Eucheuma Spp

Total Page:16

File Type:pdf, Size:1020Kb

Eucheuma Spp Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Cultured Aquatic Species Information Programme Eucheuma spp I. Identity V. Status And Trends a. Biological Features VI. Main Issues II. Profile a. Responsible Aquaculture Practices a. Historical Background VII. References b. Main Producer Countries a. Related Links c. Habitat And Biology III. Production a. Production Cycle b. Production Systems c. Diseases And Control Measures IV. Statistics a. Production Statistics b. Market And Trade Identity Eucheuma spp [Solieriaceae] FAO Names: En - Eucheuma seaweeds nei, Fr - , Es - Biological features Habit variable, thallus sometimes tall and loosely branched with few blunt or pointed determinate branchlets, sometimes densely branched with many coarse spinose branchlets. Branchlets irregularly arranged on main indeterminate branches without forming whorls. Cross-section of branch shows medulla consisting of large rounded cells interspersed with small relatively thick walled cells. Profile Historical background In the 1960s an American seaweed processing company transferred its procurement of raw materials for the production of carrageenan from Indonesia to the Philippines. During its initial operations the company sourced FAO Fisheries and Aquaculture Department production of carrageenan from Indonesia to the Philippines. During its initial operations the company sourced its supply of raw materials by gathering/collecting the seaweeds from the reefs of islands in the Central Visayas. The unabated gathering of natural stocks resulted to depletion of the stocks towards the later part of the decade. The short supply of dried seaweeds for processing triggered research and development work on the culture of these species, the survey and assessment of coastal areas with potential for seaweed farming, and an inventory of the local varieties of these species for comparative growth studies and assessment of the quality of their colloidal products. The surveys for potential farming areas centered mainly on Western Mindanao and Central Visayas in the Philippines. Experimental culture was initiated in several sites which included Calatagan, Batangas, Ilin Island in Mindoro and in Danajon Reef, Northern Bohol. In early 1970, these efforts were extended to Sacol Island in the province of Zamboanga and in Tapaan Island lagoon in Siasi province of Sulu. The first commercial farm for Eucheuma/Kappaphycus was established in Tapaan Island in 1972. Meanwhile, test planting in Danajon Reef was also started resulting to the establishment of commercial farms by the Cebu-based seaweed processing companies in the mid 1970s where the two species were utilized as seedstocks. Due to increasing demand for the dried seaweeds in both local and international markets the farming of these seaweeds had expanded to Western Mindanao, Northern, Eastern and Southern Mindanao including the province of Palawan, as well as to Eastern Malaysia (Sabah and Sarawak) and Indonesia. Main producer countries The FAO statistics for these four groups of seaweeds (Kappaphycus alvarezii, Eucheuma cottonii, Eucheuma denticulatum and Eucheuma spp.) are combined within the map shown below. However, this does not present the whole story, since Indonesia, Malaysia, Solomon Islands and Fiji Islands are also producers but do not report them separately (see section on Production statistics below). Main producer countries of Eucheuma seaweeds nei (FAO Fishery Statistics, 2006) Habitat and biology These seaweeds are the most common and fast growing species in the Philippines and are found from just below the low tide mark to the upper subtidal zone of the reef, growing usually on sandy-corally to rocky substrata where water movement is slow to moderate. They grow by means of an apical meristem consisting of a group of actively dividing cells at the tip of the branches. They exhibit a triphasic life cycle, consisting of the gametophyte (n) (dioecious), carposporophyte (2n) and the sporophyte (2n). The fertilization of the egg in the carpogonium of the female gametophyte by the spermatium results in the production of the zygote, which in turn develops into the microscopic carposporophyte within the fertile structure called cystocarp in the female gametophyte. FAO Fisheries and Aquaculture Department The carpospores (2n) produced by the carposporophytes develop into the tetrasporophytes. Meiosis takes place in the tetrasporangia, resulting to the production of tetraspores (n) which in turn develop into the gametophytes. The gametophyte and the sporophyte are the large phases in the life cycle of this seaweed. The latter, however is the more robust of the two (2n). These seaweeds are characterized by their high vegetative regenerative capacities; these characteristics are used by farmers to their advantage. Production Production cycle Production cycle of Eucheuma spp. Production systems Seed supply Twelve varieties of K. alvarezii have been characterized based on their morphology, DNA fingerprints and