Cortico–Amygdala–Striatal Circuits Are Organized As Hierarchical Subsystems Through the Primate Amygdala

Total Page:16

File Type:pdf, Size:1020Kb

Cortico–Amygdala–Striatal Circuits Are Organized As Hierarchical Subsystems Through the Primate Amygdala The Journal of Neuroscience, August 28, 2013 • 33(35):14017–14030 • 14017 Systems/Circuits Cortico–Amygdala–Striatal Circuits Are Organized as Hierarchical Subsystems through the Primate Amygdala Youngsun T. Cho,1 Monique Ernst,3 and Julie L. Fudge1,2 1Department of Neurobiology and Anatomy and 2Department of Psychiatry, University of Rochester Medical Center, Rochester, New York 14642, and 3National Institute of Mental Health/National Institutes of Health, Emotional Development and Affective Neuroscience Branch, Bethesda, Maryland 20892 The prefrontal and insula cortex, amygdala, and striatum are key regions for emotional processing, yet the amygdala’s role as an interface between the cortex and striatum is not well understood. In the nonhuman primate (Macaque fascicularis), we analyzed a collection of bidirectional tracer injections in the amygdala to understand how cortical inputs and striatal outputs are organized to form integrated cortico–amygdala–striatal circuits. Overall, diverse prefrontal and insular cortical regions projected to the basal and accessory basal nuclei of the amygdala. In turn, these amygdala regions projected to widespread striatal domains extending well beyond the classic ventral striatum. Analysis of the cases in aggregate revealed a topographic colocalization of cortical inputs and striatal outputs in the amygdala that was additionally distinguished by cortical cytoarchitecture. Specifically, the degree of cortical laminar differentiation of the cortical inputs predicted amygdalostriatal targets, and distinguished three main cortico–amygdala–striatal circuits. These three circuits were categorized as “primitive,” “intermediate,” and “developed,” respectively, to emphasize the relative phylogenetic and ontogenetic features of the cortical inputs. Within the amygdala, these circuits appeared arranged in a pyramidal-like fashion, with the primitive circuit found in all examined subregions, and subsequent circuits hierarchically layered in discrete amygdala subregions. This arrangement suggests a stepwise integration of the functions of these circuits across amygdala subregions, providing a potential mech- anism through which internal emotional states are managed with external social and sensory information toward emotionally informed complex behaviors. Introduction 1981; Amaral and Price, 1984; Ghashghaei et al., 2007; Ho¨istad Emotions color everyday experiences, providing direction and and Barbas, 2008). Medial (mPFC) and orbital (OFC) PFC sub- motivation for action (Damasio, 1996). The amygdala is a key divisions, which are less differentiated than nearby isocortex structure in emotional processing (LeDoux, 1992; Lang and Da- (Sanides, 1964; Pandya and Yeterian, 1990; Carmichael and vis, 2006). Consistent with its complex structure and connec- Price, 1994), have the strongest connections (Carmichael and tions, the amygdala mediates a range of functions, including fear Price, 1995; Ghashghaei and Barbas, 2002; Ghashghaei et al., conditioning and extinction (Phillips and LeDoux, 1992; Maren 2007). These relatively primitive (i.e., phylogenetically older) re- and Quirk, 2004; Phelps et al., 2004; Herry et al., 2006), updating gions are associated with more automatic, unconscious pro- value representations (Ma´lkova´ et al., 1997), recognition of facial cesses, compared with the cognitive functions of isocortex (Ray expressions (Whalen et al., 1998), and affective responses to pri- and Zald, 2012). Although a separate lobe, the insula cortex is mary rewards (Nishijo et al., 1988; Belova et al., 2007). Classic analogously organized with a relatively