a compound denoted “macromolecular heparin” was mals,serglycinisinmostimmunecellsthedominatingspe- identified (2). Later, this type of compound was shown to be cies. A unique property of serglycin is its ability to adopt present also in rat peritoneal MCs (3, 4) and was subsequently highly divergent structures, because of glycosylation with classified as a proteoglycan (5). Moreover, it was shown that variable types of glycosaminoglycans when expressed by the proteoglycan was protease resistant and rich in Ser and different cell types. Recent studies of serglycin-deficient Gly residues (5). animals have revealed crucial functions for serglycin in a Among all proteoglycans, serglycin was the first to be diverse array of immunological processes. However, its identified at the cDNA level and was named so because of Downloaded from exact functionvariestoalargeextentdependingonthecel- a characteristic, extensive stretch of Ser-Gly repeats found in lular context of serglycin expression. Based on these find- the serglycin core protein of all species (6–10). The Ser resi- ings, serglycin is emerging as a structural and functional dues of these repeats constitute the GAG attachment sites. chameleon, with radically different properties depending Because of the close proximity of such sites, serglycin is on its exact cellular and immunological context. The densely substituted with GAG chains. Notably, this dense http://www.jimmunol.org/ Journal of Immunology, 2011, 187: 4927–4933. clustering of GAGs provides the basis for the strong protease resistance of serglycin (2–5, 11) and may also have additional functional implications, for example, to enable tight packag- roteoglycans are built up of a protein part, the so- ing of large amounts of GAG-binding compounds within a called core protein, which is glycosylated with sul- small volume. P fated and thereby negatively charged glycosamino- N-terminal sequencing of serglycin isolated from condi- glycans (GAGs). Proteoglycans can be roughly divided into tioned media of two different monocyte cell lines revealed cell surface-associated (e.g., syndecans, glypicans) and extra- extensive processing of the core protein N terminus (12, 13). cellular species (e.g., decorin, aggrecan, perlecan), but they However, it is not known whether the N-terminal processing by guest on September 25, 2021 can also be found within intracellular secretory compartments, of serglycin has any functional consequence. serglycin being the most notable example (1). 2 2 The type and extent of sulfation of GAG chains attached to The relatively recent generation of serglycin / mice has the serglycin core protein varies extensively between cell types revealed a wide impact of serglycin on the functional prop- (Fig. 1, Table I). The most well-known serglycin-associated erties of numerous immune cells. Intriguingly, though, the GAG is heparin, a GAG species with a remarkably high extent exact function of serglycin varies extensively between different serglycin-expressing cell types. A likely explanation for this is of sulfation, which is expressed only in connective tissue type its remarkably variable glycosylation pattern in different cells, MCs (Fig. 1, Table I). In several cells found in the circulation, ranging from glycosylation with highly sulfated GAGs of such as lymphocytes, platelets, and monocytes, serglycin is heparin type in connective tissue type mast cells (MCs) to substituted with lower sulfated chondroitin 4-sulfate (CS-4) low-sulfated chondroitin sulfate (CS) chains in, for example, chains (Fig. 1, Table I) (29). However, several hematopoietic T lymphocytes. Hence serglycin can be regarded as a struc- cells, including mucosal type MCs, bone marrow-derived MCs, tural and functional chameleon, being able to dynamically and activated monocytes and macrophages, express CS with and radically change its structural and functional