growth performance during the different cropping seasons. The information derived from these studies is important and very relevant to the cropping management in farms where the farmers use several varieties as seedstocks. The present seedstocks are endemic in the Philippines. Supplies of seedstock are sourced from the wild and multiplied in a nursery plot. The original seedstock is washed clean of dirt and other contaminants and transported as quickly as possible to the nursery site in Styrofoam boxes with air holes in the top, without exposing it to sun and wind. The nursery-reared cuttings become the seedstock for the first grow-out. Subsequent supplies of seedstock are obtained from the first cropping, and so on. Ongrowing techniques The most important aspect in developing a potentially productive seaweed farm is site selection. The site must FAO Fisheries and Aquaculture Department be assessed to conform to the following criteria: Moderate water current and wave action to maintain high diffusion pressure which enhances the absorption of nutrients by the seaweed. -2 -1 Adequate but not excessive light; irradiance levels of 500-900 µEm S are optimum for both photosynthesis and pigment synthesis. Sufficient water depth; in shallow areas the seedstocks must not be exposed during low tides. The development of the floating farm support system has made farming in deep areas possible. When farming shallow areas the substratum must be dark, consisting of coarse sand to rocky-corally materials; substrata consisting of white fine sand must be avoided. Minimal presence of grazers, microorganisms, silt epiphytes and flotsam. Optimum temperature range 27-30 ºC. Salinity level of 30-35‰; brackish water areas should be avoided. The total grow-out period varies from 2-3 months after planting; thus, four cropping cycles are feasible within a year. Seedstocks are prepared by tying 50-100 g pieces of cuttings with soft plastic tying materials. The cuttings are tied at 20-25 cm intervals to the monolines in both the bottom monoline and the floating methods. Two main farming systems are presently used by farmers. These are the fixed off-bottom monoline and the floating methods. In each case farm maintenance consists primarily of weeding out epiphytes associated with the crop, cleaning the seaweed of silt and dirt, harvesting the poorly growing seedstocks and replacing them with fast growing ones, removing other species of seaweeds that grow in close association with the Eucheuma, replacing lost plants, repairing the farm support system and removing benthic grazers. Epiphytes and flotsam compete with seaweed for nutrients and energy from sunlight resulting in slow growth of the crop. The Fixed off-Bottom Monoline Method Construction of the farm support system starts with knocking holes in the substratum using a pointed iron bar and heavy bull hammer. Pointed wooden stakes are firmly driven into the holes in the substratum using a ball hammer. The stakes are arranged in rows at 1 m intervals, with the distance between rows being 10 m. A loop is made at one end of the monofilament line and is attached to a stake. The line is then stretched tightly and the other end tied to a stake in the next row. The distance of the lines from the ground is adjusted to the depth of the water during low tides so that the plants are not exposed to air and sun. The lines are generally positioned parallel to the direction of the current or waves. An additional support stake may be placed midway between the original rows of stakes to prevent the lines from sagging. Floating Methods These methods are used in deeper areas as well as in shallow areas that are characterized by weak water movement or where the bottom topography is irregular. Monolines In the raft method, the monolines are attached to a wooden or bamboo frame, the size of which varies depending on the available frame materials. The monolines are attached to the frame parallel to the length of the frame at 20-30 cm intervals. A 4 x 5 m raft unit may be planted with 350-400 cuttings. The units are anchored to the substrate from their corners, using nylon ropes. Floatation materials are attached to the corner of the rafts to increase their buoyancy. Floating longlines The floating longlines have two major variations – single and multiple. In the single variant, 100 m nylon ropes FAO Fisheries and Aquaculture Department (3-4 mm diameter) are used as main support lines, both ends of which are anchored to the substratum. The level of the lines in relation to the surface of the water column is determined by adjusting the length of the line of the floatation device. Single floating lines are distanced some 5-8 meters apart to avoid them from becoming entangled. Multiple long line units consist of 4-5 nylon lines (3-4 mm diameter), each of 20 m length or more. The ends of the lines are attached at 30 cm intervals to the main spacing supports, which consist of 3 to 4 cm thick hardwood. Depending on the length of the lines, one or more wood spacers are attached to the middle of the unit.
