High-Performance Implementation of Algorithms on Reconfigurable Hardware

Total Page:16

File Type:pdf, Size:1020Kb

High-Performance Implementation of Algorithms on Reconfigurable Hardware High-Performance Implementation of Algorithms on Reconfigurable Hardware Doctoral Dissertation Christos Gentsos, M.Sc. Aristotle University of Thessaloniki Faculty of Science School of Physics July, 2018 Υψηλών Επιδόσεων Υλοποίηση Αλγορίθμων σε Επαναδιαρθρώσιμο Υλικό Διδακτορική Διατριβή Χρίστος Γέντσος, M.Sc. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ιούλιος, 2018 Copyright 2018 © Christos Gentsos Aristotle University of Thessaloniki This thesis must be used only under the normal conditions of scholarly fair dealingfor purposes of research, criticism or review. In particular no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or in part without the written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis. Επταμελής Εξεταστική Επιτροπή: ,+ Νικολαΐδης Σπυρίδων∗ καθηγητής ΑΠΘ Αναγνωστόπουλος Αντώνιος+ Θεοδωρίδης Γεώργιος+ καθηγητής επίκουρος καθηγητής ΑΠΘ Πανεπιστήμιο Πατρών Σίσκος Στυλιανός Χατζόπουλος Αλκιβιάδης καθηγητής καθηγητής ΑΠΘ ΑΠΘ Κορδάς Κωνσταντίνος Σιώζιος Κωνσταντίνος επίκουρος καθηγητής επίκουρος καθηγητής ΑΠΘ ΑΠΘ : Επιβλέπων ∗ +: Μέλος τριμελούς συμβουλευτικής επιτροπής Dedicated to my wife Daphne, my parents Dimitrios and Eleni Abstract This work is concerned with the design of high-performance digital circuits onField- Programmable Gate Array (FPGA) devices. These are generic devices, offering reconfig- urable hardware units for digital circuits to be loaded on, and their applications range from the Automotive to the Aerospace sector. The work for this dissertation is two-fold and was motivated by practical problems, in the domains of Molecular Diagnostics and High Energy Physics, calling for high-performance implementations of a number of algorithms that map very well to FPGAs. As such, it is arranged in two main parts, one for each application. The first application calls for a novel implementation of the Canny edge detection algorithm for a real-time machine vision system that powers a microfluidic Lab-on-a- Chip demonstrator. The Canny edge detector algorithm is widely popular, having been designed with the objectives of minimizing the error rate and improving the localization of the identified edges. It is comprised of individual processing steps; two of them, the Gaussian smoothing and the Sobel edge detector, are also widely used independently, as image processing filters. This novel architecture incorporates various methods and well-researched approximations to optimize for performance but the main feature that stands out is the strong exploitation of the parallelism capabilities provided by modern FPGAs. The architecture is pipelined in both cycle level and block level. The simultaneous exploitation of parallelism and pipelining results in a very efficient design that computes four pixels per clock cycle while maintaining a very high operating frequency. At the same time, the memory requirements remain constant with respect to a design that does not apply any pixel computation parallelism, while reducing memory read accesses. The performance achieved by this implementation ranges from 800 Mpixel/s to 1900 Mpixel/s, depending on the FPGA device used. As a specific example, this translates to a computation time of 1.5 ms for a 1.2 Mpixel grayscale image on a Spartan-6 FPGA. To the best of the author’s knowledge, this implementation outperforms existing solutions; furthermore, the performance exceeds the system requirements, allowing even high- resolution images to be used in the real-time system. Performance and resource utilization i ii ABSTRACT figures are presented for each component of the implementation, with differences between successive FPGA families briefly discussed; Finally, the integration of the machine vision implementation into an IP core to be used as a drop-in subsystem in the full design is also presented for completeness. The second application involves the redesign of various algorithms used in theFast TracKer (FTK) project. To perform real-time reconstruction of the trajectories of the particles resulting from collisions inside the ATLAS detector out of the traces they leave on the silicon detector layers, a system comprising a few thousands of FPGAs and custom Application-Specific Integrated Circuits (ASICs) has been realized. The