character- a higher extent of sulfation (“oversulfated CS”), either of istics depending on biological context. CS-E or CS-diB type (Fig. 1, Table I) (30, 31). Notably, serglycin isolated from primary murine macrophages has Structural diversity of serglycin also been shown to contain heparan sulfate, a GAG type with The existence of a compound with the characteristics of ser- the same carbohydrate backbone structure as heparin but glycin was first indicated from studies on heparin in rat skin, having a lower sulfate content (Fig. 1, Table I) (26). Inter- *Department of Nutrition, University of Oslo, 0316 Oslo, Norway; and †Department Biochemistry, BMC, Box 575, 75123 Uppsala, Sweden (G.P.) or Department of Nu- of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, trition, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway (S.O.K.). E-mail 75123 Uppsala, Sweden addresses: [email protected] (G.P.) and [email protected] (S.O.K.) Received for publication June 8, 2011. Accepted for publication August 18, 2011. Abbreviations used in this article: CS, chondroitin sulfate; CS-4, chondroitin 4-sulfate; GAG, glycosaminoglycan; MC, mast cell; WT, wild type. This work was supported by Formas, the Swedish Research Council; King Gustaf V 80-Year Anniversary Fund; Torsten and Ragnar So¨derberg Foundation; the Swedish Cancer Founda- Ó tion; the Throne Holst Foundation; and South-Eastern Norway Regional Health Authority. Copyright 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00 Address correspondence and reprint requests to Gunnar Pejler or Svein O. Kolset, Swedish University of Agricultural Sciences, Department of Anatomy, Physiology and www.jimmunol.org/cgi/doi/10.4049/jimmunol.1100806 4928 BRIEF REVIEWS: SERGLYCIN FIGURE 1. Different serglycin GAG structures. Orange represents iduronic acid; green represents glu- curonic acid; blue represents N-ace- tylgalactosamine; gray represents N- acetylglucosamine. Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 estingly, the GAG repertoire of serglycin also includes hybrid metastatic carcinomas (28). With the use of an anti-serglycin proteoglycans, carrying both heparin and CS chains (32), Ab, the serglycin core protein has been detected in spleen, adding to its structural complexity. lymph nodes, and bone marrow (37–39). The size of serglycin may vary depending on the number Serglycin expression has been most thoroughly studied in of GAG chains attached to the protein core and because of MCs. An early study suggested that MCs have a high capacity variations in chain length of the attached GAGs (29). Of note, for serglycin expression as compared with other cell types an early study in eosinophils showed that the length of the (40). In agreement with this notion, serglycin is strongly in- serglycin CS-4/CS-E chains increased after stimulation with duced during the process of MC differentiation from bone IL-3 or GM-CSF (25), suggesting that serglycin may undergo marrow stem cells (41). Interestingly, the expression of sul- profound structural alterations in response to immunological fotransferases needed to synthesize CS-E was upregulated in signals. Most likely, such structural dynamics will influence tandem, whereas enzymes involved in heparin synthesis were the functional properties of serglycin with regard to storage expressed later in the differentiation process (41). Further- and/or release of bound compounds. As an example, Wistar– more, MC activation, leading to secretion of granule content Furth rats have a platelet phenotype with similarities to the (including serglycin), induced serglycin mRNA expression human gray platelet syndrome, proposed to be due to the and, again, expression of CS-E–related enzymes. In contrast, abnormally low size of the serglycin proteoglycans present in heparin-synthesizing enzymes were downregulated after acti- the a-granules (33). vation (41). These studies suggest dynamic regulation of serglycin expression and, in particular, differences in the re- Regulation of serglycin expression gulation of distinct sulfotransferases that
