A New Rock Glacier Inventory of the Eastern European Alps

Total Page:16

File Type:pdf, Size:1020Kb

A New Rock Glacier Inventory of the Eastern European Alps ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Austrian Journal of Earth Sciences Jahr/Year: 2012 Band/Volume: 105_2 Autor(en)/Author(s): Kellerer-Pirklbauer Andreas, Lieb Gerhard Karl, Kleinferchner Harald Artikel/Article: A new rock glacier inventory of the eastern European Alps 78-93 © Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at Austrian Journal of Earth Sciences Volume 105/2 Vienna 2012 A new rock glacier inventory of the eastern European Alps Andreas KELLERER-PIRKLBAUER1)2)*), Gerhard Karl LIEB3) & Harald KLEINFERCHNER3) KEYWORDS 1) Institute for Earth Sciences, University of Graz, Heinrichstrasse 26, 8010 Graz, Austria; 2) Institute of Remote Sensing and Photogrammetry, Graz University of Technology, Steyrergasse 30, polygon-based rock glacier inventory Central and Eastern Austria 2) 8010 Graz, Austria; Late Pleistocene 3) Institute of Geography and Regional Science, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria; permafrost Holocene *) Corresponding author, [email protected] Abstract Rock glaciers are striking features in high mountain environments indicating permafrost conditions during the period of formation and activity. Within the framework of the Alpine-Space-Project PermaNET, a new polygon-based inventory of rock glaciers has been elaborated comprising the alpine areas of central and eastern Austria as part of an inventory covering the entire European Alps. The establishment of the new inventory was primarily based on an existing point-based inventory which was re-evaluated and am- plified using currently available orthophotos, different digital elevation models and derivatives thereof. Further topographic informa- tion such as for instance elevation of lower and upper limits, maximum length and width, area and activity degree were gathered in an attribute table. All different parameters were analysed regarding the entire investigation area, differences between the relevant federal provinces of Austria and between the single mountain regions. These regions were distinguished by differences of mainly climate, topography and present glacier extent. As a result, data on altogether 1647 rock glacier polygons or units were gathered in the inventory comprising 1430 monomorphic rock glaciers (rock glacier with one unit/generation) and 98 polymorphic rock glaciers (with two to five distinct units). 1300 rock glacier units have been classified as relict (no permafrost anymore) covering 97.7 km2 in total, whereas 347 units with a total area of 21.3 km2 as intact (containing permafrost) ones. The mean lower limit of relict rock gla- cier units with a mean size of 0.075 km2 is situated at 2102 m a.s.l.. For the intact ones the respective values are 0.061 km2 and 2515 m a.s.l.. Interpreting the results leads to the conclusion that the dominance of relict rock glaciers is due to fact that the summit elevations decrease towards the east thus restricting current permafrost occurrence to limited areas. Furthermore, “normal glaciers” still occupy rock glacier favourable sites particularly in central Austria. Intact rock glaciers usually developed over millennia primarily during the Holocene. In contrast, relict rock glaciers began to form during and after the Lateglacial deglaciation of cirques which generally occurred earlier in the east compared to the west of the investigated area. However, slope orientation was relevant for the deglaciation pattern causing formation of older rock glaciers on „warm“ slopes whereas on “cold” slopes rock glaciers are possibly of younger age. Although a comprehensive overview on rock glacier distribution can be given by our study, drawbacks of this study are the varying quality of information sources, the absence of data on surface motion (except for single rock glaciers) and missing absolute dating of rock glacier surfaces._________________________________________________________________________ Blockgletscher sind herausragende Elemente der Hochgebirgslandschaft und zeigen Permafrostbedingungen während ihrer Bil- dungs- und Aktivitätszeit an. Im Rahmen des Alpine-Space-Projektes