Recommended publications
  • Download Fulltext
    ISSN 2413-0877 Volume 1 (2015) The 1st International Symposium on Aquatic Product Processing 2013 PHYSIC AND CHEMICAL CHARACTERISTICS OF NATA DE SEAWEED FROM Eucheuma cottonii and Gracilaria sp. Max R. Wenno1)* Martha L. Wattimena1) Zulfikar A. Rumakey1) Johanna L. Thenu2) 1)Departement of Aquatic Product Technology, Faculty of Fishery and Marine Science, Pattimura University, Ambon. 2)Fishery Education and Trainning Center, Ambon ABSTRACT Seaweed (algae) is one of the potential export commodity to be developed. Kinds of seaweed that has a high economic value include: Rhodophyceae (red algae) as a produce of agar and carrageenan, Phaeophyceae (brown algae) as a produce of alginates. Seaweed potential of 1.2 million hectares, the potential production of dried seaweed on average 16 tons every year, however, seaweed explored just about two percent. This fact indicated that seaweed is one commodity that have the opportunity to developed, both in terms of aquaculture, biotechnology and processing. The aimed of this study was to determine the kinds of seaweed and the best ratio of filtrate and water, based on a physical test and determine the chemical composition of nata de seaweed. Keywords : Eucheuma cottonii, Gracilaria sp., nata de seaweed, physic and chemical characteristics INTRODUCTION Commercial seaweed that have high economic value in Indonesia are grouped into five there are Eucheuma, Hypnea, Gracilaria, Gelidium, and Sargassum (Anggadiredja et al. 2010). The large quantities in Moluccas is Eucheuma, Gracilaria and Hypnea usually used by local people for consumption as food, besides used for export commodity (Sutomo 2006 in Siahaya 2011). Low utilization of seaweed is one of the opportunities for the development of product diversification for example Nata de seaweed product.
    [Show full text]
  • Cruising Guide to the Philippines
    Cruising Guide to the Philippines For Yachtsmen By Conant M. Webb Draft of 06/16/09 Webb - Cruising Guide to the Phillippines Page 2 INTRODUCTION The Philippines is the second largest archipelago in the world after Indonesia, with around 7,000 islands. Relatively few yachts cruise here, but there seem to be more every year. In most areas it is still rare to run across another yacht. There are pristine coral reefs, turquoise bays and snug anchorages, as well as more metropolitan delights. The Filipino people are very friendly and sometimes embarrassingly hospitable. Their culture is a unique mixture of indigenous, Spanish, Asian and American. Philippine charts are inexpensive and reasonably good. English is widely (although not universally) spoken. The cost of living is very reasonable. This book is intended to meet the particular needs of the cruising yachtsman with a boat in the 10-20 meter range. It supplements (but is not intended to replace) conventional navigational materials, a discussion of which can be found below on page 16. I have tried to make this book accurate, but responsibility for the safety of your vessel and its crew must remain yours alone. CONVENTIONS IN THIS BOOK Coordinates are given for various features to help you find them on a chart, not for uncritical use with GPS. In most cases the position is approximate, and is only given to the nearest whole minute. Where coordinates are expressed more exactly, in decimal minutes or minutes and seconds, the relevant chart is mentioned or WGS 84 is the datum used. See the References section (page 157) for specific details of the chart edition used.