Recommended publications
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Integrating Transcriptome-Wide Study and Mrna Expression Profiles Yields Novel Insights Into the Biological Mechanism of Chondro
    Li et al. Arthritis Research & Therapy (2019) 21:194 https://doi.org/10.1186/s13075-019-1978-8 RESEARCH ARTICLE Open Access Integrating transcriptome-wide study and mRNA expression profiles yields novel insights into the biological mechanism of chondropathies Ping Li†, Yujie Ning†, Xiong Guo, Yan Wen, Bolun Cheng, Mei Ma, Lu Zhang, Shiqiang Cheng, Sen Wang and Feng Zhang* Abstract Background: Chondropathies are a group of cartilage diseases, which share some common pathogenetic features. The etiology of chondropathies is still largely obscure now. Methods: A transcriptome-wide association study (TWAS) was performed using the UK Biobank genome-wide association study (GWAS) data of chondropathies (including 1314 chondropathy patients and 450,950 controls) with gene expression references of muscle skeleton (MS) and peripheral blood (YBL). The candidate genes identified by TWAS were further compared with three gene expression profiles of osteoarthritis (OA), cartilage tumor (CT), and spinal disc herniation (SDH), to confirm the functional relevance between the chondropathies and the candidate genes identified by TWAS. Functional mapping and annotation (FUMA) was used for the gene ontology enrichment analyses. Immunohistochemistry (IHC) was conducted to validate the accuracy of integrative analysis results. Results: Integrating TWAS and mRNA expression profiles detected 84 candidate genes for knee OA, such as DDX20 − 3 − 3 (PTWAS YBL = 1.79 × 10 , fold change (FC) = 2.69), 10 candidate genes for CT, such as SRGN (PTWAS YBL = 1.46 × 10 , − 3 FC = 3.36), and 4 candidate genes for SDH, such as SUPV3L1 (PTWAS YBL =3.59×10 , FC = 3.22). Gene set enrichment analysis detected 73 GO terms for knee OA, 3 GO terms for CT, and 1 GO term for SDH, such as mitochondrial protein complex (P =7.31×10− 5) for knee OA, cytokine for CT (P =1.13×10− 4), and ion binding for SDH (P =3.55×10− 4).
    [Show full text]
  • 1 Significance of Serglycin and Its Binding Partners in Autocrine Promotion of Metastasis In
    1 Significance of serglycin and its binding partners in autocrine promotion of metastasis in 2 esophageal cancer 3 Yun Zhu1, Alfred K.Y. Lam2, Daisy K.Y. Shum1, Di Cui1, Jun Zhang1, Dong Dong Yan1, Bin 4 Li3, Wen Wen Xu4, Nikki P.Y. Lee5, Kin Tak Chan5, Simon Law5, Sai Wah Tsao1, Annie 5 L.M. Cheung1, *. 6 1 School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong 7 Kong, Hong Kong SAR, China 8 2 Department of Pathology, Griffith Medical School, Queensland, Gold Coast, QLD, 9 Australia 10 3 MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional 11 Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health 12 Engineering, Jinan University, Guangzhou, China 13 4 MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key 14 Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic 15 Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan 16 University, Guangzhou, China 17 5 Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong 18 Kong SAR, China 19 * Corresponding Author: Annie L.M. Cheung, School of Biomedical Sciences, Li Ka Shing 20 Faculty of Medicine, University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China. 21 Phone: 852-3917-9293; Fax: 852-2817-0857; e-mail: [email protected] 22 Running title: Significance of SRGN and its binding partner MDK in ESCC 1 23 Keywords: Serglycin, midkine, esophageal squamous cell carcinoma, metastasis, biomarker 24 Financial support: General Research Fund from the Research Grants Council of the Hong 25 Kong SAR, China (Project Nos.