ASICs implement massively parallel comparison operations to perform low-latency pattern matching, each one able to perform 64 G comparisons per second. The FPGAs handle a wide range of tasks, from complex data-moving operations that facilitate pattern matching to high-performance mathematical operations to manipulate the hit coordinates and eventually compute the track parameters. Novel implementations of key components of this system, namely the Data Organizer (DO), the Combiner, and the Track Fitter (TF) have been designed, in order to cope with the higher data rates of future scheduled detector upgrades and lift certain limitations of the existing implementations. The objective is to facilitate the construction of a system based on the principles of FTK for other, even more demanding applications. The DO functions as the bridge between the pattern matching step, performed in low-resolution, and the generation of full-resolution hit combinations that form potential tracks to be used in the track fitting step. Each full- resolution hit is stored based on a low-resolution identifier, and can be retrieved based on it. The operating principle is based on a novel, fast FPGA implementation ofan instantly-erasable array of linked lists with support for features of the AM ASICs, such as variable-size patterns and missing layers introducing extra layers of complexity tothe architecture. The final implementation supports an operating frequency of upwards of 400 MHz, greatly surpassing the specification targets. Advanced design methods, such as the automated generation of Look-up Table (LUT) instantiation code, and interleaving reading loops with initiation interval greater than one, such that one memory read port can form more than one individual read channels, were introduced and applied to achieve that performance. The next component, the Combiner, is given a set of hits foreach detector layer; its function is to form all the track-forming combinations out of these hit sets. This design is simpler than the DO; nevertheless, it still outperforms previous designs and it connects the DO to the final component of this track reconstruction chain, the TF. The latter component performs the track fitting operation by implementing fast scalar products with columns of pre-computed matrices. The goal was to design a flexible iii novel architecture, optimized to strike a balance between low latency and resource usage while maintaining an operating frequency that approaches the device limits. An architecture involving systolic arrays of registers, hardened Digital Signal Processing (DSP) blocks provided by modern FPGAs, and their dedicated interconnects, was devised. Combining the principles of parallelism and pipelining, one full track can be processed per clock cycle; by also taking physical layout considerations into account early in the design phase, these clock cycles are short, as an implementation that reaches a frequency of 600 MHz was obtained. Furthermore, advanced methodologies were employed for the verification of these components, and a novel method was devised to utilize the same high-level testbench to verify correct operation in both the Register Transfer Level simulation, and the actual implemented design while it is running on the FPGA. Finally, two demonstrators that make use of these implementations are presented; one ad-hoc demonstrator based on an evaluation board, and a research proposal that offers track reconstruction at the Level-1 track trigger for the 2025 HL-LHC CMS detector upgrade. The compromises and approximations made in the algorithms and their justifica- tion; the strategies and methodologies employed, or devised, in order to derive these implementations; and area, power, and performance metrics of the resulting designs, are described in detail over the subsequent chapters. Περίληψη Το πόνημα που ακολουθεί αφορά τον σχεδιασμό ψηφιακών κυκλωμάτων υψηλών επιδό- σεων σε συσκευές «προγραμματιζόμενες-στο-πεδίο διατάξεις πυλών» (FPGA). Αυτές είναι συσκευές γενικής χρήσης που προσφέρουν μονάδες επαναδιαρθρώσιμου υλικού για την υλοποίηση ψηφιακών κυκλωμάτων και βρίσκουν εφαρμογή σε μία σειρά τομέων, από την αυτοκινητοβιομηχανία μέχρι την αεροναυπηγική. Η δουλειά που παρουσιά- ζεται σε αυτήν τη διατριβή αφορά δύο κύριες εφαρμογές που προκύπτουν από τους τομείς της Μοριακής Διαγνωστικής και της Φυσικής Υψηλών Ενεργειών. Κίνητρο για την πραγματοποίησή της αποτέλεσαν