undifferentiated anterior tract-tracing studies in primates (Carmichael and Price, 1995; subdivision that progresses to a granular organization posteriorly Ghashghaei et al., 2007) and neuroimaging work in humans (Say- (Mesulam and Mufson, 1982). Like more primitive PFC regions, gin et al., 2011; 2012) indicate that these diverse functions depend the anterior insula mediates awareness of internal states (May- on specific combinations of precise neuronal inputs. berg et al., 1999; Damasio et al., 2000; Craig, 2002; Paulus and In primates, the expanded prefrontal cortex (PFC) and insular Stein, 2006). Not surprisingly, abnormal PFC-amygdala and cortices send large projections to the amygdala (Mufson et al., insula-amygdala functional connectivity is well documented in individuals with mood and anxiety disorders, suggesting Received Jan. 10, 2013; revised July 14, 2013; accepted July 18, 2013. ineffective communication between these nodes during states Author contributions: J.L.F. designed research; Y.T.C. and J.L.F. performed research; Y.T.C. and J.L.F. analyzed of emotional disturbance (Etkin et al., 2010; Fonzo et al., 2010; data; Y.T.C., M.E., and J.L.F. wrote the paper. Moses-Kolko et al., 2010; Almeida et al., 2011). This work was funded through support of the National Institutes of Mental Health F30 MH09126 (Y.T.C.) and R01MH63291 (J.L.F.), and the Clinical and Translational Sciences Institute TL1RR024135 (Y.T.C.). We thank Owen The ventral striatum, historically conceptualized as an inter- Zacharias for his photography and Daniel Tylee for assistance with histology and immunocytochemistry. We also face for translating emotional information into complex motor acknowledge helpful criticisms and comments on a draft of this manuscript from Dr. Lizabeth Romanski. responses (Mogenson et al., 1980), receives strong inputs from The authors declare no competing financial interests. the amygdala, particularly from the basal and accessory basal Correspondence should be addressed to Julie L. Fudge, Department of Neurobiology and Anatomy, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642. E-mail: [email protected]. nuclei (Russchen et al., 1985; Friedman et al., 2002; Fudge et al., DOI:10.1523/JNEUROSCI.0170-13.2013 2002). Afferents from these nuclei are thought to facilitate re- Copyright © 2013 the authors 0270-6474/13/3314017-14$15.00/0 sponse selection in the striatum by influencing striatal plastic- 14018 • J. Neurosci., August 28, 2013 • 33(35):14017–14030 Cho et al. • Cortico–Amygdala–Striatal Circuits Figure 1. Schematic of injection sites in the macaque amygdala. A, Coronal section of the macaque amygdala stained with AChE. Scale bar, 1 mm. Amygdala nuclei and subnuclei display differential AChE immunoreactivity. B, Schematic of injection sites in the accessory basal (green) and basal nuclei (yellow) at approximately the same level as A. C, Schematic of injection sites in the caudal amygdala. D, Coronal section of the caudal amygdala at approximately the same level as C stained with AChE. Scale bar, 1 mm. E, Photomicrograph of J15LY injection into the centromedial Bpc taken with dark-field microscopy. Scale bar, 0.5 mm. Arrow points to the center of the injection site. F, AChE-stained section adjacent to E. Scale bar, 0.5 mm. G, Photomicrograph of J20FS injection encompassing both ABmc and ABpc taken with dark-field microscopy. Scale bar, 0.5 mm. Arrow points to the center of the injection site. H, AChE-stained section adjacent to G. Scale bar, 0.5mm.AHA,amygdalohippocampalarea;Bi,basalnucleus,intermediatesubdivision;CeL,centralnucleus,lateralcore;CeM,centralnucleus,medialsubdivision;H,hippocampus;L,lateralnucleus; M, medial nucleus; OT, optic tract; P, putamen; PAC, periamygdaloid cortex; V, ventricle. ity during corticostriatal throughput, and by coordinating (Fudge et al., 2004, 2012). Before surgery, animals were placed