PermaNET wurde ein neues polygon-basiertes Inventar der Blockgletscher für die österreichischen Alpen östlich von Nordtirol als Beitrag zu einem gesamtalpinen Inventar erarbeitet. Die Me- thodik umfasste die Reevaluierung und Erweiterung eines schon bestehenden punkt-basierten Inventars mit aktuell erhältlichen Orthophotos, neueren digitalen Geländemodellen sowie numerischen Ableitungen daraus. Daneben wurde eine Reihe von topogra- phischen Informationen in einer Attributtabelle gesammelt wie beispielsweise Höhe der Unter- und Obergrenze, maximale Länge und Breite, Fläche sowie Aktivitätsgrad. Die verschiedenen Parameter wurden für das gesamte Untersuchungsgebiet sowie bezüg- lich der Unterschiede zwischen den betreffenden österreichischen Bundesländern und zwischen einzelnen Gebirgsgruppen getrennt analysiert. Dabei unterscheiden sich die einzelnen Gebirgsgruppen voneinander vor allem durch Klima, Topographie und rezente Vergletscherung. Als Ergebnis konnten Daten von 1647 Blockgletscherpolygonen in das Inventar eingebracht werden. Diese bilden 1430 einfach aufgebaute monomorphe Blockgletscher sowie 98 komplexe, aus zwei oder mehreren Polygonen bestehende poly- morphe Blockgletscher. 1300 der Blockgletscherpolygone mit einer Gesamtfläche von 97,7 km2 wurden als reliktisch (Permafrost bereits abgetaut), 347 mit einer Gesamtfläche von 21,3 km2 als intakt (gegenwärtig noch Permafrostbedingungen) klassifiziert. Die mittlere Untergrenze der reliktischen Blockgletscher, welche durchschnittlich eine Fläche von 0,075 km2 bedecken, liegt in 2102 m ü.A., für die intakten Blockgletscher lauten diese Werte 0,061 km2 und 2515 m ü.A.. Die Interpretation der Ergebnisse führt zum Schluss, dass die Dominanz der reliktischen Blockgletscher mit den nach Osten abnehmenden Gipfelhöhen erklärt werden kann, welche rezenten Permafrost nur auf kleinen Flächen ermöglichen. Intakte Blockgletscher entwickelten sich gewöhnlich über Jahr- tausende während des Holozäns, reliktische schon in früheren Phasen seit dem Eisfreiwerden der Kare im Spätglazial, was im Osten generell früher als im Westen geschah. Dieses regionale Muster wird aber durch lokale Gegebenheiten wesentlich verändert, wobei warme, eher in südlicher Richtung ausgerichtete Hangbereiche früher eine Blockgletschergenese zuließen als kalte nordex- © Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at Andreas KELLERER-PIRKLBAUER, Gerhard Karl LIEB & Harald KLEINFERCHNER ponierte Bereiche. Obwohl die Arbeit einen guten Überblick über die Blockgletscher-Verbreitung gibt, bleiben als Nachteile die unterschiedliche Qualität der Quellenlage sowie das Fehlen von Daten zur Kriechbewegung (mit Ausnahme einzelner Blockglet- scher) und von absoluten Datierungen der Blockgletscher-Oberflächen bestehen.________________________________________ 1. Introduction Active rock glaciers are lobate or tongue-shaped large-scale was started as early as 1988 by G. K. Lieb, first comprising creep features in permafrost environments consisting of pe- the Austrian part of the Hohe Tauern Range (first publication rennially frozen debris material (talus and/or till) often super- in Lieb 1991) and subsequently expanded over the entire area saturated with interstitial ice and ice lenses. This material shown in Fig. 1. Finally, this point-based inventory comprised moves slowly downslope by creep thereby forming often ben- a total of 1451 rock glaciers and was comprehensively pub- ded transversal ridges and furrows on its lower part and paral- lished by Lieb (1996). Further statistical analysis was carried lel ridges on its upper part. The movement is a consequence out by Lieb (1998a). The inventory was also presented on the of the deformation of the ice contained in them. Therefore, CAPS Version 1.0 CD-ROM in June 1998 (Lieb 1998b) edited active rock glaciers are features of cohesive flow that are in by the International Permafrost Association (IPA). Generally, motion over long periods, i.e. >102 to >103 a (Barsch, 1996). the inventory was elaborated by visual interpretation of aerial Spatial extent, internal structure, shape and surface geomor- photographs at different spatial scales and ages. Further sour- phology of rock glaciers are the cumulative result of their en- ces were analogue drawings of rock glaciers in topographical tire evolution period. When creeping stops active rock glaciers maps at scales 1:25,000 or 1:50,000 and interpolating the re- turn into inactive ones, which is either due to climate warming levant topographic metadata from these maps.