Study Material of Pests of Horticultural Crops and Their Management Ag
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AESA Based IPM – Brinjal
AESA BASED IPM Package No.22 AESA based IPM – Brinjal Pests Defenders Directorate of Plant Protection National Institute of Plant Health National Centre for Quarantine and Storage Management Integrated Pest Management N. H. IV, Faridabad, Haryana Rajendranagar, Hyderabad, A. P LBS Building, IARI Campus, New Delhi Department of Agriculture and Cooperation Ministry of Agriculture Government of India 1 The AESA based IPM - Brinjal, was compiled by the NIPHM working group under the Chairmanship of Dr. K. Satyagopal DG, NIPHM, and guidance of Shri. Utpal Kumar Singh JS (PP). The package was developed taking into account the advice of experts listed below on various occasions before finalization. NIPHM Working Group: Chairman : Dr. K. Satyagopal, IAS, Director General Vice-Chairmen : Dr. S. N. Sushil, Plant Protection Advisor : Dr. P. Jeyakumar, Director (PHM) Core Members : 1. Er. G. Shankar, Joint Director (PHE), Pesticide Application Techniques Expertise. 2. Dr. O. P. Sharma, Joint Director (A & AM), Agronomy Expertise. 3. Dr. Dhana Raj Boina, Assistant Director (PHM), Entomology Expertise. 4. Dr. Richa Varshney, Assistant Scientific Officer (PHM), Entomology Expertise. Other Members : 1. Dr. Satish Kumar Sain, Assistant Director (PHM), Pathology Expertise. 2. Dr. N. Srinivasa Rao, Assistant Director (RPM), Rodent Pest Management Expertise. 3 Dr. B. S. Sunanda, Assistant Scientific Officer (PHM), Nematology Expertise. Contributions by DPPQ&S Experts: 1. Shri. Ram Asre, Additional Plant Protection Advisor (IPM), 2. Dr. K. S. Kapoor, Deputy Director (Entomology), 3. Dr. Sanjay Arya, Deputy Director (Plant Pathology), 4. Dr. Subhash Kumar, Deputy Director (Weed Science) 5. Dr. C. S. Patni, Plant Protection Officer (Plant Pathology) Contributions by External Experts: 1. -
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
Bugs R All FINAL Apr 2014 R
ISSN 2230 ! 7052 Newsletter of the $WIU4#NNInvertebrate Conservation & Information Network of South Asia (ICINSA) No. 21, April 2014 Photo: Aniruddha & Vishal Vishal Aniruddha & Photo: Contents Pages !"#$%&'(')*$+",-$.%+"/0"1-)2"3%%4&%,"')"5)*)*"67*$*47'"8*(#-,"/0"6*)2*&/$%"9)'.%$,'4+"3+"!"#$%%&'()#*"#+,'-.%/)#0"#1,'-23)#*"# 4'5'/,'6('-#'67#1"8"#9'-2:;<:('-'## # #"""## """## """# """## """## """## """# """######### ########=>? :%;"<%=/$>"/0"!"#"$%&'#(' '()*(+&',&-('.?'=/"@A@@"B8/&%/#4%$*C"D%)%3$'/)'>*%C"8)/>*&/)')'E"0$/("F)>'*";5#@"#$"#A%B7%#C#D"#E'."""""GHI J>/)*4*"BF),%=4*E"0*-)*"/0"K*$*>//$L"M*))-$L"M%$*&*L"N/-47"F)>'*";5#@26'5'6#!"#8'2-O""""## """## """# """## """### ###"""""PH@Q <%=/$>"/0"&/)2H7/$)%>"2$*,,7/##%$L"0*%12-2,2*3$4".(-%,252*"N4/&&L"@RSR"BJ$47/#4%$*C"D%T2/)''>*%E"0$/("U*7*$*,74$*L"F)>'*L" ;'47"*>>'V/)*&">'*2)/,V="=7*$*=4%$,";5#F"#4"#9G.2)#H"!"#D,'I'6%##'67#1"*"#H'2(I'7 """## """## """# """## """## ########@@H@W :/4%"/)"47%"X$,4",'27V)2"/0"5%$>/)Y,"5-(#')2"!)4L"6"*$&1-"#42'.'"5#"#2*L"5%$>/)"@S@I"BZ+(%)/#4%$*L"[/$('='>*%L"?/)%$')*%E" ')"M*$)*&*"6'$>"N*)=4-*$+L"<*'2*>"1',4$'=4L"U*7*$*,74$*L"F)>'*";5#J62-<77,'#$,':G-2('-##C#@2/,'.#0'/'. ## """## """######################@\H@G ['$,4"$%=/$>"/0"#7/4/4*]',"')"47%"U'&%V)*%L"^+=*%)'>*%";5#J"8"#02KK'#'67#*"#*5:GG6 """ """## """## """## """"""""@I 1'.%$,'4+"*)>",%*,/)*&"/==-$$%)=%"/0"3-_%$`'%,"*4"5';*a'"9)'.%$,'4+"8*(#-,L"b;*&'/$L"U*>7+*"?$*>%,7" ;5#82.'7-2#$'/B<&L'#'67#0"#4"#0'G """## """## """# """## """## """## """ """## """## """## """#"""""""""""""""""""""@PH"WQ 6'/&/2+"/0"47%"(/47"7&#"-"'#*%".43*#",""8$*(%$"B^%#'>/#4%$*C"^*,'/=*(#'>*%E"/)"F)>'*)"6*>*("D$%%.0&*8%-"5%".,"#"$$" -
A Magyar Természettudományi Múzeum Évkönyve 79. (Budapest 1987)
ANNALES HISTORICO-NATURALES MUSEI NATIONALIS HUNGARICI Tomus 79. Budapest, 1987 p. 167-178. Taxonomic and zoogeographical studies on the subfamily Plusiinae (Lepidoptera, Noctuidae). The Palaeotropical, Oriental and Nearctic material of the Zoological Museum, Copenhagen by L. RONKAY, Budapest L. RONKAY: Taxonomic and zoogeographical studies on the subfamily Plusiinae (Lepidoptera, Noctuidae). The Palaeotropical, Oriental and Nearctic material of the Zoological Museum, Copen hagen. — Annls hist.