under cue-outcome associations (Popescu et al., 2007, 2009; Am- deep surgical anesthesia with intravenous pentobarbital (initial dose broggi et al., 2008; McGinty and Grace, 2009; Li et al., 2011; 20 mg/kg, i.v.) following an initial intramuscular injection of ket- Stuber et al., 2011). Amygdalostriatal projections also target amine (10 mg/kg). Monkeys were stabilized in a stereotactic head the caudoventral striatum posterior to the anterior commis- frame, and sterile procedure was followed. To visualize cortical sur- sure (Russchen et al., 1985; Fudge et al., 2002, 2004), suggest- face landmarks, a craniotomy was done. Internal landmarks were ing engagement of additional striatal domains in motivated determined with electrophysiologic mapping. Small injections (40 nl) of the bidirectional tracers Lucifer yellow (LY), Fluorescein (FS), and behaviors. Fluoro-Ruby (FR; Invitrogen) were pressure injected into subregions Cortical inputs are key influences on amygdala function, and of the amygdala nuclei. in turn, on the gating of striatal responses (Cardinal et al., 2002; Ten to 12 d after surgery the animals were deeply anesthetized and Ernst and Fudge, 2009). Although connections between the PFC/ killed by intracardiac perfusion with 0.9% saline containing 0.5 ml of insula and amygdala, and amygdala and striatum, have previ- heparin sulfate (200 ml/min for 10 min), followed by a cold solution of ously been detailed in separate studies, these two arms of the 4% paraformaldehyde in 0.1 M phosphate buffer (PB)/30% sucrose solu- cortical–amygdala–striatal circuit have yet to be described within tion (100 ml/min for 1 h). Brains were postfixed overnight and cryopro- the same animal. Using bidirectional tracers in various amygdala tected in increasing gradients of sucrose (10, 20, and 30%). After sites, we examined both circuits simultaneously within the same perfusion and postfixation, brains were sectioned on a freezing, sliding animal and amygdala subregion to more fully understand the microtome
Recommended publications
  • Abnormalities of Grey and White Matter [11C]Flumazenil Binding In
    Brain (2002), 125, 2257±2271 Abnormalities of grey and white matter [11C]¯umazenil binding in temporal lobe epilepsy with normal MRI A. Hammers,1,2,3 M. J. Koepp,1,2,3 R. Hurlemann,2 M. Thom,2 M. P. Richardson,1,2,3 D. J. Brooks1 and J. S. Duncan1,2,3 1MRC Clinical Sciences Centre and Division of Correspondence to: Professor John S. Duncan, MA, DM, Neuroscience, Faculty of Medicine, Imperial College, FRCP, National Society for Epilepsy and Institute of 2Department of Clinical and Experimental Epilepsy, Neurology, 33 Queen Square, London WC1N 3BG, UK Institute of Neurology, University College London, London E-mail: [email protected] and 3National Society for Epilepsy MRI Unit, Chalfont St Peter, UK Summary In 20% of potential surgical candidates with refrac- the 16 patients with abnormalities, ®ndings were con- tory epilepsy, current optimal MRI does not identify cordant with EEG and clinical data, enabling further the cause. GABA is the principal inhibitory neuro- presurgical evaluation. Group ®ndings were: (i) transmitter in the brain, and GABAA receptors are decreased FMZ-Vd in the ipsilateral (Z = 3.01) and expressed by most neurones. [11C]Flumazenil (FMZ) contralateral (Z = 2.56) hippocampus; (ii) increased PET images the majority of GABAA receptor sub- FMZ-Vd in the ipsilateral (Z = 3.71) and contralat- types. We investigated abnormalities of FMZ binding eral TLWM (two clusters, Z = 3.11 and 2.79); and in grey and white matter in 18 patients with refrac- (iii) increased FMZ-Vd in the ipsilateral frontal lobe tory temporal lobe epilepsy (TLE) and normal quan- white matter between the superior and medial frontal titative MRI.
    [Show full text]
  • The Connexions of the Amygdala
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method.