υπάρχοντα προβλήματα στους παραπάνω το- μείς, όπου παρουσιάζονται απαιτήσεις για υψηλών επιδόσεων υλοποιήσεις διαφόρων αλγορίθμων. Ο χαρακτήρας των εφαρμογών κάνει τις συσκευές FPGA να αποτελούν ιδανική πλατφόρμα για τις εν λόγω υλοποιήσεις. Ως αποτέλεσμα των παραπάνω, η διατριβή είναι οργανωμένη σε δύο κύρια μέρη, ένα για την κάθε εφαρμογή. Η πρώτη εφαρμογή απαιτεί την ανάπτυξη μιας πρωτότυπης υλοποίησης ενός αλ- γόριθμου ανίχνευσης ακμών, ονόματι Canny, για ένα σύστημα πραγματικού χρόνου που αποτελεί τη βάση ενός συστήματος επίδειξης για μικρορροϊκό εργαστήριο-σε-τσιπ. Ο αλγόριθμος ανίχνευσης ακμών Canny είναι αρκετά δημοφιλής και έχει σχεδιαστεί με στόχο την ελαχιστοποίηση των σφαλμάτων και τη βελτιστοποίηση του εντοπισμού
Recommended publications
  • EP Activity Report 2014
    EUROPRACTICE IC SERVICE THE RIGHT COCKTAIL OF ASIC SERVICES EUROPRACTICE IC SERVICE OFFERS YOU A PROVEN ROUTE TO ASICS THAT FEATURES: • Low-cost ASIC prototyping • Flexible access to silicon capacity for small and medium volume production quantities • Partnerships with leading world-class foundries, assembly and testhouses • Wide choice of IC technologies • Distribution and full support of high-quality cell libraries and design kits for the most popular CAD tools • RTL-to-Layout service for deep-submicron technologies • Front-end ASIC design through Alliance Partners Industry is rapidly discovering the benefits of using the EUROPRACTICE IC service to help bring new product designs to market quickly and cost-effectively. The EUROPRACTICE ASIC route supports especially those companies who don’t need always the full range of services or high production volumes. Those companies will gain from the flexible access to silicon prototype and production capacity at leading foundries, design services, high quality support and manufacturing expertise that includes IC manufacturing, packaging and test. This you can get all from EUROPRACTICE IC service, a service that is already established for 20 years in the market. THE EUROPRACTICE IC SERVICES ARE OFFERED BY THE FOLLOWING CENTERS: • imec, Leuven (Belgium) • Fraunhofer-Institut fuer Integrierte Schaltungen (Fraunhofer IIS), Erlangen (Germany) This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement N° 610018. This funding is exclusively used to support European universities and research laboratories. By courtesy of imec FOREWORD Dear EUROPRACTICE customers, Time goes on. A year passes very quickly and when we look around us we see a tremendous rapidly changing world.
    [Show full text]
  • MACABEL ABEL for the APPLE MACINTOSH Nor IIX WORKSTATION A/UX VERSION
    SPECIFICATIONS MACABEL ABEL FOR THE APPLE MACINTOSH nOR IIX WORKSTATION A/UX VERSION GENERAL DESCRIPTION ABEL.'" the industry standard PLD design software, is now available on the Apple Macintosh® II or IIx workstation. MacABEL allows you to take advantage of the personal productivity features of the Macintosh to easily describe and implement logic designs in programmable logic devices (PLDs) and PROMs. Like ABEL Version 3.0 for other popular workstations, MacABEL combines a natural high-level design language with a language processor that converts logic descriptions to programmer load files. These files contain the required information to program and test PLDs. MacABEL allows you to describe your design in any combi­ nation of Boolean equations, truth tables or state diagrams­ whichever best suits the logic you are describing or your comfort level. Meaningful names can be assigned to signals; signals grouped into sets; and macros used to simplify logic descriptions - making your logic design easy to read and • Boolean equations understand. • State machine diagram entry, using IF-THEN-ELSE, CASE, In addition, the software's language processor provides GOTQ and WITH-ENDWITH statements powerful logic reduction, extensive syntax and logic error • Truth tables to specify input to output relationships for both checking - before your device is programmed. MacABEL combinatorial and registered outputs supports the most powerful and innovative complex PLDs just • High-level equation entry, incorporating the boolean introduced on the market, as well as many still in development. operators used in most logic designs < 1 1 & 1 # 1 $ 1 1 $ ) , MacABEL runs under the Apple A/UX'" operating system arithmetic operators <- I + I * I I I %I < < I > > ) , relational utilizing the Macintosh user interface.