    [Show full text]
  • Caces-Borjap1977.Pdf (215.3Kb)
    Reference Oren, O. H. & Ravid, Rosa. 1969. Phosphate in Lake Kinnereth. Verh. Intern. Verein. Limnol., 17, Basu, A. K. 1965. Observation on the Probable Effects of 334-341. Pollution on the Primary Productivity of the Hooghly Prowse, G. A. 1964. Some Limnological Problem in and Mutlah Estuaries Hydrobiologia, 25, 302—316. Tropical Fish Ponds. Verh. Intern. Limnol., 15, Beeton, A. M. & Edmondson, W. T. 1972. The Eutrophi­ 480-484. cation Problem. J. Fish. Res. Bd., Can., 29, 673—682. Slak, E. B. 1972. Sewage and Aquacultural Production. Chan, George L. 1972. The Use of Pollutants for 15th Session IPFC Wellington. FAO Bangkok. Aquaculture — Conditioning of Wastes for Aquacul­ Watts J. C. D. 1965. The Chemical Analysis of Muds from ture. 15th Session IPFC Wellington. FAO Bangkok. the Pond Systems of the Tropical Fish Culture Re­ Jhingran, V. G. 1972. A critical appraisal of the water search Institute. TECRI, Malacca. Investigational Re­ pollution problem in India in relation to Aquaculture. port No. 3 15th Session IPFC Wellington. FAO Bangkok. SEAFDEC/SCS.73: S-30 The Seaweed Industry of the Philippines by Priscilla Caces-Borja Bureau of Fisheries Department of Agriculture and Natural Resources Republic of the Philippines INTRODUCTION growing demand for Gracillaria. Hence, studies are now Until 1966 the seaweed industry in the Philippines was being initiated on the culture of Gracilaria in addition to a negligible item in the country’s economy. Seaweeds were Eucheuma. mainly used locally. Only a few species were exported. COMMERCIAL USEFUL SEAWEED One of these was Digenea simplex a vermifuge source, There are many species of seaweed found in Philippines which used to be exported years ago but is now no longer waters owing to its warm seas and shallow areas.
    [Show full text]
  • Is the Red Alga Meristotheca Papulosa Annual? -Monitoring Of
    Aquacult. Sci. 67(1),49-56(2019) Is the red alga Meristotheca papulosa annual? - Monitoring of tagged thalli at Banda, Tateyama, Central Pacific coast of Japan- 1,* 1, 2 1 1 Boryuan CHEN , Shingo AKITA , Akito UEHARA and Daisuke FUJITA Abstract: Meristotheca papulosa is a commercially important red alga used for human consumption. It has been reported as an annual species in Kagoshima Prefecture but has been suggested to be perennial in Kochi Prefecture. In the present study, thalli were indirectly monitored at Banda, Chiba Prefecture. A caged culture and feeding test recording were also conducted. Among the nine thalli tagged in March or April 2016, three survived the winter but disappeared in July 2017. After reaching a maximum length in May, the thallus size decreased from June to November 2016. However, the thalli began to regrow in December 2016. Bite marks were common on the thalli; appearance of herbivorous fishes was recorded by the interval camera. An in-situ culture was conducted by transplanting six thalli each inside and outside of a cage from March to October 2016. After reaching the maximum weight in June, thalli located outside of the cage disappeared in July, but those located inside of the cage survived until September. Aplysia parvula, which was able to intrude the cage, were noted to be influential grazers on the thalli. These results suggest that M. papulosa is perennial but its longevity is affected by wave action and grazing. Key words: Meristotheca papulosa; Perennial; Caging; Grazer were Kagoshima Prefecture in Kyushu (250 to Introduction 300 tons/year) and Izu Islands on the central Pacific coast of Japan (200 to 300 tons/year) Meristotheca papulosa (Montagne) J.
    [Show full text]
  • SEAWEED in the TROPICAL SEASCAPE Stina Tano
    SEAWEED IN THE TROPICAL SEASCAPE Stina Tano Seaweed in the tropical seascape Importance, problems and potential Stina Tano ©Stina Tano, Stockholm University 2016 Cover photo: Eucheuma denticulatum and Ulva sp. All photos in the thesis by the author. ISBN 978-91-7649-396-0 Printed in Sweden by Holmbergs, Malmö 2016 Distributor: Department of Ecology, Environment and Plant Science To Johan I may not have gone where I intended to go, but I think I have ended up where I intended to be. Douglas Adams ABSTRACT The increasing demand for seaweed extracts has led to the introduction of non-native seaweeds for farming purposes in many tropical regions. Such intentional introductions can lead to spread of non-native seaweeds from farming areas, which can become established in and alter the dynamics of the recipient ecosystems. While tropical seaweeds are of great interest for aquaculture, and have received much attention as pests in the coral reef literature, little is known about the problems and potential of natural populations, or the role of natural seaweed beds in the tropical seascape. This thesis aims to investigate the spread of non-native genetic strains of the tropical macroalga Eucheuma denticulatum, which have been intentionally introduced for seaweed farming purposes in East Africa, and to evaluate the state of the genetically distinct but morphologically similar native populations. Additionally it aims to investigate the ecological role of seaweed beds in terms of the habitat utilization by fish and mobile invertebrate epifauna. The thesis also aims to evaluate the potential of native populations of eucheumoid seaweeds in regard to seaweed farming.