    [Show full text]
  • Corticostriatal Interactions During Learning, Memory Processing, and Decision Making
    The Journal of Neuroscience, October 14, 2009 • 29(41):12831–12838 • 12831 Mini-Symposium Corticostriatal Interactions during Learning, Memory Processing, and Decision Making Cyriel M. A. Pennartz,1 Joshua D. Berke,2,3 Ann M. Graybiel,4,5 Rutsuko Ito,6 Carien S. Lansink,1 Matthijs van der Meer,7 A. David Redish,7 Kyle S. Smith,4,5 and Pieter Voorn8 1University of Amsterdam, Swammerdam Institute for Life Sciences Center for Neuroscience, 1098 XH Amsterdam, The Netherlands, 2Department of Psychology and 3Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109, 4Department of Brain and Cognitive Sciences and 5McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, 6Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom, 7Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, and 8Department of Anatomy, Research Institute Neurosciences, Vrije Universiteit University Medical Center, 1007 MB Amsterdam, The Netherlands This mini-symposium aims to integrate recent insights from anatomy, behavior, and neurophysiology, highlighting the anatom- ical organization, behavioral significance, and information-processing mechanisms of corticostriatal interactions. In this sum- mary of topics, which is not meant to provide a comprehensive survey, we will first review the anatomy of corticostriatal circuits, comparing different ways by which “loops” of cortical–basal ganglia circuits communicate. Next, we will address the causal importance and systems-neurophysiological mechanisms of corticostriatal interactions for memory, emphasizing the communi- cation between hippocampus and ventral striatum during contextual conditioning. Furthermore, ensemble recording techniques have been applied to compare information processing in the dorsal and ventral striatum to predictions from reinforcement learning theory.
    [Show full text]
  • Hippocampal–Caudate Nucleus Interactions Support Exceptional Memory Performance
    Brain Struct Funct DOI 10.1007/s00429-017-1556-2 ORIGINAL ARTICLE Hippocampal–caudate nucleus interactions support exceptional memory performance Nils C. J. Müller1 · Boris N. Konrad1,2 · Nils Kohn1 · Monica Muñoz-López3 · Michael Czisch2 · Guillén Fernández1 · Martin Dresler1,2 Received: 1 December 2016 / Accepted: 24 October 2017 © The Author(s) 2017. This article is an open access publication Abstract Participants of the annual World Memory competitive interaction between hippocampus and caudate Championships regularly demonstrate extraordinary mem- nucleus is often observed in normal memory function, our ory feats, such as memorising the order of 52 playing cards findings suggest that a hippocampal–caudate nucleus in 20 s or 1000 binary digits in 5 min. On a cognitive level, cooperation may enable exceptional memory performance. memory athletes use well-known mnemonic strategies, We speculate that this cooperation reflects an integration of such as the method of loci. However, whether these feats the two memory systems at issue-enabling optimal com- are enabled solely through the use of mnemonic strategies bination of stimulus-response learning and map-based or whether they benefit additionally from optimised neural learning when using mnemonic strategies as for example circuits is still not fully clarified. Investigating 23 leading the method of loci. memory athletes, we found volumes of their right hip- pocampus and caudate nucleus were stronger correlated Keywords Memory athletes · Method of loci · Stimulus with each other compared to matched controls; both these response learning · Cognitive map · Hippocampus · volumes positively correlated with their position in the Caudate nucleus memory sports world ranking. Furthermore, we observed larger volumes of the right anterior hippocampus in ath- letes.
    [Show full text]
  • Rhesus Monkey Brain Atlas Subcortical Gray Structures
    Rhesus Monkey Brain Atlas: Subcortical Gray Structures Manual Tracing for Hippocampus, Amygdala, Caudate, and Putamen Overview of Tracing Guidelines A) Tracing is done in a combination of the three orthogonal planes, as specified in the detailed methods that follow. B) Each region of interest was originally defined in the right hemisphere. The labels were then reflected onto the left hemisphere and all borders checked and adjusted manually when necessary. C) For the initial parcellation, the user used the “paint over function” of IRIS/SNAP on the T1 template of the atlas. I. Hippocampus Major Boundaries Superior boundary is the lateral ventricle/temporal horn in the majority of slices. At its most lateral extent (subiculum) the superior boundary is white matter. The inferior boundary is white matter. The anterior boundary is the lateral ventricle/temporal horn and the amygdala; the posterior boundary is lateral ventricle or white matter. The medial boundary is CSF at the center of the brain in all but the most posterior slices (where the medial boundary is white matter). The lateral boundary is white matter. The hippocampal trace includes dentate gyrus, the CA3 through CA1 regions of the hippocamopus, subiculum, parasubiculum, and presubiculum. Tracing A) Tracing is done primarily in the sagittal plane, working lateral to medial a. Locate the most lateral extent of the subiculum, which is bounded on all sides by white matter, and trace. b. As you page medially, tracing the hippocampus in each slice, the superior, anterior, and posterior boundaries of the hippocampus become the lateral ventricle/temporal horn. c. Even further medially, the anterior boundary becomes amygdala and the posterior boundary white matter.