    [Show full text]
  • I/O Design and Core Power Management Issues in Heterogeneous Multi/Many-Core System-On-Chip
    UNIVERSITY OF CALIFORNIA, IRVINE I/O Design and Core Power Management Issues in Heterogeneous Multi/Many-Core System-on-Chip DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Myoung-Seo Kim Dissertation Committee: Professor Jean-Luc Gaudiot, Chair Professor Alexandru Nicolau, Co-Chair Professor Alexander Veidenbaum 2016 c 2016 Myoung-Seo Kim DEDICATION To my father and mother, Youngkyu Kim and Heesook Park ii TABLE OF CONTENTS Page LIST OF FIGURES vi LIST OF TABLES viii ACKNOWLEDGMENTS ix CURRICULUM VITAE x ABSTRACT OF THE DISSERTATION xv I DESIGN AUTOMATION FOR CONFIGURABLE I/O INTERFACE CONTROL BLOCK 1 1 Introduction 2 2 Related Work 4 3 Structure of Generic Pin Control Block 6 4 Specification with Formalized Text 9 4.1 Formalized Text . 9 4.2 Specific Functional Requirement . 11 4.3 Composition of Registers . 11 5 Experiment Results 18 6 Conclusions 24 II SPEED UP MODEL BY OVERHEAD OF DATA PREPARATION 26 7 Introduction 27 8 Reconsidering Speedup Model by Overhead of Data Preparation (ODP) 29 iii 9 Case Studies of Our Enhanced Amdahl's Law Speedup Model 33 9.1 Homogeneous Symmetric Multicore . 33 9.2 Homogeneous Asymmetric Multicore . 35 9.3 Homogeneous Dynamic Multicore . 36 9.4 Heterogeneous CPU-GPU Multicore . 39 9.5 Heterogeneous Dynamic CPU-GPU Multicore . 41 10 Conclusions 43 III EFFICIENT CORE POWER CONTROL SCHEME 44 11 Introduction 45 12 Related Work 47 13 Architecture 51 13.1 Heterogeneous Many-Core System . 51 13.2 Discrete L2 Cache Memory Model . 52 14 3-Bit Power Control Scheme 55 14.1 Active Status .
    [Show full text]
  • CHAPTER 3: Combinational Logic Design with Plds
    CHAPTER 3: Combinational Logic Design with PLDs LSI chips that can be programmed to perform a specific function have largely supplanted discrete SSI and MSI chips in board-level designs. A programmable logic device (PLD), is an LSI chip that contains a “regular” circuit structure, but that allows the designer to customize it for a specific application. PLDs sold in the market is not customized with specific functions. Instead, it is programmed by the purchaser to perform a function required by a particular application. PLD-based board-level designs often cost less than SSI/MSI designs for a number of reasons. Since PLDs provide more functionality per chip, the total chip and printed- circuit-board (PCB) area are less. Manufacturing costs are reduced in other ways too. A PLD-based board manufacturer needs to keep samples of few, “generic” PLD types, instead of many different MSI part types. This reduces overall inventory requirements and simplifies handling. PLD-type structures also appear as logic elements embedded in LSI chips, where chip count and board areas are not an issue. Despite the fact that a PLD may “waste” a certain number of gates, a PLD structure can actually reduce circuit cost because its “regular” physical structure may use less chip area than a “random logic” circuit. More importantly, the logic function performed by the PLD structure can often be “tweaked” in successive chip revisions by changing just one or a few metal mask layers that define signal connections in the array, instead of requiring a wholesale addition of gates and gate inputs and subsequent re-layout of a “random logic” design.