____________ (climatic inactive) or due to topographical and/or reduced Within the Alpine Space project “PermaNET – Permafrost debris-supply reasons (dynamic inactive). Both active and long-term monitoring network” it was aimed to create an al- inactive rock glaciers contain permafrost and are therefore pine wide polygon-based rock glacier inventory which was considered as intact rock glaciers. Relict rock glaciers are widely successfully achieved (Cremonese et al., 2011). Within permafrost free at present and are characterised by collapse this PermaNET research activity, the authors of the present structures at their surface. A fourth type is a pseudo-relict paper elaborated a new polygon-based inventory for Central
Recommended publications
  • Walking Destinations
    Nationalparkrat Hohe Tauern Kärnten, Salzburg, Tirol Kirchplatz 2, A 9971 Matrei [email protected] Tel.: +43 (0) 4875 5112 www.hohetauern.at www.facebook.com/hohetauern 8 Stanziwurten CARINTHIA 15 Auernig CARINTHIA 22 Seebachsee - Obersulzbachtal SALZBURG 29 Ödenwinkel Glacier Trail and 36 Lower and Upper Schwarzsee - Muhr 42 Glorerhütte - Geo Nature Trail - 48 Johannishütte - Türmljoch - Thanks to the recent opening of the track on the Mittner mountain pastures it is now Thanks to its central location, the rocky Auernig summit (2,130 m) with its large Distinct cirque lake below the border ridge between Obersulzbachtal and Sonnblickkees - Stubachtal SALZBURG The Unterer Schwarze See is among the deepest alpine lakes, with a depth of Salmhütte TYROL Essener-Rostockerhütte TYROL possible to reach the fantastic Stanziwurten (2.707m) panoramic peak on a pleasant Gipfelkreuz dominates the National Park borough of Mallnitz. At first glance jag - Krimmler Achental. During the vegetation periods, the protected flora on the 57 m. The Obere Schwarze See, which has been declared a natural monument, The family-friendly alpine hiking trails lead over the preceeding areas to the ice The Eichstätt section of the German Alpine Association owns the Glorerhütte From the Johannishütte, one first heads north. The Zettalunitz stream is crossed all-day hike. The ascent begins at the mountain village Mitten (accessible either from ged and off-putting, the Auernig is surprisingly easy to climb. The route that goes bank zones is especially varied.
    [Show full text]
  • Nota Lepidopterologica
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nota lepidopterologica Jahr/Year: 2010 Band/Volume: 33 Autor(en)/Author(s): Cupedo Frans Artikel/Article: A revision of the infraspecific structure of Erebia euryale (Esper, 1805) (Nymphalidae: Satyrinae) 85-106 ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Nota lepid.33 (1): 85-106 85 A revision of the infraspecific structure of Erebia euryale (Esper, 1805) (Nymphalidae: Satyrinae) Frans Cupedo Processieweg 2, NL-6243 BB Geulle, Netherlands; [email protected] Abstract. A systematic analysis of the geographic variation of both valve shape and wing pattern reveals that the subspecies ofErebia euryale can be clustered into three groups, characterised by their valve shape. The adyte-group comprises the Alpine ssp. adyte and the Apenninian brutiorum, the euryale-group in- cludes the Alpine subspecies isarica and ocellaris, and all remaining extra- Alpine occurrences. The third group (kunz/-group), not recognised hitherto, is confined to a restricted, entirely Italian, part of the south- ern Alps. It comprises two subspecies: ssp. pseudoadyte (ssp. n.), hardly distinguishable from ssp. adyte by its wing pattern, and ssp. kunzi, strongly melanistic and even exceeding ssp. ocellaris in this respect. The ssp. pseudoadyte territory is surrounded by the valleys of the rivers Adda, Rio Trafoi and Adige, and ssp. kunzi inhabits the eastern Venetian pre-Alps, the Feltre Alps and the Pale di San Martino. The interven- ing region (the western Venetian pre-Alps, the Cima d'Asta group and the Lagorai chain) is inhabited by intermediate populations.