    [Show full text]
  • Cortical Layers: What Are They Good For? Neocortex
    Cortical Layers: What are they good for? Neocortex L1 L2 L3 network input L4 computations L5 L6 Brodmann Map of Cortical Areas lateral medial 44 areas, numbered in order of samples taken from monkey brain Brodmann, 1908. Primary visual cortex lamination across species Balaram & Kaas 2014 Front Neuroanat Cortical lamination: not always a six-layered structure (archicortex) e.g. Piriform, entorhinal Larriva-Sahd 2010 Front Neuroanat Other layered structures in the brain Cerebellum Retina Complexity of connectivity in a cortical column • Paired-recordings and anatomical reconstructions generate statistics of cortical connectivity Lefort et al. 2009 Information flow in neocortical microcircuits Simplified version “computational Layer 2/3 layer” Layer 4 main output Layer 5 main input Layer 6 Thalamus e - excitatory, i - inhibitory Grillner et al TINS 2005 The canonical cortical circuit MAYBE …. DaCosta & Martin, 2010 Excitatory cell types across layers (rat S1 cortex) Canonical models do not capture the diversity of excitatory cell classes Oberlaender et al., Cereb Cortex. Oct 2012; 22(10): 2375–2391. Coding strategies of different cortical layers Sakata & Harris, Neuron 2010 Canonical models do not capture the diversity of firing rates and selectivities Why is the cortex layered? Do different layers have distinct functions? Is this the right question? Alternative view: • When thinking about layers, we should really be thinking about cell classes • A cells class may be defined by its input connectome and output projectome (and some other properties) • The job of different classes is to (i) make associations between different types of information available in each cortical column and/or (ii) route/gate different streams of information • Layers are convenient way of organising inputs and outputs of distinct cell classes Excitatory cell types across layers (rat S1 cortex) INTRATELENCEPHALIC (IT) | PYRAMIDAL TRACT (PT) | CORTICOTHALAMIC (CT) From Cereb Cortex.
    [Show full text]
  • Odour Discrimination Learning in the Indian Greater Short-Nosed Fruit Bat
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb175364. doi:10.1242/jeb.175364 RESEARCH ARTICLE Odour discrimination learning in the Indian greater short-nosed fruit bat (Cynopterus sphinx): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus Murugan Mukilan1, Wieslaw Bogdanowicz2, Ganapathy Marimuthu3 and Koilmani Emmanuvel Rajan1,* ABSTRACT transferred directly from the olfactory bulb to the amygdala and Activity-dependent expression of immediate-early genes (IEGs) is then to the hippocampus (Wilson et al., 2004; Mouly and induced by exposure to odour. The present study was designed to Sullivan, 2010). Depending on the context, the learning investigate whether there is differential expression of IEGs (Egr-1, experience triggers neurotransmitter release (Lovinger, 2010) and C-fos) in the brain region mediating olfactory memory in the Indian activates a signalling cascade through protein kinase A (PKA), greater short-nosed fruit bat, Cynopterus sphinx. We assumed extracellular signal-regulated kinase-1/2 (ERK-1/2) (English and that differential expression of IEGs in different brain regions may Sweatt, 1997; Yoon and Seger, 2006; García-Pardo et al., 2016) and orchestrate a preference odour (PO) and aversive odour (AO) cyclic AMP-responsive element binding protein-1 (CREB-1), memory in C. sphinx. We used preferred (0.8% w/w cinnamon which is phosphorylated by ERK-1/2 (Peng et al., 2010). powder) and aversive (0.4% w/v citral) odour substances, with freshly Activated CREB-1 induces expression of immediate-early genes prepared chopped apple, to assess the behavioural response and (IEGs), such as early growth response gene-1 (Egr-1) (Cheval et al., induction of IEGs in the olfactory bulb, hippocampus and amygdala.