    [Show full text]
  • EP Activity Report 2015
    EUROPRACTICE IC SERVICE THE RIGHT COCKTAIL OF ASIC SERVICES EUROPRACTICE IC SERVICE OFFERS YOU A PROVEN ROUTE TO ASICS THAT FEATURES: · .QYEQUV#5+%RTQVQV[RKPI · (NGZKDNGCEEGUUVQUKNKEQPECRCEKV[HQTUOCNNCPFOGFKWOXQNWOGRTQFWEVKQPSWCPVKVKGU · 2CTVPGTUJKRUYKVJNGCFKPIYQTNFENCUUHQWPFTKGUCUUGODN[CPFVGUVJQWUGU · 9KFGEJQKEGQH+%VGEJPQNQIKGU · &KUVTKDWVKQPCPFHWNNUWRRQTVQHJKIJSWCNKV[EGNNNKDTCTKGUCPFFGUKIPMKVUHQTVJGOQUVRQRWNCT%#&VQQNU · 46.VQ.C[QWVUGTXKEGHQTFGGRUWDOKETQPVGEJPQNQIKGU · (TQPVGPF#5+%FGUKIPVJTQWIJ#NNKCPEG2CTVPGTU +PFWUVT[KUTCRKFN[FKUEQXGTKPIVJGDGPG«VUQHWUKPIVJG'74124#%6+%'+%UGTXKEGVQJGNRDTKPIPGYRTQFWEVFGUKIPUVQOCTMGV SWKEMN[CPFEQUVGHHGEVKXGN[6JG'74124#%6+%'#5+%TQWVGUWRRQTVUGURGEKCNN[VJQUGEQORCPKGUYJQFQP°VPGGFCNYC[UVJG HWNNTCPIGQHUGTXKEGUQTJKIJRTQFWEVKQPXQNWOGU6JQUGEQORCPKGUYKNNICKPHTQOVJG¬GZKDNGCEEGUUVQUKNKEQPRTQVQV[RGCPF RTQFWEVKQPECRCEKV[CVNGCFKPIHQWPFTKGUFGUKIPUGTXKEGUJKIJSWCNKV[UWRRQTVCPFOCPWHCEVWTKPIGZRGTVKUGVJCVKPENWFGU+% OCPWHCEVWTKPIRCEMCIKPICPFVGUV6JKU[QWECPIGVCNNHTQO'74124#%6+%'+%UGTXKEGCUGTXKEGVJCVKUCNTGCF[GUVCDNKUJGF HQT[GCTUKPVJGOCTMGV THE EUROPRACTICE IC SERVICES ARE OFFERED BY THE FOLLOWING CENTERS: · KOGE.GWXGP $GNIKWO · (TCWPJQHGT+PUVKVWVHWGT+PVGITKGTVG5EJCNVWPIGP (TCWPJQHGT++5 'TNCPIGP )GTOCP[ This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement N° 610018. This funding is exclusively used to support European universities and research laboratories. © imec FOREWORD Dear EUROPRACTICE customers, We are at the start of the
    [Show full text]
  • Concepmon ( G ~ E Janvier
    CONCEPMONET MISE EN CE= D'UN SYST~MEDE RECONFIOURATION DYNAMIQUE PRESENTE EN VUE DE L'OBTENTION DU DIP~MEDE WSERs SCIENCES APPLIQUEES (G~EÉLE~QUE) JANVIER2000 OCynthia Cousineau, 2000. National Library Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, rue Wellington OttawaON K1AON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts f?om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Ce mémoire intitulé: CONCEFMONET MISE EN OEWRE D'UN SYST&MEDE RECONFIGURATION DYNAMIQUE présenté par : COUSINEAU Cvnthia en vue de l'obtention du diplôme de : Maîtrise ès sciences amliauees a été dûment accepté par le jury d'examen constitué de: M. BOIS GUY, Ph.D., président M. SAVARIA Yvon, Ph.D., membre et directeur de recherche M. SAWAN Mohamad , Ph.D., membre et codirecteur de recherche M.