    [Show full text]
  • Phleum Commutatum and Ph. Rhaeticum (Poaceae) in the Eastern Alps: Characteristics and Distribution List of Seen Specimens
    Phleum commutatum and Ph. rhaeticum (Poaceae) in the Eastern Alps: Characteristics and Distribution List of Seen Specimens By Kurt ZERNIG Abteilung für Botanik, Landesmuseum Joanneum, Raubergasse 10, A-8010 Graz, e-mail: [email protected] Published May 9, 2005 For details see: Phyton (Horn, Austria) 45 (1): 65–79. Summary The two species of Phleum alpinum group – Ph. commutatum GAUDIN and Ph. rhaeticum (HUMPHRIES) RAUSCHERT – were investigated. They can be differentiated morphologically by the presence (Ph. rhaeticum) or absence (Ph. commutatum) of ciliae on the awns on the glumes. But this character turned out to be insufficient for populations which have one or few cilia on the base of awns. Some other morphological characters were tested, if and to what extent, they provide additional features to facilitate correct determination. The length of the anthers shows distinct differences between the two species: anthers of Ph. commutatum are (0.6) 0.7–1.2 (1.3) mm long, while those of Ph. rhaeticum measure (1.0) 1.3–2.0 (2.3) mm. Collection sites of more than 1200 revised herbarium specimens are localized and shown in dot maps. Ph. rhaeticum is very common and frequent in the central and southern regions of the Eastern Alps, towards the north it becomes rarer. It prefers pastures in the subalpine and alpine belt. Ph. commutatum, in contrast, grows especially in the alpine belt of the Central Alps, there forming part of the snow-bed vegetation. Towards the north it becomes more common, where it grows in moderate altitudes from 1500 m upwards.
    [Show full text]
  • Najwyższe Szczyty Austrii
    Najwyższe szczyty Austrii Height Prominence Rank Mountain Range Prominence point (m) (m) Glockner 1 Großglockner 3798 Group 2428 Brenner Pass Hohe Tauern Ötztal Alps 2 Wildspitze 3770 2263 Reschen Pass Weißkamm Ötztal Alps 3 Weißkugel 3739 569 Langtauferer Joch Weißkamm Venediger 4 Großvenediger 3666 Group 1185 Felbertauern Hohe Tauern Ötztal Alps 5 Hintere Schwärze 3628 838 Hochjoch Maine Ridge Ötztal Alps 6 Hinterer Brochkogel 3628 160 Mitterkarjoch Weißkamm Ötztal Alps 7 Similaun 3599 261 Similaunjoch Maine Ridge Ötztal Alps 8 Vorderer Brochkogel 3565 165 Vernagtjoch Weißkamm Glockner 9 Großes Wiesbachhorn 3564 Group 481 Gruberscharte Hohe Tauern Venediger 10 Rainerhorn 3559 Group 153 Rainertörl Hohe Tauern Ötztal Alps 11 Großer Ramolkogel 3550 380 Fanatjoch Maine Ridge Ötztal Alps 12 Schalfkogel 3540 351 Ramoljoch Maine Ridge Ötztal Alps 13 Hochvernagtspitze 3535 299 Taschachjoch Weißkamm Ötztal Alps 14 Watzespitze 3533 489 Ölgrubenjoch Kaunergrat Ötztal Alps 15 Langtauferer Spitze 3529 173 Weißkugeljoch Weißkamm Ötztal Alps 16 Weißseespitze 3518 350 Gepatschferner Weißkamm Ötztal Alps 17 Fineilspitze 3514 504 Niederjoch Maine Ridge Height Prominence Rank Mountain Range Prominence point (m) (m) Zillertal 18 Hochfeiler 3510 Alps 982 East of Hörndljoch Main ridge 19 Zuckerhütl 3507 Stubai Alps 1033 Timmelsjoch Venediger 20 Dreiherrnspitze 3499 Group 581 Obersulzbachtörl Hohe Tauern Eissatel (N of 21 Schrankogel 3497 Stubai Alps 523 Hinterer Daunkopf) Ötztal Alps 22 Fluchtkogel 3497 256 Gepatschjoch Weißkamm Venediger 23 Rötspitze 3496
    [Show full text]
  • Military Mountain Training