    [Show full text]
  • ID AKI Vs Control Fold Change P Value Symbol Entrez Gene Name *In
    ID AKI vs control P value Symbol Entrez Gene Name *In case of multiple probesets per gene, one with the highest fold change was selected. Fold Change 208083_s_at 7.88 0.000932 ITGB6 integrin, beta 6 202376_at 6.12 0.000518 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 1553575_at 5.62 0.0033 MT-ND6 NADH dehydrogenase, subunit 6 (complex I) 212768_s_at 5.50 0.000896 OLFM4 olfactomedin 4 206157_at 5.26 0.00177 PTX3 pentraxin 3, long 212531_at 4.26 0.00405 LCN2 lipocalin 2 215646_s_at 4.13 0.00408 VCAN versican 202018_s_at 4.12 0.0318 LTF lactotransferrin 203021_at 4.05 0.0129 SLPI secretory leukocyte peptidase inhibitor 222486_s_at 4.03 0.000329 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 1552439_s_at 3.82 0.000714 MEGF11 multiple EGF-like-domains 11 210602_s_at 3.74 0.000408 CDH6 cadherin 6, type 2, K-cadherin (fetal kidney) 229947_at 3.62 0.00843 PI15 peptidase inhibitor 15 204006_s_at 3.39 0.00241 FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 202238_s_at 3.29 0.00492 NNMT nicotinamide N-methyltransferase 202917_s_at 3.20 0.00369 S100A8 S100 calcium binding protein A8 215223_s_at 3.17 0.000516 SOD2 superoxide dismutase 2, mitochondrial 204627_s_at 3.04 0.00619 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 223217_s_at 2.99 0.00397 NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 231067_s_at 2.97 0.00681 AKAP12 A kinase (PRKA) anchor protein 12 224917_at 2.94 0.00256 VMP1/ mir-21likely ortholog
    [Show full text]
  • Chondroitin Sulfate Proteoglycan Serglycin Influences Protein Cargo Loading and Functions of Tumor-Derived Exosomes
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 43), pp: 73723-73732 Research Paper Chondroitin sulfate proteoglycan serglycin influences protein cargo loading and functions of tumor-derived exosomes Anurag Purushothaman1, Shyam K. Bandari2, Darshan S. Chandrashekar2, Richard J. Jones1, Hans C. Lee1, Donna M. Weber1 and Robert Z. Orlowski1,3 1 Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA 2 Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA 3 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA Correspondence to: Anurag Purushothaman, email: [email protected] Keywords: serglycin, exosomes, multiple myeloma, chondroitin sulfate, protein cargo Received: May 13, 2017 Accepted: August 03, 2017 Published: August 27, 2017 Copyright: Purushothaman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Tumor cells produce and utilize exosomes to promote tumor growth and metastasis. Tumor-cell-derived exosomes deliver cargos that partially mimic the contents of the parent cell to nearby or distant normal or abnormal cells, thereby reprogramming the recipient cells to support tumor progression. Mechanisms by which tumor-derived exosomes subserve the tumor are under intense investigation. Here we demonstrate a critical role of the chondroitin sulfate proteoglycan serglycin in regulating the protein cargo and functions of myeloma cell-derived exosomes. Previous studies have shown that serglycin, the only known intracellular proteoglycan, functions mainly in the storage of basically charged components within the intracellular granules/vesicles via serglycin’s densely clustered, negatively charged glycosaminoglycan chains.
    [Show full text]
  • Serglycin: at the Crossroad of Inflammation and Malignancy
    REVIEW ARTICLE published: 13 January 2014 doi: 10.3389/fonc.2013.00327 Serglycin: at the crossroad of inflammation and malignancy Angeliki Korpetinou 1, Spyros S. Skandalis 1,Vassiliki T. Labropoulou 2, Gianna Smirlaki 1, Argyrios Noulas 3, Nikos K. Karamanos 1 and Achilleas D.Theocharis 1* 1 Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece 2 Division of Hematology, University Hospital of Patras, Patras, Greece 3 Technological Educational Institute, Larissa, Greece Edited by: Serglycin has been initially characterized as an intracellular proteoglycan expressed by Elvira V. Grigorieva, Institute of hematopoietic cells. All inflammatory cells highly synthesize serglycin and store it in Molecular Biology and Biophysics SB RAMS, Russia granules, where it interacts with numerous inflammatory mediators, such as proteases, Reviewed by: chemokines, cytokines, and growth factors. Serglycin is implicated in their storage into the Robert Friis, University of Bern, granules and their protection since they are secreted as complexes and delivered to their Switzerland targets after secretion. During the last decade, numerous studies have demonstrated that Santos Mañes, Consejo Superior de serglycin is also synthesized by various non-hematopoietic cell types. It has been shown Investigaciones Científicas, Spain that serglycin is highly expressed by tumor cells and promotes their aggressive pheno- *Correspondence: type and confers resistance against drugs and complement system attack. Apart from its Achilleas D. Theocharis, Laboratory of Biochemistry, Department of direct beneficial role to tumor cells, serglycin may promote the inflammatory process in the Chemistry, University of Patras, tumor cell microenvironment thus enhancing tumor development. In the present review, Patras 26500, Greece we discuss the role of serglycin in inflammation and tumor progression.
