Odour Discrimination Learning in the Indian Greater Short-Nosed Fruit Bat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Connexions of the Amygdala
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method. -
Olfaction and Olfactory Learning in Drosophila: Recent Progress Andre´ Fiala
Olfaction and olfactory learning in Drosophila: recent progress Andre´ Fiala The olfactory system of Drosophila resembles that of experience. For example, an odor repetitively paired with vertebrates in its overall anatomical organization, but is a food reward becomes attractive. Conversely, an odor considerably reduced in terms of cell number, making it an ideal that often occurs concurrently with a punishment model system to investigate odor processing in a brain becomes a predictor for a negative situation and will be [Vosshall LB, Stocker RF: Molecular architecture of smell avoided. Drosophila melanogaster can easily perform such and taste in Drosophila. Annu Rev Neurosci 2007, 30:505- learning tasks and represents an excellent organism to 533]. Recent studies have greatly increased our knowledge investigate the neuronal mechanisms underlying such about odor representation at different levels of integration, from olfactory learning processes for two reasons. First, con- olfactory receptors to ‘higher brain centers’. In addition, siderable progress has already been made during recent Drosophila represents a favourite model system to study the years in analyzing how odors are represented in the fly’s neuronal basis of olfactory learning and memory, and brain [1]. Second, the powerful genetic techniques by considerable progress during the last years has been made in which structure and function of identified neurons can be localizing the structures mediating olfactory learning and observed and manipulated makes Drosophila an ideal memory [Davis RL: Olfactory memory formation in neurobiological model system to characterize a neuronal Drosophila: from molecular to systems neuroscience. Annu network that mediates olfactory learning and memory [2– Rev Neurosci 2005, 28:275-302; Gerber B, Tanimoto H, 4]. -
Rhesus Monkey Brain Atlas Subcortical Gray Structures
Rhesus Monkey Brain Atlas: Subcortical Gray Structures Manual Tracing for Hippocampus, Amygdala, Caudate, and Putamen Overview of Tracing Guidelines A) Tracing is done in a combination of the three orthogonal planes, as specified in the detailed methods that follow. B) Each region of interest was originally defined in the right hemisphere. The labels were then reflected onto the left hemisphere and all borders checked and adjusted manually when necessary. C) For the initial parcellation, the user used the “paint over function” of IRIS/SNAP on the T1 template of the atlas. I. Hippocampus Major Boundaries Superior boundary is the lateral ventricle/temporal horn in the majority of slices. At its most lateral extent (subiculum) the superior boundary is white matter. The inferior boundary is white matter. The anterior boundary is the lateral ventricle/temporal horn and the amygdala; the posterior boundary is lateral ventricle or white matter. The medial boundary is CSF at the center of the brain in all but the most posterior slices (where the medial boundary is white matter). The lateral boundary is white matter. The hippocampal trace includes dentate gyrus, the CA3 through CA1 regions of the hippocamopus, subiculum, parasubiculum, and presubiculum. Tracing A) Tracing is done primarily in the sagittal plane, working lateral to medial a. Locate the most lateral extent of the subiculum, which is bounded on all sides by white matter, and trace. b. As you page medially, tracing the hippocampus in each slice, the superior, anterior, and posterior boundaries of the hippocampus become the lateral ventricle/temporal horn. c. Even further medially, the anterior boundary becomes amygdala and the posterior boundary white matter. -
Variants of Olfactory Memory and Their Dependencies on the Hippocampal Formation