    [Show full text]
  • Review of FPD's Languages, Compilers, Interpreters and Tools
    ISSN 2394-7314 International Journal of Novel Research in Computer Science and Software Engineering Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com Review of FPD'S Languages, Compilers, Interpreters and Tools 1Amr Rashed, 2Bedir Yousif, 3Ahmed Shaban Samra 1Higher studies Deanship, Taif university, Taif, Saudi Arabia 2Communication and Electronics Department, Faculty of engineering, Kafrelsheikh University, Egypt 3Communication and Electronics Department, Faculty of engineering, Mansoura University, Egypt Abstract: FPGAs have achieved quick acceptance, spread and growth over the past years because they can be applied to a variety of applications. Some of these applications includes: random logic, bioinformatics, video and image processing, device controllers, communication encoding, modulation, and filtering, limited size systems with RAM blocks, and many more. For example, for video and image processing application it is very difficult and time consuming to use traditional HDL languages, so it’s obligatory to search for other efficient, synthesis tools to implement your design. The question is what is the best comparable language or tool to implement desired application. Also this research is very helpful for language developers to know strength points, weakness points, ease of use and efficiency of each tool or language. This research faced many challenges one of them is that there is no complete reference of all FPGA languages and tools, also available references and guides are few and almost not good. Searching for a simple example to learn some of these tools or languages would be a time consuming. This paper represents a review study or guide of almost all PLD's languages, interpreters and tools that can be used for programming, simulating and synthesizing PLD's for analog, digital & mixed signals and systems supported with simple examples.
    [Show full text]
  • Hardware Acceleration for General Game Playing Using FPGA
    Hardware acceleration for General Game Playing using FPGA (Sprzętowe przyspieszanie General Game Playing przy użyciu FPGA) Cezary Siwek Praca magisterska Promotor: dr Jakub Kowalski Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Informatyki 3 lutego 2020 Abstract Writing game agents has always been an important field of Artificial Intelligence research. However, the most successful agents for particular games (like chess) heavily utilize hard- coded human knowledge about the game (like chess openings, optimal search strategies, and heuristic game state evaluation functions). This knowledge can be hardcoded so deeply, that the agent’s architecture or other significant components are completely unreusable in the context of other games. To encourage research in (and to measure the quality of) the general solutions to game- agent related problems, the General Game Playing (GGP) discipline was proposed. In GGP, an agent is expected to accept any game rules expressible by a formal language and learn to play it by itself. The most common example of the GGP domain is Stanford General Game Playing. It uses Game Description Language (GDL) based on the first order logic for expressing game rules. One popular approach to GGP player construction is the Monte Carlo Tree Search (MCTS) algorithm, which utilizes the random game playouts (game simulations with random moves) to heuristically estimate the value of game state favourness for a given player. As in any other Monte Carlo method, high number of random samples (game simulations in this case) has a crucial influence on the algorithm’s performance. The algorithm’s component responsible for game simulations is called a reasoner.
    [Show full text]
  • Dissertation Applications of Field Programmable Gate
    DISSERTATION APPLICATIONS OF FIELD PROGRAMMABLE GATE ARRAYS FOR ENGINE CONTROL Submitted by Matthew Viele Department of Mechanical Engineering In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2012 Doctoral Committee: Advisor: Bryan D. Willson Anthony J. Marchese Robert N. Meroney Wade O. Troxell ABSTRACT APPLICATIONS OF FIELD PROGRAMMABLE GATE ARRAYS FOR ENGINE CONTROL Automotive engine control is becoming increasingly complex due to the drivers of emissions, fuel economy, and fault detection. Research in to new engine concepts is often limited by the ability to control combustion. Traditional engine-targeted micro controllers have proven difficult for the typical engine researchers to use and inflexible for advanced concept engines. With the advent of Field Programmable Gate Array (FPGA) based engine control system, many of these impediments to research have been lowered. This dissertation will talk about three stages of FPGA engine controller appli- cation. The most basic and widely distributed is the FPGA as an I/O coprocessor, tracking engine position and performing other timing critical low-level tasks. A later application of FPGAs is the use of microsecond loop rates to introduce feedback con- trol on the crank angle degree level. Lastly, the development of custom real-time computing machines to tackle complex engine control problems is presented. This document is a collection of papers and patents that pertain to the use of FPGAs for the above tasks. Each task is prefixed with a prologue section to give the history of the topic and context of the paper in the larger scope of FPGA based engine control.