    Federal Ministry of Defence and Sports S92011/27-Vor/2014 Supply No. 7610-10147-0714 Manual No. 1002.09 Austrian Armed Forces Field Manual (For Trial) Military Mountain Training Vienna, July 2014 Approval and Publishing Austrian Armed Forces Field Manual (for trial) Military Mountain Training Effective as of 1st December 2014 This Field Manual replaces the “Mountain Operations” Field Manual, parts I – IV, Supply number 7610-10133-0808 Approved: Vienna, 8th July 2014 For the Minister of Defence and Sports (COMMENDA, General) 2 Approval and Publication Austrian Armed Forces Field Manual (For Trial) Military Mountain Training Responsible for the Contents: SALZBURG, 27th June 2014 Chief, Air Staff, Austrian Joint Forces Command (GRUBER, BG) SAALFELDEN, 27th June 2014 Cdr (acting), Mountain Warfare Centre: (RODEWALD, Colonel) 3 PREFACE This Field Manual (FM) for trial (f.t.) serves as a basis for the training and application of mountaineering techniques within the Austrian Armed Forces (AAF) and will be distributed to the units in need of it. It is to be seen as the predecessor of the final version of the same-titled AAF FM, which will be published after the testing phase of this manual. The present FM (f.t.) was developed in cooperation with the German Bundeswehr (Bw) in order to ensure standardized training. In the Bw it is called C2-227/0-0-1550 “Gebirgsausbildung”. This FM (f.t.) is meant to provide knowledge and skills on: - geographical, geological, meteorological, and common basics for military operations in mountainous terrain, - safe and secure movements and survival in mountainous and high mountain regions, – mountain rescue, and – mountaineering equipment, which are preconditions for the accomplishment of military tasks.
    [Show full text]
  • 20 Years of Carinthian National Park Reserves: from Hunting to Wildlife Management
    Documentation 20 Years of Carinthian National Park Reserves: From Hunting to Wildlife Management Volume 14 of the Carinthian National Park Documents www.hohetauern.at Contents 20 Years of Carinthian National Park Reserves: From Hunting to Wildlife Management 2 60 Hunting and the Resolving the National Park Hunting Issue – Key to International Recognition 6 64 Hunting in Austria Memories Hunting in Carinthia 12 68 Chronology: From Hunting Carinthian Hunters’ to Wildlife Management Association 24 70 National Park Reserves Wildlife Management ... in Carinthia Not False Labelling! 44 72 Wildlife, Species Protection, Contact Research and Monitoring 56 73 Wildlife Management Publication Details - 1 - Hunting and the National Park - 2 - Wolf Schröder Technical University of Munich Hunting and the National Park Hunters are not unconditional fans of National Parks, at people’. And so the idea of the National Park was born. The least not those on their doorstep. In a survey conducted in thinking behind it was to preserve Yellowstone from the same European mountain national parks, one of my students, Ulrich fate as the Niagara Falls: at the time it was impossible to get Schraml, polled the attitude of the various interest groups. close, even for a glimpse, without having to press a couple of What emerged is that those who appreciate National Parks the dollars into palms readily outstretched. most are always the visitors, with hunters at the other end of the scale. So why is it that there’s tension in the air between hunters and National Parks? You would think it’s because something is being taken away from them and, indeed, there Always hunting: Trapper have been instances where that was the case.