The Journal of Neuroscience, February 1995, f5(2): 1162-i 171 Variants of Olfactory Memory and Their Dependencies on the Hippocampal Formation Ursula Sttiubli,’ To-Tam Le,2 and Gary Lynch* ‘Center for Neural Science, New York University, New York, New York 10003 and *Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92717 Olfactory memory in control rats and in animals with entor- pal pyramidal cells (e.g., Hjorth-Simonsen, 1972; Witter, 1993). hinal cortex lesions was tested in four paradigms: (1) a known Moreover, physiological activity in rat hippocampus becomes correct odor was present in a group of familiar but nonre- synchronized with that in the olfactory bulb and cortex during warded odors, (2) six known correct odors were simulta- odor sampling(Macrides et al., 1982). Theseobservations have neously present in a maze, (3) correct responses required prompted speculationand experimentation concerning the pos- the learning of associations between odors and objects, and sible contributions of the several stagesof the olfactory-hip- (4) six odors, each associated with a choice between two pocampal circuit to the encoding and use of memory. Lesions objects, were presented simultaneously. Control rats had no to the lateral entorhinal cortex, which separatethe hippocampus difficulty with the first problem and avoided repeating se- from its primary source of olfactory input, did not detectably lections in the second; this latter behavior resembles that affect the ability of rats to perform odor discriminations learned reported for spatial mazes but, in the present experiments, prior to surgery although they did disrupt the learning of new was not dependent upon memory for the configuration of discriminations (Staubli et al., 1984, 1986).This result suggested pertinent cues. -
Noradrenergic Activity in the Olfactory Bulb Is a Key Element for the Stability of Olfactory Memory
9260 • The Journal of Neuroscience, November 25, 2020 • 40(48):9260–9271 Behavioral/Cognitive Noradrenergic Activity in the Olfactory Bulb Is a Key Element for the Stability of Olfactory Memory Christiane Linster,1 Maellie Midroit,2 Jeremy Forest,2 Yohann Thenaisie,2 Christina Cho,1 Marion Richard,2 Anne Didier,2 and Nathalie Mandairon2 1Computational Physiology Laboratory, Department of Neurobiolgy and Behavior, Cornell University, Ithaca, New York 14850, and 2Institut National de la Santé et de la Recherche Médicale U1028, CNRS UMR 5292, and Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon Neuroscience Research Center, University of Lyon, F-69000 Lyon, France Memory stability is essential for animal survival when environment and behavioral state change over short or long time spans. The stability of a memory can be expressed by its duration, its perseverance when conditions change as well as its specificity to the learned stimulus. Using optogenetic and pharmacological manipulations in male mice, we show that the presence of noradrenaline in the olfactory bulb during acquisition renders olfactory memories more stable. We show that while inhibition of noradrenaline transmission during an odor–reward acquisition has no acute effects, it alters perseverance, duration, and specificity of the memory. We use a computational approach to propose a proof of concept model showing that a single, simple network effect of noradrenaline on olfactory bulb dynamics can underlie these seemingly different be- havioral effects. Our results show that acute changes in network dynamics can have long-term effects that extend beyond the network that was manipulated. Key words: computational; memory; noradrenaline; olfactory; stability Significance Statement Olfaction guides the behavior of animals. -
Amygdala Functional Connectivity, HPA Axis Genetic Variation, and Life Stress in Children and Relations to Anxiety and Emotion Regulation
Journal of Abnormal Psychology © 2015 American Psychological Association 2015, Vol. 124, No. 4, 817–833 0021-843X/15/$12.00 http://dx.doi.org/10.1037/abn0000094 Amygdala Functional Connectivity, HPA Axis Genetic Variation, and Life Stress in Children and Relations to Anxiety and Emotion Regulation David Pagliaccio, Joan L. Luby, Ryan Bogdan, Arpana Agrawal, Michael S. Gaffrey, Andrew C. Belden, Kelly N. Botteron, Michael P. Harms, and Deanna M. Barch Washington University in St. Louis Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic- pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N ϭ 120). Whole-brain regression analyses indicated that increasing genetic “risk” predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic “risk” and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. -
Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex
9414 • The Journal of Neuroscience, December 2, 2020 • 40(49):9414–9425 Systems/Circuits Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex Marco J. Russo,1 Kevin M. Franks,1 Roxanne Oghaz,1 Richard Axel,2 and Steven A. Siegelbaum3 1Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, 2Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, and 3Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York Odors activate distributed ensembles of neurons within the piriform cortex, forming cortical representations of odor thought to be essential to olfactory learning and behaviors. This odor response is driven by direct input from the olfactory bulb, but is also shaped by a dense network of associative or intracortical inputs to piriform, which may enhance or constrain the cort- ical odor representation. With optogenetic techniques, it is possible to functionally isolate defined inputs to piriform cortex and assess their potential to activate or inhibit piriform pyramidal neurons. The anterior olfactory nucleus (AON) receives direct input from the olfactory bulb and sends an associative projection to piriform cortex that has potential roles in the state-dependent processing of olfactory behaviors. Here, we provide a detailed functional assessment of the AON afferents to piriform in male and female C57Bl/6J mice. We confirm that the AON forms glutamatergic excitatory synapses onto piriform pyramidal neurons; and while these inputs are not as strong as piriform recurrent collaterals, they are less constrained by disynaptic inhibition. -
A Cortical Pathway Modulates Sensory Input Into the Olfactory Striatum 3 4 5 Kate A
bioRxiv preprint doi: https://doi.org/10.1101/235291; this version posted December 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 A cortical pathway modulates sensory input into the olfactory striatum 3 4 5 Kate A. White1,2,3, Yun-Feng Zhang4, Zhijian Zhang5, Janardhan P. Bhattarai4, Andrew 6 H. Moberly4, Estelle in ‘t Zandt1,2, Huijie Mi6, Xianglian Jia7, Marc V. Fuccillo4, Fuqiang 7 Xu5, Minghong Ma4, Daniel W. Wesson1,2,3* 8 9 1Department of Pharmacology & Therapeutics 10 2Center for Smell and Taste 11 University of Florida 12 1200 Newell Dr.; Gainesville, FL, 32610. U.S.A. 13 3Department of Neurosciences 14 Case Western Reserve University 15 2109 Adelbert Rd.; Cleveland, OH, 44106. U.S.A. 16 4Department of Neuroscience 17 University of Pennsylvania Perelman School of Medicine 18 211 CRB, 415 Curie Blvd; Philadelphia, PA, 19104. U.S.A 19 5Center for Brain Science 20 Wuhan Institute of Physics and Mathematics 21 Chinese Academy of Sciences 22 Wuhan 430071, China 23 6College of Life Sciences 24 Wuhan University 25 Wuhan 430072, China 26 7Shenzhen Institutes of Advanced Technology 27 Chinese Academy of Sciences 28 Shenzhen 518055, China 29 30 *corresponding author; [email protected] 31 RUNNING HEAD: Olfactory striatum input 32 33 Author Contributions: Conceptualization: K.A.W. and D.W.W.; Methodology: K.A.W., Z.Z., F.X., 34 M.M., and D.W.W.; Investigation: K.A.W., Y-F.Z., Z.Z., J.P.B., A.H.M., E.I.Z., H.M., and X.J.; 35 Resources: M.V.F.; Writing – Original Draft: K.A.W., Z.Z., M.M., and D.W.W.; Writing – Review & 36 Editing: all authors; Visualization: K.A.W., Z.Z., Y-F.Z., J.P.B., D.W.W.; Supervision: F.X., M.M., 37 and D.W.W.; Funding Acquisition: K.A.W., F.X., M.M., and D.W.W. -
Sheep Brain Dissection Sheep Brain External Anatomy Procedure
Sheep Brain Dissection Sheep Brain External Anatomy Procedure 1. Set the brain down so the flatter side, with the white spinal cord at one end, rests on the dissection pan. 2. Notice that the brain has two halves, or hemispheres. 3. Identify the cerebrum (frontal , temporal, parietal, and occipital lobes) and the cerebellum 4. Turn the brain over. 5. Identify the medulla, pons, midbrain, and olfactory bulbs. 6. Find the olfactory bulb on each hemisphere. These will be slightly smoother and a different shade than the tissue around them. The olfactory bulbs control the sense of smell. The nerves to the nose are no longer connected, but you can see nubby ends where they were. The nerves to your mouth and lower body are attached to the medulla; the nerves to your eyes are connected to the optic chiasm. Sheep Brain Dissection: Internal Anatomy 1. Place the brain with the cerebrum facing up. 2. Use a scalpel to slice through the brain along the center line, starting at the cerebrum and going down through the cerebellum, spinal cord, medulla, and pons. 3. Separate the two halves of the brain and lay them with the inside facing up. 4. Identify the corpus callosum, medulla, pons, midbrain, and the place where pituitary gland attaches to the brain. (In many preserved specimens the pituitary gland is no longer present.) 5. Use your fingers or a teasing needle to gently probe the parts and see how they are connected to each other. Sheep Brain Dissection: 1. Frontal Lobe 2. Temporal Lobe Internal Anatomy 3. -
Brain Gas Jay Hosler