    [Show full text]
  • Entrez ID Gene Name Fold Change Q-Value Description
    Entrez ID gene name fold change q-value description 4283 CXCL9 -7.25 5.28E-05 chemokine (C-X-C motif) ligand 9 3627 CXCL10 -6.88 6.58E-05 chemokine (C-X-C motif) ligand 10 6373 CXCL11 -5.65 3.69E-04 chemokine (C-X-C motif) ligand 11 405753 DUOXA2 -3.97 3.05E-06 dual oxidase maturation factor 2 4843 NOS2 -3.62 5.43E-03 nitric oxide synthase 2, inducible 50506 DUOX2 -3.24 5.01E-06 dual oxidase 2 6355 CCL8 -3.07 3.67E-03 chemokine (C-C motif) ligand 8 10964 IFI44L -3.06 4.43E-04 interferon-induced protein 44-like 115362 GBP5 -2.94 6.83E-04 guanylate binding protein 5 3620 IDO1 -2.91 5.65E-06 indoleamine 2,3-dioxygenase 1 8519 IFITM1 -2.67 5.65E-06 interferon induced transmembrane protein 1 3433 IFIT2 -2.61 2.28E-03 interferon-induced protein with tetratricopeptide repeats 2 54898 ELOVL2 -2.61 4.38E-07 ELOVL fatty acid elongase 2 2892 GRIA3 -2.60 3.06E-05 glutamate receptor, ionotropic, AMPA 3 6376 CX3CL1 -2.57 4.43E-04 chemokine (C-X3-C motif) ligand 1 7098 TLR3 -2.55 5.76E-06 toll-like receptor 3 79689 STEAP4 -2.50 8.35E-05 STEAP family member 4 3434 IFIT1 -2.48 2.64E-03 interferon-induced protein with tetratricopeptide repeats 1 4321 MMP12 -2.45 2.30E-04 matrix metallopeptidase 12 (macrophage elastase) 10826 FAXDC2 -2.42 5.01E-06 fatty acid hydroxylase domain containing 2 8626 TP63 -2.41 2.02E-05 tumor protein p63 64577 ALDH8A1 -2.41 6.05E-06 aldehyde dehydrogenase 8 family, member A1 8740 TNFSF14 -2.40 6.35E-05 tumor necrosis factor (ligand) superfamily, member 14 10417 SPON2 -2.39 2.46E-06 spondin 2, extracellular matrix protein 3437
    [Show full text]
  • Serglycin Is a Theranostic Target in Nasopharyngeal Carcinoma That Promotes Metastasis
    Published OnlineFirst February 2, 2011; DOI: 10.1158/0008-5472.CAN-10-3557 Cancer Tumor and Stem Cell Biology Research Serglycin Is a Theranostic Target in Nasopharyngeal Carcinoma that Promotes Metastasis Xin-Jian Li1, Choon Kiat Ong5, Yun Cao1,2, Yan-Qun Xiang3, Jian-Yong Shao1,2, Aikseng Ooi9, Li-Xia Peng1, Wen-Hua Lu1, Zhongfa Zhang11, David Petillo9, Li Qin4, Ying-Na Bao1, Fang-Jing Zheng1, Claramae Shulyn Chia8, N. Gopalakrishna Iyer6, Tie-Bang Kang1, Yi-Xin Zeng1, Khee Chee Soo7, Jeffrey M. Trent10, Bin Tean Teh5,9, and Chao-Nan Qian1,3,5,10 Abstract Nasopharyngeal carcinoma (NPC) is known for its high-metastatic potential. Here we report the identification of the proteoglycan serglycin as a functionally significant regulator of metastasis in this setting. Comparative genomic expression profiling of NPC cell line clones with high- and low-metastatic potential revealed the serglycin gene (SRGN) as one of the most upregulated genes in highly metastatic cells. RNAi-mediated inhibition of serglycin expression blocked serglycin secretion and the invasive motility of highly metastatic cells, reducing metastatic capacity in vivo. Conversely, serglycin overexpression in poorly metastatic cells increased their motile behavior and metastatic capacity in vivo. Growth rate was not influenced by serglycin in either highly or poorly metastatic cells. Secreted but not bacterial recombinant serglycin promoted motile behavior, suggesting a critical role for glycosylation in serglycin activity. Serglycin inhibition was associated with reduced expression of vimentin but not other epithelial–mesenchymal transition proteins. In clinical specimens, serglycin expression was elevated significantly in liver metastases from NPC relative to primary NPC tumors.
    [Show full text]
  • The Role of Mast Cell Proteases in Respiratory Disease
    The Role of Mast Cell Proteases in Respiratory Disease Andrew Deane BSc(Hons), MSc, PGCE. Discipline of Immunology and Microbiology School of Biomedical Science and Pharmacy Faculty of Health The University of Newcastle Newcastle, NSW, Australia Submitted in the fulfilment of the requirements for the award of a PhD degree This dissertation contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my dissertation, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968. Andrew Deane August 2016 2 Acknowledgements Firstly, I would like to thank my primary supervisor, Prof. Philip Hansbro, whose support and supervision made this work possible. I’d also like to thank my co-supervisor; Dr Andrew Jarnicki for his moral support, technical guidance and encouragement throughout this entire process. I would also like to thank Dr Shaan Gellatly for her surrogate supervision during this work, especially in bacteriology. I’d like to thank all the staff and students at HMRI who have provided assistance and friendship especially Gang Liu, James Pinkerton, Alexandra Brown, Celeste Harrison and Prema Monogar. I would also like to thank my partner Chris Beeson, for his unending moral support and patience in putting up with me during this long process.
    [Show full text]
  • Differential Gene Expression by RNA-Seq Analysis of the Primo Vessel in the Rabbit Lymph
    J Acupunct Meridian Stud 2019;12(1):11e19 Available online at www.sciencedirect.com Journal of Acupuncture and Meridian Studies journal homepage: www.jams-kpi.com Research Article Differential Gene Expression by RNA-Seq Analysis of the Primo Vessel in the Rabbit Lymph Jun-Young Shin, Sang-Heon Choi, Da-Woon Choi, Ye-Jin An, Jae-Hyuk Seo, Jong-Gu Choi, Min-Suk Rho, Sang-Suk Lee* Department of Oriental Biomedical Engineering, Sangji University, Wonju, Republic of Korea Available online 28 October 2018 Received: May 31, 2018 Abstract Revised: Jul 26, 2018 For the connectome of primo vascular system, some long-type primo vessels dyed with Accepted: Oct 23, 2018 Alcian blue injected into inguinal nodes, abdominal node, and axially nodes were visual- ized, which passed over around the vena cava of the rabbit. The Alcian blue dye revealed KEYWORDS primo vessels and colored blue in the rabbit lymph vessels. The length of long-type primo e m gene expression level; vessels was 18 cm on average, of which diameters were about 20 30 m, and the lymph e m lymph node; vessels had diameters of 100 150 m. Three different tissues of pure primo vessel, mixed primo connectome; primo þ lymph vessel, and only lymph vessel were made to undergo RNA-Seq analysis by RNA-Seq analysis next-generation sequencing. We also analyzed differentially expressed genes (DEGs) from the RNA-Seq data, in which 30 genes of the primo vessels, primo þ lymph vessels, and lymph vessels were selected for primo marker candidates. From the plot of DEG analysis, 10 genes had remarkably different expression pattern on the Group 1 (primo vessel) vs Group 3 (lymph vessel).