    [Show full text]
  • Perspectives
    PERSPECTIVES reptiles, to birds and mammals, to primates OPINION and, finally, to humans — ascending from ‘lower’ to ‘higher’ intelligence in a chrono- logical series. They believed that the brains Avian brains and a new understanding of extant vertebrates retained ancestral structures, and, therefore, that the origin of of vertebrate brain evolution specific human brain subdivisions could be traced back in time by examining the brains of extant non-human vertebrates. In The Avian Brain Nomenclature Consortium* making such comparisons, they noted that the main divisions of the human CNS — Abstract | We believe that names have a pallium is nuclear, and the mammalian the spinal cord, hindbrain, midbrain, thala- powerful influence on the experiments we cortex is laminar in organization, the avian mus, cerebellum and cerebrum or telen- do and the way in which we think. For this pallium supports cognitive abilities similar cephalon — were present in all vertebrates reason, and in the light of new evidence to, and for some species more advanced than, (FIG. 1a). Edinger, however, noted that the about the function and evolution of the those of many mammals. To eliminate these internal organization of the telencephala vertebrate brain, an international consortium misconceptions, an international forum of showed the most pronounced differences of neuroscientists has reconsidered the neuroscientists (BOX 1) has, for the first time between species. In mammals, the outer traditional, 100-year-old terminology that is in 100 years, developed new terminology that part of the telencephalon was found to have used to describe the avian cerebrum. Our more accurately reflects our current under- prominently layered grey matter (FIG.
    [Show full text]
  • Amygdala Functional Connectivity, HPA Axis Genetic Variation, and Life Stress in Children and Relations to Anxiety and Emotion Regulation
    Journal of Abnormal Psychology © 2015 American Psychological Association 2015, Vol. 124, No. 4, 817–833 0021-843X/15/$12.00 http://dx.doi.org/10.1037/abn0000094 Amygdala Functional Connectivity, HPA Axis Genetic Variation, and Life Stress in Children and Relations to Anxiety and Emotion Regulation David Pagliaccio, Joan L. Luby, Ryan Bogdan, Arpana Agrawal, Michael S. Gaffrey, Andrew C. Belden, Kelly N. Botteron, Michael P. Harms, and Deanna M. Barch Washington University in St. Louis Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic- pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N ϭ 120). Whole-brain regression analyses indicated that increasing genetic “risk” predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic “risk” and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation.
    [Show full text]
  • The Roles of the Caudate Nucleus in Human Classification Learning
    The Journal of Neuroscience, March 16, 2005 • 25(11):2941–2951 • 2941 Behavioral/Systems/Cognitive The Roles of the Caudate Nucleus in Human Classification Learning Carol A. Seger and Corinna M. Cincotta Department of Psychology, Colorado State University, Fort Collins, Colorado 80523 The caudate nucleus is commonly active when learning relationships between stimuli and responses or categories. Previous research has not differentiated between the contributions to learning in the caudate and its contributions to executive functions such as feedback processing. We used event-related functional magnetic resonance imaging while participants learned to categorize visual stimuli as predicting “rain” or “sun.” In each trial, participants viewed a stimulus, indicated their prediction via a button press, and then received feedback. Conditions were defined on the bases of stimulus–outcome contingency (deterministic, probabilistic, and random) and feedback (negative and positive). A region of interest analysis was used to examine activity in the head of the caudate, body/tail of the caudate, and putamen. Activity associated with successful learning was localized in the body and tail of the caudate and putamen; this activity increased as the stimulus–outcome contingencies were learned. In contrast, activity in the head of the caudate and ventral striatum was associated most strongly with processing feedback and decreased across trials. The left superior frontal gyrus was more active for deterministic than probabilistic stimuli; conversely, extrastriate visual areas were more active for probabilistic than determin- istic stimuli. Overall, hippocampal activity was associated with receiving positive feedback but not with correct classification. Successful learning correlated positively with activity in the body and tail of the caudate nucleus and negatively with activity in the hippocampus.