    [Show full text]
  • MACHXL Software User's Guide
    MACHXL Software User's Guide © 1993 Advanced Micro Devices, Inc. TEL: 408-732-2400 P.O. Box 3453 TWX: 910339-9280 Sunnyvale, CA 94088 TELEX: 34-6306 TOLL FREE: 800-538-8450 APPLICATIONS HOTLINE: 800-222-9323 (US) 44-(0)-256-811101 (UK) 0590-8621 (France) 0130-813875 (Germany) 1678-77224 (Italy) Advanced Micro Devices reserves the right to make changes in specifications at any time and without notice. The information furnished by Advanced Micro Devices is believed to be accurate and reliable. However, no responsibility is assumed by Advanced Micro Devices for its use, nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or patent rights of Advanced Micro Devices. Epson® is a registered trademark of Epson America, Inc. Hewlett-Packard®, HP®, and LaserJet® are registered trademarks of Hewlett-Packard Company. IBM® is a registered trademark and IBM PCä is a trademark of International Business Machines Corporation. Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation. PAL® and PALASM® are registered trademarks and MACHä and MACHXL ä are trademarks of Advanced Micro Devices, Inc. Pentiumä is a trademark of Intel Corporation. Wordstar® is a registered trademark of MicroPro International Corporation. Document revision 1.2 Published October, 1994. Printed inU.S.A. ii Contents Chapter 1. Installation Hardware Requirements 2 Software Requirements 3 Installation Procedure 4 Updating System Files 6 AUTOEXEC.BAT 7 CONFIG.SYS 7 Creating a Windows Icon
    [Show full text]
  • Area Optimized Solution for Structured Asic Dynamic Reconfigurable Pla
    ____________________________________________________________Annals of the University of Craiova, Electrical Engineering series, No. 34, 2010; ISSN 1842-4805 AREA OPTIMIZED SOLUTION FOR STRUCTURED ASIC DYNAMIC RECONFIGURABLE PLA Traian TULBURE Dept. of Electronic and Computers, “Transilvania” University of Brasov, Romania E-mail: [email protected] Abstract This paper proposes a new area optimized power consumption performance and density, low architecture for dynamic reconfigurable logic array up-front development cost, simple, FPGA-like design with implementation on structured ASIC. flow and device turnaround in only few weeks. Reconfigurable architectures allow the dynamic reuse Selected Structured ASIC (eASIC) has look-up table of the logic blocks by having more than one on-chip based logic cells while routing is fixed using single SRAM bit controlling them. Thus, rather than the time needed to reprogram the function of the device from via metallization layer. Nowadays, the concept of external memory which is the order of milliseconds reprogramming for structured ASIC means only logic block functions can be changed by reading a changing the functions implemented by the LUTs. different SRAM bit which only takes time of order of There is no way to modify the structure because the nanoseconds. logic cell configuration and connections cannot be Programmable Logic Array (PLA) structures can be modified in time so very small changes can be made implemented on Structured ASIC technology to after the design has been manufactured. eliminate the constraint given by fixed wire routing. Programmable logic structures (PAL, PLA) can be Adding dynamic reprogramming to the structure generated with dedicated tools for structured ASIC implies adding a big distributed memory that affects both array utilization and device performance.
    [Show full text]
  • Legal Notice
    Altera Digital Library September 1996 P-CD-ADL-01 Legal Notice This CD contains documentation and other information related to products and services of Altera Corporation (“Altera”) which is provided as a courtesy to Altera’s customers and potential customers. By copying or using any information contained on this CD, you agree to be bound by the terms and conditions described in this Legal Notice. The documentation, software, and other materials contained on this CD are owned and copyrighted by Altera and its licensors. Copyright © 1994, 1995, 1996 Altera Corporation, 2610 Orchard Parkway, San Jose, California 95134, USA and its licensors. All rights reserved. You are licensed to download and copy documentation and other information from this CD provided you agree to the following terms and conditions: (1) You may use the materials for informational purposes only. (2) You may not alter or modify the materials in any way. (3) You may not use any graphics separate from any accompanying text. (4) You may distribute copies of the documentation available on this CD only to customers and potential customers of Altera products. However, you may not charge them for such use. Any other distribution to third parties is prohibited unless you obtain the prior written consent of Altera. (5) You may not use the materials in any way that may be adverse to Altera’s interests. (6) All copies of materials that you copy from this CD must include a copy of this Legal Notice. Altera, MAX, MAX+PLUS, FLEX, FLEX 10K, FLEX 8000, FLEX 8000A, MAX 9000, MAX 7000,
    [Show full text]