    [Show full text]
  • Adaptation and Foraging from the Terminal Pleistocene to the Early Holocene: Excavation at Bubog on Ilin Island, Philippines
    Adaptation and foraging from the Terminal Pleistocene to the Early Holocene: Excavation at Bubog on Ilin Island, Philippines Alfred F. Pawlik1, Philip J. Piper2, Marie Grace Pamela G. Faylona3, Sabino G. Padilla, Jr.{4, Jane Carlos1, Armand S. B. Mijares1, Benjamin Vallejo, Jr.1, Marian Reyes1, Noel Amano1, Thomas Ingicco1, Martin Porr5 1University of the Philippines Diliman, 2Australian National University, 3National Museum of the Philippines, 4University of the Philippines Manila, 5University of Western Australia The recently discovered human remains from Callao Cave, northern Luzon, Philippines securely date the migration of hominins into the Philippines to ca. 70 kya (thousands of years ago). The direct route to reach Luzon from the Asian mainland is via Borneo, Palawan, through Mindoro and into Luzon. Our research focuses on Mindoro Island as a potential stepping stone to the main Philippine Archipelago. While Palawan and Luzon have produced evidence for early human occupation, no systematic research on the prehistory of Mindoro has been conducted until now. We report on recent archaeological investigations at the Bubog rockshelter sites on the small island of Ilin just off the coast of Mindoro. The excavations produced evidence of stratified sequences of human habitation at the two rockshelter sites in the form of dense shell middens that date to ca. 11 kya onwards. They provide direct evidence on how variability in landscape formation, sea levels, and landmass during the terminal Pleistocene and early Holocene influenced the behavior of early human populations. Numerous species of molluscs were recorded and provisional results indicate variations in the invertebrate faunas throughout the stratigraphic sequences, resulting from sea level rise and the establishment of coral reefs between Ilin and Mindoro at the end of the Pleistocene.
    [Show full text]
  • Biologically Active Compounds in Seaweed Extracts Useful in Animal Diet
    20 The Open Conference Proceedings Journal, 2012, 3, (Suppl 1-M4) 20-28 Open Access Biologically Active Compounds in Seaweed Extracts - the Prospects for the Application Katarzyna Chojnacka*, Agnieszka Saeid, Zuzanna Witkowska and Łukasz Tuhy Institute of Inorganic Technology and Mineral Fertilizers, Wroclaw University of Technology ul. Smoluchowskiego 25, 50-372 Wroclaw, Poland Abstract: The paper covers the latest developments in research on the utilitarian properties of algal extracts. Their appli- cation as the components of pharmaceuticals, feeds for animals and fertilizers was discussed. The classes of various bio- logically active compounds were characterized in terms of their role and the mechanism of action in an organism of hu- man, animal and plant. Recently, many papers have been published which discuss the methods of manufacture and the composition of algal ex- tracts. The general conclusion is that the composition of extracts strongly depends on the raw material (geographical loca- tion of harvested algae and algal species) as well as on the extraction method. The biologically active compounds which are transferred from the biomass of algae to the liquid phase include polysaccharides, proteins, polyunsaturated fatty ac- ids, pigments, polyphenols, minerals, plant growth hormones and other. They have well documented beneficial effect on humans, animals and plants, mainly by protection of an organism from biotic and abiotic stress (antibacterial activity, scavenging of free radicals, host defense activity etc.) and can be valuable components of pharmaceuticals, feed additives and fertilizers. Keywords: Algal extracts, feed additives, fertilizers, pharmaceuticals, biologically active compounds. 1. INTRODUCTION was paid to biologically active compounds, useful as the components of pharmaceuticals, feeds and fertilizers.