    [Show full text]
  • The Italian Alps: a Journey Across Two Centuries of Alpine Geology
    The Italian Alps: a journey across two centuries of Alpine geology Giorgio Vittorio Dal Piaz Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 36, paper 8 In: (Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei, Sandro Conticelli, and Carlo Doglioni, The Geology of Italy: tectonics and life along plate margins, 2010. Download from: http://virtualexplorer.com.au/article/2010/234/a-journey-across-two-centuries-of-alpine- geology Click http://virtualexplorer.com.au/subscribe/ to subscribe to the Journal of the Virtual Explorer. Email [email protected] to contact a member of the Virtual Explorer team. Copyright is shared by The Virtual Explorer Pty Ltd with authors of individual contributions. Individual authors may use a single figure and/or a table and/or a brief paragraph or two of text in a subsequent work, provided this work is of a scientific nature, and intended for use in a learned journal, book or other peer reviewed publication. Copies of this article may be made in unlimited numbers for use in a classroom, to further education and science. The Virtual Explorer Pty Ltd is a scientific publisher and intends that appropriate professional standards be met in any of its publications. Journal of the Virtual Explorer, 2010 Volume 36 Paper 8 http://virtualexplorer.com.au/ The Italian Alps: a journey across two centuries of Alpine geology Giorgio Vittorio Dal Piaz University of Padua, Via Meneghini 10, 35122 Padova, Italy. Email: [email protected] Abstract: This review is first and mainly an historical journey across two centuries of Alpine geology, from the early fixist views to the mobilist revolutions produced by the nappe theory and, later, by the global theory of plate tectonics, including the important developments of the last decade.
    [Show full text]
  • Permafrost Research in Austria: History and Recent Advances
    Austrian Journal of Earth Sciences Volume 105/2 Vienna 2012 Permafrost Research in Austria: History and recent advances Karl KRAINER1), Andreas KELLERER-PIRKLBAUER2)3), Viktor KAUFMANN3), Gerhard Karl LIEB4), Lothar SCHROTT5) & Helmut HAUSMANN6)7) 1) Institute of Geology and Paleontology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria; 2) Institute for Earth Sciences, University of Graz, Heinrichstrasse 26, 8010 Graz, Austria; 3) Institute of Remote Sensing and Photogrammetry, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria; 4) Institute of Geography and Regional Science, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria; 5) Department of Geography and Geology, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria; 6) Central Institute for Meteorology and Geodynamics/ZAMG, Hohe Warte 38, A-1190 Vienna, Austria; 7) Institute of Geodesy and Geophysics, Vienna University of Technology, Vienna, Austria; Abstract In the Austrian Alps the study of alpine permafrost started during the 1920ies and until about 1980 was mainly concentrated on rock glaciers. Since 1980 the number of publications related to permafrost increased and since the late 1990ies investigation of permafrost has been intensified. This introductory article provides an overview on the history of permafrost research in the Austrian Alps, on current activities including new results and a short outlook for the next years.____________________________________ Current research includes the distribution of rock glaciers and
    [Show full text]
  • A Bird's Eye View of Geology
    High Above the Alps A Bird’s Eye View of Geology Kurt Stüwe and Ruedi Homberger Weishaupt Publishing Krems Linz Wachau Melk Munich Vienna Bratislava VOGES BLACKK FOREST Chiemsee Salzburg Kempten Lake Neusiedl Lake Constance Salzkammergut Schneeberg Berchtesgadener Alps Hochschwab Wilder Kaiser Dachstein Liezen Allgäu Alps Watzmann Zurich Karwendel Leoben Budapest Zell am See Innsbruck Lower Tauern JURA Lechtal Alps Großglockner Graz Hohe Tauern Neuchâtel Bern Napf Brenner Glarus Alps Saualpe Chur Davos Ötztaler A Rhine Alps Lienz Balaton UR Arosa Koralpe J Klagenfurt Meran Carnic Alps Fribourg Alps Maribor Eiger Lukmanier Pass Dolomites Bernese Oberland Bolzano Karavanke Pohorje Lepontine Julian Alps Steiner Alps D. Morcles Ticino Piz Bernina Bergell Tagliamento JURA High Savoy Geneva Rhone Simplon Pass Adamello Bergamo Alps Belluno Valais Alps Adige Udine Mt. Blanc Piave Mte. Rosa Aosta Valley Lake Como Zagreb Lago Maggiore Bauges Massif Triest Gran Paradiso Milan Padua Lake Garda Venice Grenoble D Krk IN A Vercors La Meije Turin RID ES MASSIF CENTRAL Ecrin M. Briancon Dauphiné Alps Monviso APENNINES ADRIA DI Bologna NA Gap RID ES Cuneo Maritime Alps Genoa APENNINES Argentera Zadar Massif D Durance INARDES Avignon I Verdon APENNINES 2 Nice Pisa Krems Linz Wachau Melk Munich Vienna Bratislava VOGES BLACKK FOREST Chiemsee Salzburg Kempten Lake Neusiedl Lake Constance Salzkammergut Schneeberg Berchtesgadener Alps Hochschwab Wilder Kaiser Dachstein Liezen Allgäu Alps Watzmann Zurich Karwendel Leoben Budapest Zell am See Innsbruck Lower Tauern JURA Lechtal Alps Großglockner Graz Hohe Tauern Neuchâtel Bern Napf Brenner Glarus Alps Saualpe Chur Davos Ötztaler A Rhine Alps Lienz Balaton UR Arosa Koralpe J Klagenfurt Meran Carnic Alps Fribourg Alps Maribor Eiger Lukmanier Pass Dolomites Bernese Oberland Bolzano Karavanke Pohorje Lepontine Julian Alps Steiner Alps D.
    [Show full text]
  • The Lienz Basin (Austria)
    Swiss Journal of Geosciences (2019) 112:341–355 https://doi.org/10.1007/s00015-019-00339-0 (0123456789().,-volV)(0123456789().,- volV) Unravelling the shape and stratigraphy of a glacially-overdeepened valley with reflection seismic: the Lienz Basin (Austria) 1 1 2 1 1 Thomas Burschil • David C. Tanner • Ju¨ rgen M. Reitner • Hermann Buness • Gerald Gabriel Received: 11 July 2018 / Accepted: 10 February 2019 / Published online: 12 March 2019 Ó The Author(s) 2019 Abstract We reveal the subsurface bedrock topography and sedimentary succession of one of the deepest glacially-formed basins in the Eastern Alps: the Lienz Basin in the Upper Drau Valley (Tyrol), by means of seismic reflection. A dense source- receiver spacing, supplied by autonomous receivers, and a prestack depth-migration processing scheme were essential to distinguish the various deposits in fine detail, such as slumping, fan delta deposits, and a modified monocline on the basin flank. These details support our interpretation of the seismic stratigraphy that consists of, e.g., subglacial till of last glacial maximum (LGM) age and possibly older, laminated basin fines, and gravel/coarse sand. The maximum depth of the basin is 622 m, at the junction of two major basement faults that are not clearly visible in the seismic reflections. We regard the overdeepening in this longitudinal valley as the result of glacier confluence during the LGM. Subglacial meltwaters utilized the higher erodibility of faulted rocks, as indicated by channel structures. The adverse slope (2.6%) along the valley axis exceeds the gradient ice-surface slope (0.4–0.5%) during the LGM by more than fivefold.