Brain Gas Jay Hosler Consider the possibility that any man could, if he were so inclined, be the sculptor of his own brain. -Santiago Ramon y Cajal he fact that learning changes the brain in some fundamen- tal way is something many of us take for granted. But, in doing so, we fail to consider the wondrous nature of the event. Our Texperiences can lead to substantial changes in the physical, chem- ical and electrical architecture of our brains. These changes may give us the ability to memorize our favorite poem, sight-read a song we have never heard or remember the smell of our grandparents’ home. By restructuring our brains, we construct memories that can change our behavior and persist throughout our entire lives. My interests lie in how memories of odors are established. Odors play a fundamental role in the lives of most animals in directing reproductive behavior, guiding the search for food and communicating with friends and rivals. But despite odors’ pivotal role, olfaction may well be the most mysterious and hard to describe of our senses. In her book A Natural History of the Senses, Diane Ackerman points out the difficulty we have in describing ______________ Bookend Seminar Presentation, October 10, 2001 2002 39 smells. While we can identify colors in very specific terms (“that apple is red”), we tend to describe odors in terms of something else (“that smells fruity”) or in terms of how they make us feel (“that smells disgusting”). Perhaps it is difficult because smell is our most ancient sense. Unlike visual information that gets processed in our large and wrinkly cerebral cortex, the first stop for olfactory infor- mation is an ancient part of our brain called limbic system. -
Major Neurotransmitter Systems in Dorsal Hippocampus and Basolateral Amygdala Control Social Recognition Memory
Major neurotransmitter systems in dorsal hippocampus and basolateral amygdala control social recognition memory Carolina Garrido Zinna, Nicolas Clairisb, Lorena Evelyn Silva Cavalcantea, Cristiane Regina Guerino Furinia, Jociane de Carvalho Myskiwa,1,2, and Ivan Izquierdoa,1,2 aMemory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil; and bDépartement de Biologie, Ecole Normale Supérieure de Lyon, 69007 Lyon, France Contributed by Ivan Izquierdo, June 21, 2016 (sent for review May 23, 2016; reviewed by Federico Bermudez-Rattoni and Julietta Frey) Social recognition memory (SRM) is crucial for reproduction, forming structures in SRM. Historically, the next step to ascertain a pu- social groups, and species survival. Despite its importance, SRM is tative brain mechanism in a behavior is to examine the eventual still relatively little studied. Here we examine the participation of role of known neurotransmitters in those structures within the the CA1 region of the dorsal hippocampus (CA1) and the basolateral mechanism (13, 15). amygdala (BLA) and that of dopaminergic, noradrenergic, and his- Classic neurotransmitters, such as norepinephrine, dopamine, taminergic systems in both structures in the consolidation of SRM. and histamine, have been suggested to play a role on SRM; the Male Wistar rats received intra-CA1 or intra-BLA infusions of different pharmacological elevation or depletion of norepinephrine in the drugs immediately after the sample phase of a social discrimination central nervous system, respectively, enhances or disrupts social task and 24-h later were subjected to a 5-min retention test. Animals recognition in rats (18). -
Dynamic Impairment of Olfactory Behavior and Signaling Mediated by an Olfactory Corticofugal System
Research Articles: Systems/Circuits Dynamic impairment of olfactory behavior and signaling mediated by an olfactory corticofugal system https://doi.org/10.1523/JNEUROSCI.2667-19.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.2667-19.2020 Received: 10 November 2019 Revised: 30 June 2020 Accepted: 5 July 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 Journal Section 2 Systems/Circuits 3 4 Title 5 Dynamic impairment of olfactory behavior and signaling mediated by an olfactory 6 corticofugal system 7 8 Abbreviated title 9 Dynamic inhibition of olfactory sensory responses 10 11 Authors 12 Renata Medinaceli Quintela1, Jennifer Bauer1, Lutz Wallhorn1, Kim Le1, Daniela Brunert1, 13 Markus Rothermel1 14 15 1. Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH 16 Aachen University, Aachen 52074, Germany 17 18 19 Corresponding author 20 Markus Rothermel 21 RWTH Aachen University 22 D-52074 Aachen 23 [email protected] 24 25 Number of figures: 8 26 Number of tables: 1 27 Number of pages: 47 28 Abstract: 205 words 29 Introduction: 662 words 30 Discussion: 1949 words 31 32 Conflicts of interest 33 None 34 35 36 37 Acknowledgments 38 We thank Scott W. Rogers and Petr Tvrdik for kindly providing the Chrna7-Cre mice.