    [Show full text]
  • The Ventral Striatum in Off-Line Processing: Ensemble Reactivation During Sleep and Modulation by Hippocampal Ripples
    6446 • The Journal of Neuroscience, July 21, 2004 • 24(29):6446–6456 Behavioral/Systems/Cognitive The Ventral Striatum in Off-Line Processing: Ensemble Reactivation during Sleep and Modulation by Hippocampal Ripples C. M. A. Pennartz,1 E. Lee,1 J. Verheul,1 P. Lipa,2 C. A. Barnes,2 and B. L. McNaughton2 1Graduate School of Neurosciences Amsterdam, University of Amsterdam, Faculty of Science, Swammerdam Institute for Life Sciences, 1090 GB, Amsterdam, The Netherlands, and 2Arizona Research Laboratories Division of Neural Systems, Memory, and Aging, University of Arizona, Tucson, Arizona 85724 Previously it has been shown that the hippocampus and neocortex can spontaneously reactivate ensemble activity patterns during post-behavioral sleep and rest periods. Here we examined whether such reactivation also occurs in a subcortical structure, the ventral striatum, which receives a direct input from the hippocampal formation and has been implicated in guidance of consummatory and conditioned behaviors. During a reward-searching task on a T-maze, flanked by sleep and rest periods, parallel recordings were made from ventral striatal ensembles while EEG signals were derived from the hippocampus. Statistical measures indicated a significant amount of reactivation in the ventral striatum. In line with hippocampal data, reactivation was especially prominent during post- behavioralslow-wavesleep,butunlikethehippocampus,nodecayinpatternrecurrencewasvisibleintheventralstriatumacrossthefirst 40 min of post-behavioral rest. We next studied the relationship between ensemble firing patterns in ventral striatum and hippocampal ripples–sharp waves, which have been implicated in pattern replay. Firing rates were significantly modulated in close temporal associ- ation with hippocampal ripples in 25% of the units, showing a marked transient enhancement in the average response profile.
    [Show full text]
  • The Claustrum: Three-Dimensional Reconstruction, Photorealistic Imaging, and Stereotactic Approach
    Folia Morphol. Vol. 70, No. 4, pp. 228–234 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The claustrum: three-dimensional reconstruction, photorealistic imaging, and stereotactic approach S. Kapakin Department of Anatomy, Faculty of Medicine, Atatürk University, Erzurum, Turkey [Received 7 July 2011; Accepted 25 September 2011] The purpose of this study was to reveal the computer-aided three-dimensional (3D) appearance, the dimensions, and neighbourly relations of the claustrum and make a stereotactic approach to it by using serial sections taken from the brain of a human cadaver. The Snake technique was used to carry out 3D reconstructions of the claustra and surrounding structures. The photorealistic imaging and stereo- tactic approach were rendered by using the Advanced Render Module in Cinema 4D software. The claustrum takes the form of the concavity of the insular cortex and the convexity of the putamen. The inferior border of the claustrum is at about the same level as the bottom edge of the insular cortex and the putamen, but the superior border of the claustrum is at a lower level than the upper edge of the insular cortex and the putamen. The volume of the right claustrum, in the dimen- sions of 35.5710 mm ¥ 1.0912 mm ¥ 16.0000 mm, was 828.8346 mm3, and the volume of the left claustrum, in the dimensions of 32.9558 mm ¥ 0.8321 mm ¥ ¥ 19.0000 mm, was 705.8160 mm3. The surface areas of the right and left claustra were calculated to be 1551.149697 mm2 and 1439.156450 mm2 by using Surf- driver software.
    [Show full text]