    [Show full text]
  • Publication of a Communication of Approval of a Standard Amendment
    C 276/8 EN Offi cial Jour nal of the European Union 21.8.2020 Publication of a communication of approval of a standard amendment to a product specification for a name in the wine sector referred to in Article 17(2) and (3) of Commission Delegated Regulation (EU) 2019/33 (2020/C 276/04) This communication is published in accordance with Article 17(5) of Commission Delegated Regulation (EU) 2019/33 (1). COMMUNICATING THE APPROVAL OF A STANDARD AMENDMENT ‘Kärnten’ Reference number: PDO-AT-A0218-AM01 Date of communication: 21.2.2020 DESCRIPTION OF AND REASONS FOR THE APPROVED AMENDMENT Description and reasons As the vineyard register is now managed under the integrated administration and control system, the maximum yield per hectare must be adjusted. SINGLE DOCUMENT 1. Name of the product Kärnten 2. Geographical indication type PDO – Protected Designation of Origin 3. Categories of grapevine product 1. Wine 5. Quality sparkling wine 4. Description of the wine(s) The ‘Kärnten’ designation of origin may be used for wine and quality sparkling wine; however, it is not used for the latter in practice. ‘Kärnten’ is mainly produced as ‘Qualitätswein’; the analytical characteristics are set out in the product specification. ‘Kärnten’ is also produced with other distinctions (e.g. ‘Kabinett’, ‘Spätlese’, ‘Eiswein’); the corresponding analytical characteristics are set out in the product specification. The dominant organoleptic qualities can be characterised as fruity, dry and aromatic; other organoleptic characteristics are set out in the product specification. General analytical characteristics Maximum total alcoholic strength (in % volume) Minimum actual alcoholic strength (in % volume) Minimum total acidity Maximum volatile acidity (in milliequivalents per litre) Maximum total sulphur dioxide (in milligrams per litre) (1) OJ L 9, 11.1.2019, p.
    [Show full text]
  • 2014 Activity Report Documentation
    Documentation 2014 Activity Report Carinthian National Park Fund Hohe Tauern Contents Publication details: Contents Media owner, editor, and publisher: Carinthian National Park Fund Hohe Tauern, Döllach 14, 9843 Grosskirchheim, Austria Editor: Elfriede Oberdorfer Image rights: Hohe Tauern National Park, M. Steinwandter, M. Rupitsch, K. Dapra, G. Nowotny, W. Rieder, R. Winkler, Office of LR Ragger, BMLFUW [Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management], M. Reiter, Forewords 4-5 E. Auer, A. Tischler, B. Kern, Ch. Husar, K. Griesser, M. Steinthaler, F. Rieder, S. National Parks Austria 6-7 Fürgler, Winklern National Park Secondary School, Swarovski Waterschool Austria / China / India, V. Rosenburg, E. Senitza, E.C.O. Institute of Ecology, G. K. Lieb Profile 8 Graphic design: 08/16 grafik eva scheidweiler, Lienz/Salzburg Management 9 Translations: Stephen B. Grynwasser on behalf of AlpsLaRete Printed by: Oberdruck GmbH, Stribach National Park Year 2014 10-17 Cover picture: Capercaillie (Tetrao urogallus) The capercaillie is the largest indigenous member of the grouse family. In German Organisation 18-19 its family name Raufusshühner literally translates as ‘rough feet chickens’ owing to Budget 20 the distinctive shape of the feet, which are either densely feathered right down to the talons (ptarmigan) or provided with small elongated horn tacks known as ‘courting Visitor Management 21 tacks’. In winter these tacks serve as a snowshoe-like elongation of the toes; they are absent in the summer. Natural Resource Management 22-28 The capercaillie is well adapted to open mature stands (coniferous and mixed coni- Cultural Landscape Preservation 29 ferous forests) interspersed with clearings as well as young tree growth offering cover alternating with dense ground vegetation.
    [Show full text]