Differential Gene Expression by RNA-Seq Analysis of the Primo Vessel in the Rabbit Lymph
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of California, San Diego
UNIVERSITY OF CALIFORNIA, SAN DIEGO The post-terminal differentiation fate of RNAs revealed by next-generation sequencing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Gloria Kuo Lefkowitz Committee in Charge: Professor Benjamin D. Yu, Chair Professor Richard Gallo Professor Bruce A. Hamilton Professor Miles F. Wilkinson Professor Eugene Yeo 2012 Copyright Gloria Kuo Lefkowitz, 2012 All rights reserved. The Dissertation of Gloria Kuo Lefkowitz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION Ma and Ba, for your early indulgence and support. Matt and James, for choosing more practical callings. Roy, my love, for patiently sharing the ups and downs of this journey. iv EPIGRAPH It is foolish to tear one's hair in grief, as though sorrow would be made less by baldness. ~Cicero v TABLE OF CONTENTS Signature Page .............................................................................................................. iii Dedication .................................................................................................................... -
GRIM19 Impedes Obesity by Regulating Inflammatory White Fat
cells Article GRIM19 Impedes Obesity by Regulating Inflammatory White Fat Browning and Promoting Th17/Treg Balance JooYeon Jhun 1,†, Jin Seok Woo 1,† , Seung Hoon Lee 2, Jeong-Hee Jeong 1, KyungAh Jung 3, Wonhee Hur 4, Seon-Yeong Lee 1, Jae Yoon Ryu 1, Young-Mee Moon 1, Yoon Ju Jung 5, Kyo Young Song 5, Kiyuk Chang 6, Seung Kew Yoon 4,7 , Sung-Hwan Park 1,8 and Mi-La Cho 1,8,* 1 The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-040, Korea; [email protected] (J.J.); [email protected] (J.S.W.); [email protected] (J.-H.J.); [email protected] (S.-Y.L.); [email protected] (J.Y.R.); [email protected] (Y.-M.M.); [email protected] (S.-H.P.) 2 Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; [email protected] 3 Research Center, Impact Biotech, Seoul 137-040, Korea; [email protected] 4 The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea; [email protected] (W.H.); [email protected] (S.K.Y.) 5 Division of Gastrointestinal Surgery, Department of General Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 137-040, Korea; [email protected] (Y.J.J.); [email protected] (K.Y.S.) 6 Cardiovascular Center and Cardiology Division, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea; [email protected] 7 Department of Internal Medicine, Seoul St. -
Development and Validation of a New Tumor-Based Gene Signature
Zhu et al. J Transl Med (2019) 17:203 https://doi.org/10.1186/s12967-019-1946-8 Journal of Translational Medicine RESEARCH Open Access Development and validation of a new tumor-based gene signature predicting prognosis of HBV/HCV-included resected hepatocellular carcinoma patients Gui‑Qi Zhu1,2†, Yi Yang1,2†, Er‑Bao Chen3†, Biao Wang1,2, Kun Xiao1,2, Shi‑Ming Shi4, Zheng‑Jun Zhou1,2, Shao‑Lai Zhou1,2, Zheng Wang1,2, Ying‑Hong Shi1,2, Jia Fan1,2, Jian Zhou1,2, Tian‑Shu Liu3 and Zhi Dai1,2* Abstract Background: Due to the phenotypic and molecular diversity of hepatocellular carcinomas (HCC), it is still a challenge to determine patients’ prognosis. We aim to identify new prognostic markers for resected HCC patients. Methods: 274 patients were retrospectively identifed and samples collected from Zhongshan hospital, Fudan Uni‑ versity. We analyzed the gene expression patterns of tumors and compared expression patterns with patient survival times. We identifed a “9‑gene signature” associated with survival by using the coefcient and regression formula of multivariate Cox model. This molecular signature was then validated in three patients cohorts from internal cohort (n 69), TCGA (n 369) and GEO dataset (n 80). = = = Results: We identifed 9‑gene signature consisting of ZC2HC1A, MARCKSL1, PTGS1, CDKN2B, CLEC10A, PRDX3, PRKCH, MPEG1 and LMO2. The 9‑gene signature was used, combined with clinical parameters, to ft a multivariable Cox model to the training cohort (concordance index, ci 0.85), which was successfully validated (ci 0.86 for internal cohort; ci 0.78 for in silico cohort). The signature showed= improved performance compared with= clinical parameters alone (ci= 0.70). -
Characterization of the Human CIDEA Promoter in Fat Cells
International Journal of Obesity (2008) 32, 1380–1387 & 2008 Macmillan Publishers Limited All rights reserved 0307-0565/08 $32.00 www.nature.com/ijo ORIGINAL ARTICLE Characterization of the human CIDEA promoter in fat cells AT Pettersson1, J Laurencikiene1, EA Nordstro¨m1, BM Stenson1, V van Harmelen1, C Murphy2, I Dahlman1 and M Ryde´n1 1Department of Medicine, Huddinge, Lipid Laboratory, Novum, Karolinska Institutet, Stockholm, Sweden and 2Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. Background: Cell death-inducing DFFA (DNA fragmentation factor-a)-like effector A (CIDEA) is a protein that regulates lipolysis in human adipocytes through cross-talk involving tumor necrosis factor-a (TNF-a). TNF-a downregulates CIDEA mRNA although it is unclear whether this is mediated through transcriptional or post-transcriptional mechanisms. CIDEA has important metabolic effects in human fat cells and genetic variations in the human CIDEA gene have been correlated to the development of obesity. However, little is known about the factors regulating CIDEA expression in human adipocytes. We set out to describe the transcriptional control of human CIDEA. Methods: A 1.1-kb genomic fragment upstream of the transcriptional start site (TSS) of human CIDEA was cloned and deletion fragments were generated. Transcriptional activity of the promoter was analyzed by luciferase reporter assays in in vitro- differentiated human adipocytes. The effect of TNF-a was assessed in human adipocytes and murine 3T3-L1 cells transfected with deletion fragments of the CIDEA promoter. Protein–DNA interactions were analyzed by electrophoretic mobility shift assays (EMSA). Results: Basal transcriptional activity was found in a 97-bp region upstream of the TSS. -