    [Show full text]
  • Molecular Interactions Stabilizing the Promatrix Metalloprotease-9·Serglycin Heteromer
    International Journal of Molecular Sciences Article Molecular Interactions Stabilizing the Promatrix Metalloprotease-9·Serglycin Heteromer Rangita Dawadi, Nabin Malla, Beate Hegge, Imin Wushur, Eli Berg, Gunbjørg Svineng, Ingebrigt Sylte and Jan-Olof Winberg * Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway; [email protected] (R.D.); [email protected] (N.M.); [email protected] (B.H.); [email protected] (I.W.); [email protected] (E.B.); [email protected] (G.S.); [email protected] (I.S.) * Correspondence: [email protected] Received: 12 March 2020; Accepted: 10 June 2020; Published: 12 June 2020 Abstract: Previous studies have shown that THP-1 cells produced an SDS-stable and reduction- sensitive complex between proMMP-9 and a chondroitin sulfate proteoglycan (CSPG) core protein. The complex could be reconstituted in vitro using purified serglycin (SG) and proMMP-9 and contained no inter-disulfide bridges. It was suggested that the complex involved both the FnII module and HPX domain of proMMP-9. The aims of the present study were to resolve the interacting regions of the molecules that form the complex and the types of interactions involved. In order to study this, we expressed and purified full-length and deletion variants of proMMP-9, purified CSPG and SG, and performed in vitro reconstitution assays, peptide arrays, protein modelling, docking, and molecular dynamics (MD) simulations. ProMMP-9 variants lacking both the FnII module and the HPX domain did not form the proMMP-9 CSPG/SG complex. Deletion variants containing at · least the FnII module or the HPX domain formed the proMMP-9 CSPG/SG complex, as did the SG · core protein without CS chains.
    [Show full text]
  • Cytotoxic Cell Granule-Mediated Apoptosis: Perforin Delivers Granzyme B-Serglycin Complexes Into Target Cells Without Plasma Membrane Pore Formation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity, Vol. 16, 417–428, March, 2002, Copyright 2002 by Cell Press Cytotoxic Cell Granule-Mediated Apoptosis: Perforin Delivers Granzyme B-Serglycin Complexes into Target Cells without Plasma Membrane Pore Formation Sunil S. Metkar,1 Baikun Wang,1 the plasma membrane (Young et al., 1986). Although Miguel Aguilar-Santelises,1 Srikumar M. Raja,1 appealing, experimental evidence for this model is mar- Lars Uhlin-Hansen,2 Eckhard Podack,3 ginal, leaving the mechanism underlying PFN-depen- Joseph A. Trapani,4 and Christopher J. Froelich1,5 dent delivery of the granzymes unexplained. We have 1Evanston Northwestern Healthcare previously demonstrated that GrB binds to target cells Research Institute in a specific, saturable manner but after internalization Evanston, Illinois 60201 remains innocuously confined to endocytic vesicles 2Institute of Medical Biology (Froelich et al., 1996a). Effecting release of the granzyme University of Tromsø to the cytosol requires the presence of PFN or a demon- Norway strated endosomolytic agent (e.g., adenovirus [AD], list- 3 Department of Microbiology and Immunology eriolysin) (Froelich et al., 1996a; Browne et al., 1999). University of Miami School of Medicine Furthermore, disruption of vesicular trafficking impairs Miami, Florida 33101 this process (Browne et al., 1999), providing indirect 4 Peter McCallum Cancer Institute evidence that PFN may act at the endosomal level to East Melbourne, 3002 deliver the granzymes. Elaborating on the model origi- Australia nally proposed by the Podack laboratory (Podack et al., 1988), we predicted that PFN pores in the plasma membrane would undergo internalization with bound Summary granzyme to an endocytic vesicle where the established channels then facilitate escape of the protease (Froelich The mechanism underlying perforin (PFN)-dependent et al., 1998).
    [Show full text]