    [Show full text]
  • Cloud Rats in the Philippines — Preliminary Report on Distribution
    ORYX VOL 27 NO 1 JANUARY 1993 Cloud rats in the Philippines - preliminary report on distribution and status W. L. R. Oliver, C. R. Cox, P. C. Gonzales and L. R. Heaney This paper describes a preliminary field survey of bushy-tailed cloud rats Crateromys spp. and slender-tailed cloud rats Phloeomys in the Philippines in April and May 1990. Brief visits were made to all islands/locations known to support these animals and also to neighbouring areas considered likely to do so. Comparing the results with information from previous surveys suggests that both genera, particularly Crateromys, are more widely distributed than formerly believed, but that some forms are threatened. Three of the four known species of Crateromys are known only from their holotype specimens, one of which awaits description. Another is extinct in its type locality on Ilin Island but may survive on neighbouring Mindoro. These preliminary findings indicate that thorough surveys are required to establish the status of certain species, to investigate the possibility that new species remain undiscovered and to develop conservation plans to reduce the likelihood of further extinctions occurring. The discovery of the Panay species means Introduction that the genus Crateromys is now known from widely separated locations in each of the four There are at least 22 genera and 52 species of principal faunal regions or late Pleistocene murid rodents in the Philippines, of which 16 islands (Luzon, Mindoron, Mindanoan and genera and 44 species are endemic (Heaney et Negros) as defined by Heaney (1986) on the al., 1987). Among the endemic genera are basis of the 120 m bathymetric line (Figure 1).
    [Show full text]
  • The Conservation Status of Biological Resources in the Philippines
    : -.^,rhr:"-i-3'^^=£#?^-j^.r-^a^ Sj2 r:iw0,">::^^'^ \^^' Cfl|*ti-»;;^ THE CONSERVATION STATUS OF BIOLOGICAL RESOURCES IN THE PHILIPPINES A RRF'OHT V^Y THK lUCN CONSKRVATION MONITORING CENT:-!E PfcparGd by Roger Cox for the lnLf5rnaLion?.l InsLituLo Cor Knvironment and Development (IIED) February 1988 / fgrMsa^jnt-^'-agyga-- •r-r- ;.«-'> t ^-' isr* 1*.- i^^s. , r^^, ^».|;; ^b-^ ^.*%-^ *i,r^-v . iinnc [ '»/' C'A'. aSM!': Vi - '«.;s^ ; a-* f%h '3;riti7;.:- n'^'ji K ;ii;!'r ' <s:ii.uiy.. viii. K A xo.^ jf^'r;.' 3 10 ciJuJi i\ Ji\{ :::) Jnj:kf- .i. n ( im'.i) •V'lt r'v - -V.-^f~^?fl LP-ife- f^^ s.:.... --11 -^M.jj^^^ riB CC./Sfc^RvAriON .<*TC.rj^. OF EI3U:i' "I.VJ, JbO'TSOURCES ^^a THE PHILIPPlVl'fC ;j^...^..-r'^^ I ilRPOHT BY THK ILCJJ CGJJSIiKVA'ilCN M0N:.V:..):;1NG CKNT ^ Pc'jpas-fjr' ')y Roto* C(/X for the TiKD). {'obruary 1988 Digitized by the Internet Archive in 2010 with funding from UNEP-WCIVIC, Cambridge http://www.archive.org/details/conservationstat88coxr . 7' CONTENTS List of Figures, Appendices and Tables iii Summary iy Acknowledgements vii 1 INTRODUCTION 1.1 Background 1 1.2 Objectives 3 2 METHODS 4 3. FLORA, VEGETATION AND FOREST COVER 3.1 Description of the natural vegetation 4 3.1.1 The forests 4 3.1.2 Other vegetation types 7 3 2 Conservation status of the Philippine flora 8 3.2.1 Introduction 8 3.2.2 Causes of habitat destruction 9 3.2.3 Threatened plant species 11 3. 2. A Centres of plant diversity and endemism 12 4 COASTAL AND MARINE ECOSYSTEMS 4.1 Background 17 4.2 Mangroves 18 4.3 Coral reefs 19 4.4 Seagrass beds 22 5.