Anti-CIDE a Antibody [V62P1E3*B10] (ARG10830)
Product datasheet [email protected] ARG10830 Package: 100 μg anti-CIDE A antibody [V62P1E3*B10] Store at: -20°C Summary Product Description Mouse Monoclonal antibody recognizes CIDE A Tested Reactivity Hu Tested Application IHC-P, WB Host Mouse Clonality Monoclonal Clone V62P1E3*B10 Isotype IgG1, kappa Target Name CIDE A Antigen Species Human Immunogen Ovalbumin-conjugated synthetic peptide. (QAKGRFTCG) Conjugation Un-conjugated Alternate Names CIDE-A; Cell death-inducing DFFA-like effector A; Cell death activator CIDE-A Application Instructions Application table Application Dilution IHC-P Assay-dependent WB Assay-dependent Application Note Antigen Retrieval: Boil tissue section for 10 - 20 min at 800 - 950W microwave with 10 mM Citrate buffer or Sodium citrate buffer (pH 6.0). * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 25 kDa Properties Form Liquid Purification Affinity purification with immunogen. Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation www.arigobio.com 1/3 Gene Symbol CIDEA Gene Full Name cell death-inducing DFFA-like effector a Background This gene encodes the homolog of the mouse protein Cidea that has been shown to activate apoptosis. This activation of apoptosis is inhibited by the DNA fragmentation factor DFF45 but not by caspase inhibitors. -
MMRN1 Antibody (Monoclonal) (M02) Mouse Monoclonal Antibody Raised Against a Partial Recombinant MMRN1
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 MMRN1 Antibody (monoclonal) (M02) Mouse monoclonal antibody raised against a partial recombinant MMRN1. Catalog # AT2883a Specification MMRN1 Antibody (monoclonal) (M02) - Product Information Application WB, E Primary Accession Q13201 Other Accession NM_007351 Reactivity Human Host mouse Clonality Monoclonal Isotype IgG2b Kappa Calculated MW 138110 MMRN1 Antibody (monoclonal) (M02) - Additional Information Antibody Reactive Against Recombinant Protein.Western Blot detection against Gene ID 22915 Immunogen (36.74 KDa) . Other Names Multimerin-1, EMILIN-4, Elastin microfibril interface located protein 4, Elastin microfibril interfacer 4, Endothelial cell multimerin, Platelet glycoprotein Ia*, 155 kDa platelet multimerin, p-155, p155, MMRN1, ECM, EMILIN4, GPIA*, MMRN Target/Specificity MMRN1 (NP_031377, 291 a.a. ~ 390 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Detection limit for recombinant GST tagged MMRN1 is approximately 0.1ng/ml as a Dilution capture antibody. WB~~1:500~1000 Format MMRN1 Antibody (monoclonal) (M02) - Clear, colorless solution in phosphate Background buffered saline, pH 7.2 . Multimerin is a massive, soluble protein found Storage in platelets and in the endothelium of blood Store at -20°C or lower. Aliquot to avoid vessels. It is comprised of subunits linked by repeated freezing and thawing. interchain disulfide bonds to form large, variably sized homomultimers. Multimerin is a Precautions factor V/Va-binding protein and may function MMRN1 Antibody (monoclonal) (M02) is for as a carrier protein for platelet factor V. It may research use only and not for use in also have functions as an extracellular matrix diagnostic or therapeutic procedures. -
Download Download
Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/) -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Anti-HIST1H1E K51ac Antibody
FOR RESEARCH USE ONLY! 02/20 Anti-HIST1H1E K51ac Antibody CATALOG NO.: A2051-100 (100 µl) BACKGROUND DESCRIPTION: Histones are basic nuclear proteins responsible for nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H1 family. Transcripts from this gene lack poly A tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6. Histone H1.4 (Histone H1b) (Histone H1s-4), HIST1H1E, H1F4 ALTERNATE NAMES: ANTIBODY TYPE: Polyclonal HOST/ISOTYPE: Rabbit / IgG IMMUNOGEN: Acetylated peptide sequence targeting residues around Lysine 51 of human Histone H1.4 PURIFICATION: Antigen Affinity purified FORM: Liquid FORMULATION: In 0.01 M PBS, pH 7.4, 50% Glycerol, 0.03% proclin 300 SPECIES REACTIVITY: Human STORAGE CONDITIONS: Store at -20ºC. Avoid freeze / thaw cycles. APPLICATIONS AND USAGE: ICC 1:20-1:200, IF 1:50-1:200 This information is only intended as a guide. The optimal dilutions must be determined by the user Immunocytochemistry analysis of HeLa cells using Anti-HIST1H1E K51ac antibody at dilution of 1:100. Immunofluorescent analysis of HeLa cells (treated with sodium butyrate, 30 mM, 4 hrs) using Anti-HIST1H1E K51ac antibody at dilution of 1:100 and Alexa Fluor 488-conjugated Goat Anti-Rabbit IgG (H+L) as secondary antibody. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .