Are Plant Populations Seed Limited? a Critique and Meta-Analysis of Seed Addition Experiments

Total Page:16

File Type:pdf, Size:1020Kb

Are Plant Populations Seed Limited? a Critique and Meta-Analysis of Seed Addition Experiments vol. 170, no. 1 the american naturalist july 2007 ൴ Are Plant Populations Seed Limited? A Critique and Meta-Analysis of Seed Addition Experiments C. J. Clark,1,2,* J. R. Poulsen,2,† D. J. Levey,2,‡ and C. W. Osenberg2,§ 1. School of Natural Resources and the Environment, University of Florida, Gainesville, Florida 32611; 2. Department of Zoology, P.O. Box 118525, University of Florida, Identifying mechanisms that determine the abundance and Gainesville, Florida 32611 distribution of plant and animal populations is a central Submitted April 22, 2006; Accepted February 8, 2007; challenge of ecology (Tilman 1997; Levine and Rees 2002; Electronically published May 21, 2007 Osenberg et al. 2002; Coomes and Grubb 2003; Turnbull et al. 2005). The failure of a species to recruit at a given Online enhancements: appendix, data files. site can result from processes that occur at practically any life-history stage and include propagule production and transportation, competition, predation, and herbivory. De- spite this range of disparate processes and stages, several abstract: We examine the relative importance of processes that of the best-known models of species coexistence are fo- underlie plant population abundance and distribution. Two opposing cused on propagule availability in space or time (Sale 1982; views dominate the field. One posits that the ability to establish at Tilman 1994; Hurt and Pacala 1995; Pacala and Levin a site is determined by the availability of suitable microsites (estab- 1997; Coomes and Grubb 2003). These models are bol- lishment limitation), while the second asserts that recruitment is limited by the availability of seeds (seed limitation). An underlying stered by empirical studies across diverse systems, dem- problem is that establishment and seed limitation are typically viewed onstrating that early life-history events (e.g., during the as mutually exclusive. We conducted a meta-analysis of seed addition transition from seed to seedling or from larva to juvenile experiments to assess the relative strength of establishment and seed fish) can be bottlenecks for recruitment (Persson and limitation to seedling recruitment. We asked (1) To what degree are Greenberg 1990; Chambers and MacMahon 1994; Fenner populations seed and establishment limited? (2) Under what con- 2000; Doherty 2002). Indeed, there is growing consensus ditions (e.g., habitats and life-history traits) are species more or less limited by each? (3) How can seed addition studies be better designed that processes underlying mortality at early stages in the to enhance our understanding of plant recruitment? We found that, life cycle may disproportionately influence the structure, in keeping with previous studies, most species are seed limited. How- dynamics, and species composition of communities. This ever, the effects of seed addition are typically small, and most added consensus is particularly evident in studies of plant com- seeds fail to recruit to the seedling stage. As a result, establishment munities. Two processes thought to limit plant recruitment limitation is stronger than seed limitation. Seed limitation was greater at early stages in the plant life cycle are seed limitation for large-seeded species, species in disturbed microsites, and species and establishment limitation. with relatively short-lived seed banks. Most seed addition experi- ments cannot assess the relationship between number of seeds added Seed-limited populations have fewer individuals than and number of subsequent recruits. This shortcoming can be over- possible because seeds fail to arrive at saturating densities come by increasing the number and range of seed addition at all potential recruitment sites (Eriksson and Ehrle´n treatments. 1992; Nathan and Muller-Landau 2000; Turnbull et al. Keywords: seed limitation, establishment limitation, meta-analysis, 2000; Svenning and Wright 2005). Seed limitation can be seed addition, seed mass. partitioned into two processes that restrict the ability of seeds to reach recruitment sites: (1) “source limitation,” * Corresponding author; e-mail: [email protected]fl.edu. that is, not enough seeds are produced to saturate potential † E-mail: [email protected]fl.edu. recruitment sites even if the seeds could reach all sites, ‡ E-mail: [email protected]fl.edu. and (2) “dispersal limitation,” that is, not enough seeds § E-mail: [email protected]fl.edu. reach all recruitment sites, even though enough are pro- Am. Nat. 2007. Vol. 170, pp. 128–142. ᭧ 2007 by The University of Chicago. duced to saturate sites (Clark et al. 1998; Schupp et al. 0003-0147/2007/17001-41789$15.00. All rights reserved. 2002). Seed Limitation 129 “Establishment limitation” (also called microsite limi- increase in seedling density is observed after seed addition, tation) occurs when plant population size is constrained one can conclude that limitations on species presence or by the number and quality of available sites for establish- abundance are at least partially attributable to seed avail- ment, not by the number of seeds (Clark et al. 1998; Na- ability (although its importance relative to factors that than and Muller-Landau 2000). Establishment limitation limit recruitment at later life-history stages cannot be eval- can be partitioned into several processes that occur be- uated without longer-term study). Such experiments, by tween seed deposition and recruitment into the adult pop- decreasing the extent of seed limitation and isolating the ulation (Clark et al. 1998; Muller-Landau et al. 2002). In emergence and early postemergence stages of establish- this article, we focus on seedling recruitment, because it ment limitation, offer a conservative estimate of the represents a key stage of establishment limitation. Specif- strength of establishment limitation relative to seed lim- ically, we examine the time between seed arrival at the soil itation in plant populations. The relative importance of surface and the census of seedlings after the first season establishment limitation would be expected to increase if of growth. Establishment limitation is thus determined by additional mortality at later life-history stages were in- factors that constrain the recruitment of new individuals cluded. into the seedling population, regardless of the number of The difficulty in interpreting results of seed addition seeds that arrive at a site. Seed and establishment limitation experiments lies in situations in which seed limitation is are analogous to supply limitation and postsettlement detected (i.e., one finds a statistically detectable increase mortality, as developed in the literature on reef fish ecology in seedlings after seed addition). In large part, interpre- (Schmitt et al. 1999; Doherty 2002; Osenberg et al. 2002). tation depends on how the experiment was framed. If the Because both seed and establishment limitation can underlying goal was to determine why a given species does limit plant recruitment, both are likely to influence the not occur at a particular site, then even a single seedling abundance and distribution of species (Hubbell et al. 1999; demonstrates seed limitation. This goal is common among Juenger and Bergelson 2000; Zobel et al. 2000; Dalling and seed addition studies based on small plots; the response Hubbell 2002; Levine and Rees 2002). At issue is their they document is local and the number of seedlings largely relative importance. At stake are competing theories of irrelevant (assuming that enough survive to establish a community composition (Coomes and Grubb 2003; Turn- population). If, on the other hand, the underlying goal bull et al. 2005). If establishment limitation dominates, was to determine factors limiting population size or den- then the abundance and distribution of a species is readily sity, the number of seedlings becomes key to disentangling framed as an issue of competitive ability, regeneration the relative strengths of seed and establishment limitation. niches, and the relative abundance and quality of mi- In this scenario, detection of seed limitation is largely ir- crosites (Grubb 1977; Turnbull et al. 2000; Muller-Landau relevant; attention should focus on the magnitude of re- et al. 2002; Pearson et al. 2002). If seed limitation dom- sponse rather than its presence or absence. inates, then the abundance and distribution of a species The magnitude of seed limitation is rarely considered are better viewed in the context of a lottery system, where in seed addition studies. For example, a review of seed few sites are “won” by the best possible competitor and addition experiments concluded that as many as 50% of most are won “by default”—recruits are drawn at random all plant populations are seed limited (Turnbull et al. from the seeds that happen to arrive at a site (Cornell and 2000). However, seed limitation was depicted dichoto- Lawton 1992; Hubbell 2001; see also Sale 1982). Thus, mously: either seed availability limited plant population empirical studies on the relative importance of seed and size (i.e., there was a significant effect of seed augmen- establishment limitation can guide theoretical models of tation) or it did not (i.e., the resulting P value was 10.05). community dynamics. A central theme of this article is that seed limitation is a The most direct means of testing the relative importance continuous variable, potentially varying widely among spe- of seed and establishment limitation is to conduct seed cies, habitats, life forms, plant characteristics, and seed addition experiments (Turnbull et al. 2000, 2005; Muller- sizes. Using P values to infer seed limitation not only Landau et al. 2002). Seeds are added to plots, and the dichotomizes this continuous scale but also confuses a numbers of seedlings that emerge are compared to those statistical view of significance with the more appropriate in control plots to which no seeds have been added. If no biological view of overall effect (e.g., Osenberg et al. 1997). increase in seedling density is observed after seed addition, Indeed, effect sizes and P values derived from null hy- one can conclude that recruitment opportunities for that pothesis tests can give very different results (Osenberg et species are not seed limited.
Recommended publications
  • Evolutionary Ecology of Pollination and Reproduction of Tropical Plants
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. V - Evolutionary Ecology af Pollination and Reproduction of Tropical Plants - M. Quesada, F. Rosas, Y. Herrerias-Diego, R. Aguliar, J.A. Lobo and G. Sanchez-Montoya EVOLUTIONARY ECOLOGY OF POLLINATION AND REPRODUCTION OF TROPICAL PLANTS M. Quesada and F. Rosas Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Y. Herrerias-Diego Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México. R. Aguilar IMBIV - UNC - CONICET, C.C. 495,(5000) Córdoba, Argentina J.A. Lobo Escuela de Biología, Universidad de Costa Rica G. Sanchez-Montoya Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Keywords: Pollination, tropical plants, diversity, mating systems, gender, conservation. Contents 1. Introduction 1.1. The Life Cycle of Angiosperms 1.2. Overview of Angiosperm Diversity 2. Degree of specificity of pollination system 3. Diversity of pollination systems 3.1. Beetle Pollination (Cantharophily) 3.2. Lepidoptera 3.2.1. Butterfly Pollination (Psychophily) 3.2.2. Moth Pollination (Phalaenophily) 3.3. Hymenoptera 3.3.1. Bee PollinationUNESCO (Melittophily) – EOLSS 3.3.2. Wasps 3.4. Fly Pollination (Myophily and Sapromyophily) 3.5. Bird Pollination (Ornitophily) 3.6. Bat PollinationSAMPLE (Chiropterophily) CHAPTERS 3.7. Pollination by No-Flying Mammals 3.8. Wind Pollination (Anemophily) 3.9. Water Pollination (Hydrophily) 4. Reproductive systems of angiosperms 4.1. Strategies that Reduce Selfing and/or Promote Cross-Pollination. 4.2. Self Incompatibility Systems 4.2.1. Incidence of Self Incompatibility in Tropical Forest 4.3. The Evolution of Separated Sexes from Hermaphroditism 4.3.1. From Distyly to Dioecy ©Encyclopedia Of. Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol.
    [Show full text]
  • Selection on Floral Morphology and Environmental Determinants of Fecundity in a Hawk Moth-Pollinated Violet'
    Ecoiog~calMonographs, 63(3), 1993. pp. 25 1-275 LC 1993 by the Ecological Society of America SELECTION ON FLORAL MORPHOLOGY AND ENVIRONMENTAL DETERMINANTS OF FECUNDITY IN A HAWK MOTH-POLLINATED VIOLET' CARLOSM. HERRERA Estacidn Bioldgica de Dofiana, Apartado 1056, E-41080 SeviNa, Spain Abstract. This paper presents the results of a 5-yr field study on the determinants of individual variation in maternal fecundity (seed production) in the narrowly endemic violet Viola cazorlensis (Violaceae), at a southeastern Spanish locality. Flowers of this species are characterized by a very long, thin spur and broad morphological variability, and are pol- linated by a single species of day-flying hawk moth (Macroglossum stellatarum; Lepidop- tera, Sphingidae). The primary aim of this investigation was to answer the question, What are the relative importances, as explanations of individual differences in fecundity, of variability in floral traits and of other fecundity determinants that are of an extrinsic nature, such as microhabitat type and interactions with herbivores? The floral morphology of individual V. cazorlensis plants was characterized by means of both "conventional," linear measurements of the size of flower parts (petals, spur, peduncle), and shape analysis of corolla outline (using thin-plate splines relative warps analysis). Spatial (among substrate types) and temporal (among years) patterns of variation in flower, fruit, and seed production by V. cazorlensis plants are described, with particular emphasis on the comparative effects of floral morphology, herbivory (by mammalian ungulates and two species of lepidopteran larvae), and substrate type (rock cliffs, bare rocks at ground level, and sandy soils), on cumulative seed production at the individual plant level.
    [Show full text]
  • Ecology: Definition, Scope and Relationship with Other Sciences
    Ecology: Definition, Scope and Relationship with other sciences By Shalinder Kaur Department of Botany P.G.G.C.G. – 11 Chandigarh The word "ecology" ("oekologie") (coined by German scientist Ernst Haeckel,1866) was derived from the Greek ―oikos” meaning "household" and logos meaning "science:" the "study of the household of nature." Ecology is not synonymous with environment, environmentalism, or environmental science. Ecology is closely related to physiology, evolutionary biology, genetics and ethology. An understanding of how biodiversity affects ecological function is an important focus area in ecological studies. Ecology: branch of science that deals with interaction between living organisms with each other and their surroundings. Ecological systems are studied at several different levels from individuals and populations to ecosystems and biosphere level. Ecology is a multi-disciplinary science, drawing on many other branches of science. Applied ecology is the practice of employing ecological principles and understanding to solve real world problems. E.g. calculating fish population, measuring environmental impact from construction or logging, building a case for the conservation of a species, and determining the most effective way to protect a species. In a broader sense, ecology can also mean: Natural environment: using the principles and methods of ecology. Human Ecology: looks at humans and their interactions with the natural environment. Scope of Ecology Ecology can be studied at several levels, from proteins and nucleic acids (in biochemistry and molecular biology), cells (in cellular biology), organisms (in botany, zoology, and other similar disciplines), and finally at the level of populations, communities, and ecosystems — which are the subjects of ecology. Because of its focus on the broadest level of life and on the interrelations between living beings and their environment, ecology draws heavily on other branches of science, such as geology and geography, meteorology, pedology, chemistry, and physics.
    [Show full text]
  • Urban Plant Ecophysiology
    4 Urban Plant Ecophysiology Nancy Falxa Sonti* USDA Forest Service, Baltimore, Maryland Introduction understanding and managing the fluxes of heat, water, gases and nutrients that underlie Plants have long been cultivated to improve urban ecosystem science and that help make quality of life in dense human settlements, cities both liveable and sustainable (Alberti, mitigating the environmental stresses of ur- 2005). The past few decades have seen a rise ban living. Urban landscape elements include in research on plant community ecology, but gardens, trees and lawns designed to provide ecophysiological studies have lagged behind, aesthetic and functional benefits to local resi- possibly due to methodological challenges, or dents, as well as urban natural areas that re- due to the recent popularity of other topics in flect the native biome vegetation. Different plant biology (Beyschlag and Ryel, 2007). types of informal green space are typically A systematic approach to urban plant found in interstitial urban areas wherever ecophysiology that is tied to decision making plants find space, light, water and nutrients to can support efforts to improve both liveabil- grow (Rupprecht and Byrne, 2014). A grow- ity and sustainability of cities via plant physi- ing body of literature evaluates the health and ological function. Plants are the foundation of well- being benefits of these diverse types of most nature- based solutions to environmental, intentional and unintentional urban nature, social and economic challenges, and physi- and advocates for their inclusion in sustain- ological function is the engine that drives the able urban design (Konijnendijk et al., 2013; provision of associated ecosystem services. Kowarik, 2018; Threlfall and Kendal, 2018).
    [Show full text]
  • BIO 1500: Plant Physiological Ecology (Previously Known As Plant Ecology)
    BIO 1500: Plant Physiological Ecology (previously known as Plant Ecology) Lectures: Tuesdays and Thursdays, 9 – 10:20am (H hour), Smith-Buonanno Hall rm 207 Laboratory: Labs will be held on Thursdays in the Environmental Science Center (greenhouses). One or two lab sections will be available (TBD) Instructor: Prof. Erika Edwards Office: 303 Walter Hall Phone: 863-2081 Email: [email protected] Office hours: Wednesday, 1-3 pm Teaching assistant: Matt Ogburn, [email protected], office hours TBD Course Overview This is an advanced botany course, preferably for students that have taken either BIO43 or BIO44 in addition to BIO20; otherwise permission must be obtained from the instructor. A keen interest in plants is a must. Aims and objectives: The primary aim of BIO 1500 is to examine the role of the environment in shaping the anatomical, physiological, and ecological diversity of vascular plants. Lectures will provide an overview of plant-environment interactions, focusing on anatomical and physiological adaptations of leaves, stems, and roots to different habitats. A comparative, phylogenetic approach will be emphasized. This is a hybrid lecture/seminar course, where classes will consist of both chalkboard lectures by the professor as well as discussions of articles from the primary literature. In addition, BIO 1500 is designed to be a hands-on course, and lectures are viewed mostly as supplements to the semester-long greenhouse project that will provide students with first-hand experience in measuring and interpreting plant functional traits. Students will work on a set of group projects that are designed to test long-standing assumptions about the evolution and adaptive nature of certain plant traits.
    [Show full text]
  • Bio 345 Field Botany Fall 2013 Professor Mark Davis Macalester College (Office: Rice 104; 696-6102) Office Hours - M: 1:30-3:00 P.M
    Bio 345 Field Botany Fall 2013 Professor Mark Davis Macalester College (Office: Rice 104; 696-6102) Office Hours - M: 1:30-3:00 p.m. Wed: 1:30-3:00 p.m. GENERAL INFORMATION Biology 345-01 (02): (Field Botany) is a course in plant taxonomy, plant geography, and plant ecology. Students will learn the principles of plant classification and, through first hand experience, the techniques of plant identification, collection, and preservation. Students also will be introduced to the fields of plant geography and plant ecology. Particular attention will be given to the taxonomy, geography, and ecology of plants growing in the North Central United States. Weekly field trips to nearby habitats will enable students to become familiar with many local species. This is a course for anyone who enjoys plants and wants to learn to identify them and learn more about them, as well as for students with a scientific interest in plant taxonomy and ecology. Note: this syllabus and other course materials can also be found on Moodle. READINGS: Readings from Barbour and Billings (2000), North American Terrestrial Vegetation, Cambridge U Press (in Bio Student Lounge); Judd et al. (2008), Plant Systematics: A Phylogenetic Approach, Sinauer Associates (in Bio Student Lounge); & readings to be assigned. LECTURES: MWF 10:50 - 11:50 a.m. in OR284. Please come to class on time!!!! LABORATORY/FIELD TRIPS/DISCUSSIONS: Thurs: 8:00 - 11:10 a.m. During September, and October we will usually take field trips during the weekly laboratory time. These will be local botanizing trips and will provide students with the opportunity to develop and practice their identification skills in the field.
    [Show full text]
  • Tree Life History Strategies: the Role of Defenses
    For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only. Can. J. For. Res. Downloaded from www.nrcresearchpress.com by Virginia Tech Univ Lib on 06/06/17 For personal use only.
    [Show full text]
  • PLANT ECOLOGY 11:216:332 Fall 2018
    PLANT ECOLOGY 11:216:332 Fall 2018 PLANT ECOLOGY SYLLABUS Meeting Times Lecture: 9:15–10:35am Monday & Thursday, Bartlett Hall Rm 123 Labs: 1:00–5:00 pm, Monday, Tuesday, Wednesday, or Thursday, meet in front of the ENR building unless otherwise noted in the lab schedule below. Professor: Dr. Myla F.J. Aronson Email: [email protected] Office: 105 Blake Hall, 93 Lipman Drive, Cook Campus Office hours: Monday 11:00am-1:00pm Lab/Field Instructors: Mike Allen, [email protected]. Office hours: Wednesdays 10:00am-12:00pm. Oliver Stringham, [email protected]. Office hours: Tuesdays 10:00am-12:00pm. COURSE DESCRIPTION Ecology is the study of interrelationships between organisms and their biotic and abiotic environments. As a basic science, ecology informs us about the processes governing the patterns we observe in nature. From an applied perspective, it is critical that we understand ecology as it provides insights and solutions to many of the environmental issues we are confronted with in our daily lives. In this course we will focus specifically on the ecology of plants. Plant ecology is the study of the distribution and abundance of plants and their interactions with the abiotic environment and other organisms. In this course, we will examine plant life histories, populations, communities, and plant-animal interactions (pollination, dispersal, herbivory). Labs includes greenhouse, field experiments, and field trips with an exploration of plant biodiversity of the campus and region. Terrestrial systems are emphasized. COURSE LEARNING GOALS This course is an introduction to plant ecology. Through the lectures, readings, assignments, field trips, and computer labs you will gain a broader understanding of the key concepts in plant ecology and get experience in applying these concepts by collecting, analyzing, and interpreting data from several local plant communities.
    [Show full text]
  • Plant Ecology and Biostatistics
    BSCBO- 203 B.Sc. II YEAR Plant Ecology and Biostatistics DEPARTMENT OF BOTANY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 BSCBO-203 PLANT ECOLOGY AND BIOSTATISTICS SCHOOL OF SCIENCES DEPARTMENT OF BOTANY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in UTTARAKHAND OPEN UNIVERSITY Page 1 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Expert Committee Prof. J. C. Ghildiyal Prof. G.S. Rajwar Retired Principal Principal Government PG College Government PG College Karnprayag Augustmuni Prof. Lalit Tewari Dr. Hemant Kandpal Department of Botany School of Health Science DSB Campus, Uttarakhand Open University Kumaun University, Nainital Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Board of Studies Late Prof. S. C. Tewari Prof. Uma Palni Department of Botany Department of Botany HNB Garhwal University, Retired, DSB Campus, Srinagar Kumoun University, Nainital Dr. R.S. Rawal Dr. H.C. Joshi Scientist, GB Pant National Institute of Department of Environmental Science Himalayan Environment & Sustainable School of Sciences Development, Almora Uttarakhand Open University, Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Programme Coordinator Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani UTTARAKHAND OPEN UNIVERSITY Page 2 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Unit Written By: Unit No. 1-Dr. Pooja Juyal 1, 4 & 5 Department of Botany School of Sciences Uttarakhand Open University Haldwani, Nainital 2-Dr. Harsh Bodh Paliwal 2 & 3 Asst Prof. (Senior Grade) School of Forestry & Environment SHIATS Deemed University, Naini, Allahabad 3-Dr.
    [Show full text]
  • I BSC II SEMESTER CBCS BOTANY PAPER-II Plant Ecology, Phytogeography, Plant Pathology
    I BSC II SEMESTER CBCS BOTANY PAPER-II Plant ecology, Phytogeography, Plant Pathology SREE SIDDAGANGA COLLEGE OF ARTS, SCIENCE and COMMERCE B.H. ROAD, TUMKUR (AFFILIATED TO TUMKUR UNIVERSITY) BOTANY PAPER-II STUDY MATERIAL K.S.Gitanjali Page 1 I BSC II SEMESTER CBCS BOTANY PAPER-II Plant ecology, Phytogeography, Plant Pathology UNIT-1 (2 Hr) Introduction and Scope of Ecology The branch of Biology that deals with the study of interrelationships and interdependence between biotic and Abiotic factors in an environment is called “Ecology or “Environmental biology”. In 1886 German Zoologist Ernst Haekal coined the term ‘Ecology’. It is derived from Greek words where ‘Oikos ‘means ‘home’. And ‘logos’ means ‘to study’. Odum Defines Ecology as “The study of structure and function of nature”. The term ‘Environment is derived from French word where ‘Environer’ means ‘to encircle ‘or ‘to surround’. “The study of interactions of man with the living and non living components of environment and interdisciplinary field study is referred as “Environmental studies”. SCOPE OF ECOLOGY 1. Study of Ecology provides knowledge for proper maintenance of natural resources. 2. It helps to understand the harmful effects of pollution, need for its control. 3. It provides knowledge about population, their interactions with environment. And necessity of maintenance of delicate balance between living and none living components of nature. 4. It provides Knowledge on Biodiversity, their types, reasons of depletion, their importance and methods of conservation. 5. It helps to take suitable steps to prevent the extinction of species and protect endangered (Species towards extinction) and endemic (Species restricted to a particular geographical region) species.
    [Show full text]
  • Seed Dispersal Distances: a Typology Based on Dispersal Modes and Plant Traits
    Bot. Helv. 117 (2007): 109 – 124 0253-1453/07/020109-16 DOI 10.1007/s00035-007-0797-8 Birkhäuser Verlag, Basel, 2007 Botanica Helvetica Seed dispersal distances: a typology based on dispersal modes and plant traits Pascal Vittoz1 and Robin Engler2 1 Faculty of Geosciences and Environment, University of Lausanne, Bâtiment Biophore, CH-1015 Lausanne, Switzerland; e-mail: [email protected] (corresponding author) 2 Department of Ecology and Evolution, University of Lausanne, Bâtiment Biophore, CH-1015 Lausanne, Switzerland; e-mail: [email protected] Manuscript accepted 14 May 2007 Abstract Vittoz P. and Engler R. 2007. Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot. Helv. 117: 109 – 124. The ability of plants to disperse seeds may be critical for their survival under the current constraints of landscape fragmentation and climate change. Seed dispersal distance would therefore be an important variable to include in species distribution models. Unfortunately, data on dispersal distances are scarce, and seed dispersal models only exist for some species with particular dispersal modes. To overcome this lack of knowledge, we propose a simple approach to estimate seed dispersal distances for a whole regional flora. We reviewed literature about seed dispersal in temperate regions and compiled data for dispersal distances together with information about the dispersal mode and plant traits. Based on this information, we identified seven “dispersal types” with similar dispersal distances. For each type, upper limits for the distance within which 50% and 99% of a species seeds will disperse were estimated with the 80th percentile of the available values.
    [Show full text]
  • A Historical Perspective on Problems in Botany Teaching
    A Historical Perspective on Problems in Botany Teaching David R. Hershey B OZNIAK (1994) and Uno (1994) have recently en Age of Botany Teaching" dozens of botany text- called attention to some of the many problems books were published by the leading botanical scien- facing botany teaching,but their analyses lacked tists of the day including Asa Gray, Francis Darwin, a historicalperspective. This article discusses how the CharlesBessey, JohnCoulter and LibertyHyde Bailey. many problems in botany teaching are interrelated, The last three were Presidents of the American Asso- and most have existed since at least the early 1900s.In ciation for the Advancement of Science. There was this article, botany is defined as the whole field of even a complaint that there were too many botany Downloaded from http://online.ucpress.edu/abt/article-pdf/58/6/340/47662/4450174.pdf by guest on 02 October 2021 plant biology encompassing any discipline with a textbooks (Beal 1907). Botany teaching articles ap- majorfocus on the plant kingdom, including horticul- peared in leading researchjournals like Scienceand the ture, agronomy, forestry, plant pathology, weed sci- BotanicalGazette, there were manuals on high school ence, plant physiology, plant morphology, plant ge- botany teaching (Ganong 1910,Lloyd 1907),there was netics, plant ecology, plant taxonomy, etc. Botany a botany science projectbook for students (Osterhout teaching at both the precollege and introductorycol- 1905), and numerous botany education articles ap- lege levels will be considered. peared in School Scienceand Mathematicsand other educationjournals. Botany was also a majorpart of the Botany Neglect in Biology Teaching nature study and school gardening movements (Big- elow 1911).
    [Show full text]