    [Show full text]
  • Genetic Resources for Farmed Seaweeds Citationa: FAO
    THEMATIC BACKGROUND STUDY Genetic Resources for Farmed Seaweeds Citationa: FAO. forthcoming. Genetic resources for farmed seaweeds. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The content of this document is entirely the responsibility of the author, and does not necessarily represent the views of the FAO or its Members. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by the Food and Agriculture Organization of the United Nations in preference to others of a similar nature that are not mentioned. Contents List of tables iii List of figures iii Abbreviations and acronyms iv Acknowledgements v Abstract vi Introduction 1 1. PRODUCTION, CULTIVATION TECHNIQUES AND UTILIZATION 2 1.1 Species, varieties and strains 2 1.2 Farming systems 7 1.2.1 Sea-based farming 7 1.2.2 Land-based farming 18 1.3 Major seaweed producing countries 19 1.4 Volume and value of farmed seaweeds 20 1.5 Utilization 24 1.6 Impact of climate change 26 1.7 Future prospects 27 2. GENETIC TECHNOLOGIES 27 2.1 Sporulation (tetraspores and carpospores) 28 2.2 Clonal propagation and strain selection 28 2.3 Somatic embryogenesis 28 2.4 Micropropagation 29 2.4.1 Tissue and callus culture 29 2.4.2 Protoplast isolation and fusion 30 2.5 Hybridization 32 2.6 Genetic transformation 33 3.
    [Show full text]
  • Mindoro Biodiversity Conservation Foundation, Inc
    Mindoro Biodiversity Conservation Foundation, Inc. (MBCFI) Mindoro Biodiversity Conservation Program Thrusts 2010 - 2020 Promoting Shared Responsibility toward the Conservation of Mindoro’s Biological and Cultural Diversity Prepared by: ERROL ABADA GATUMBATO Conservation Planning and Natural Resources Governance Specialist (Consultant) July 2009 Mindoro Biodiversity Conservation Program Thrusts 2010 – 2020 This publication has been made possible with funding support from Malampaya Joint Ventures Partners, Department of Environment and Natural Resources, Provincial Government of Oriental Mindoro and Provincial Government of Occidental Mindoro. Copyright: © Mindoro Biodiversity Conservation Foundation Inc. All rights reserved: Reproduction of this publication for resale or other commercial purposes, in any form or by any means, is prohibited without the express written permission from the publisher. Recommended Citation: Gatumbato E.A. (2009). Mindoro Biodiversity Conservation Program Thrusts: Promoting Shared Responsibility towards the Conservation of Mindoro’s Biological and Cultural Diversity. Muntinlupa City. Mindoro Biodiverstiy Conservation Foundation Inc. ISBN 978-621-8010-02-4 Published by: Mindoro Biodiversity Conservation Foundation Inc. Manila Office 22F Asian Star Building, ASEAN Drive Filinvest Corporate City, Alabang, Muntilupa City, 1780 Philippines Telephone: +63 2 8502188 Fax: +63 2 8099447 E-mail: [email protected] Website: www.mbcfi.org.ph Provincial Office Gozar Street, Barangay Camilmil, Calapan City, Oriental Mindoro,
    [Show full text]
  • Peoples Republic of China Announces Increases To
    THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY. Voluntary - Public Date:9/19/2019 GAIN Report Number:CH19062 China - Peoples Republic of Post: Beijing China Announces Increases to Additional Tariffs on U.S. Agricultural Products Report Categories: Trade Policy Monitoring Approved By: Michael Ward Prepared By: OAA Staff Report Highlights: On August 23, 2019, the People’s Republic of China’s Ministry of Finance (MOF), State Council Tariff Commission (SCTC) announced new tariffs on certain U.S. products, valued at $75 billion USD. The announcement includes two lists; List 1 is to be implemented on September 1, 2019 and List 2 is to be implemented on December 15, 2019. Additional tariffs of 10 and 5 percent are applied to the harmonized schedule tariff lines on each list. Many of these products are also subject to earlier tariff increases by China.1 This brings the total number of U.S. agricultural and related products targeted by additional Chinese tariffs since April 2018 to over 1,000 products, valued at approximately $22.6 billion in 2017. The increased tariffs will be calculated in aggregate with earlier additional tariffs.2 1 See GAIN Report CH18034 China Responds to U.S. 301 Announcement with Revised Product List; GAIN Report CH18047, China Updates List of U.S. Products Subject to Additional Tariffs; and GAIN Report CH19030, China Raises Tariffs on U.S. Agricultural Products. 2 Note: This report replaces GAIN Report CH19051 and contains revisions to some MFN tariff rates listed in the Appendices.
    [Show full text]