-nat. Mus. natn. hung. 1987 79: 167-178. Abstract — Three new genera, Anaplusia gen. n., Extremoplusia gen. n. and Scriptoplusia gen. n. and one new species, Scriptoplusia noona sp. n. are described and an annotated list of 50 species from N America, Africa and the Oriental Region is given. With 26 figures and 1 photoplate. In 1986Ihadtthe opportunity to study the Palaeotropical, Nearctic and Indo-Australian Plusiinae material of the Zoological Museum of Copenhagen. During the course of this work I could study in details some species which had not been relagated to any described genera. These studies, based on the external and genitalic morphology including the characteristics of the vesica, have shown the necessity to erect three new genera for these taxa. — The whole material contains specimens of 50 species, one of them is new for science and there are several previously unknown distribution records of the species. I would like to express my thanks to Dr. Ole Karsholt (Zool. Mus., Copenhagen) for his exten sive help in this work and also to Dr. L. Gozmány (Budapest) for his useful advice. 1. DESCRIPriON OF THE NEW TAXA It is an interesting fact that there are some species, distributed over the Eastern-South eastern border of the Palaearctic Region to Indonesia, Australia and New Guinea, which appear to be remote from any well-known genera of the Eastern Tropical Plusiinae. -
Evolution of Insect Color Vision: from Spectral Sensitivity to Visual Ecology
EN66CH23_vanderKooi ARjats.cls September 16, 2020 15:11 Annual Review of Entomology Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology Casper J. van der Kooi,1 Doekele G. Stavenga,1 Kentaro Arikawa,2 Gregor Belušic,ˇ 3 and Almut Kelber4 1Faculty of Science and Engineering, University of Groningen, 9700 Groningen, The Netherlands; email: [email protected] 2Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan 3Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; email: [email protected] 4Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden; email: [email protected] Annu. Rev. Entomol. 2021. 66:23.1–23.28 Keywords The Annual Review of Entomology is online at photoreceptor, compound eye, pigment, visual pigment, behavior, opsin, ento.annualreviews.org anatomy https://doi.org/10.1146/annurev-ento-061720- 071644 Abstract Annu. Rev. Entomol. 2021.66. Downloaded from www.annualreviews.org Copyright © 2021 by Annual Reviews. Color vision is widespread among insects but varies among species, depend- All rights reserved ing on the spectral sensitivities and interplay of the participating photore- Access provided by University of New South Wales on 09/26/20. For personal use only. ceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal. -
Pacific Islands: Their Culture, (Syzygium Cumini) [Negative Impacts on Cultivation of Bananas] Environment, and Use
Family: Myrtaceae Taxon: Syzygium cumini Synonym: Eugenia cumini (L.) Druce Common Name jambolan Eugenia jambolana Lam. Malabar plum Myrtus cumini L. (basionym) jamélongue Syzygium jambolanum (Lam.) DC. Jambolanapflaume Caryophyllus jambos Stokes guayabo pesgua Java plum Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(Hawai'i) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 9 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see y Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see y Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs -
Insect Pests of Vegetables
DATE- 18/03/2020 (LECTURE 3) Insect Pests of Vegetables Pests of brinjal Shoot and fruit borer (Leuciniodes orbonalis Guenee, Lepidoptera: Pyralidae) Key Identification- The Major host plants of the pest is Brinjal This pest is reported from regions of brinjal cultivation in Africa, South of the Sahara, and South-East Asia including India, Bangladesh, Srilanka, China and Philippines. Young caterpillars are creamy white, while full-grown are light pinkish and measure about 18-23 mm in length. The moth is medium sized with white wings having triangular brown and red markings on the forewings. The moth measures bout 20-22 mm across the wings. Life cycle- A female moth lays about 80-120 creamy white eggs, singly or in batches of 2-4 on the underside of leaves, on green stems, flowers buds or the calyces of fruits during its life span of 2-5 days. The incubation period is 3-6 days. The young caterpillars bore into the tender shoots near the growing points, flower buds or the fruits. There are five larval instars and mature in 14-20 days, depending on the prevailing temperature and humidity. A single caterpillar may destroy as many as 4-6 fruits. The larva comes out of the damaged shoot or fruit and pupates in a tough gray cocoon in soil or plant debris. The pupal period is 6-11 days. During the active season, the total life cycle is completed in 20-43 days. There are five overlapping generations in a year. Damage- The larvae bore into the petiole and midribs of large leaves and tender shoots and cause wilting. -
A Groundnut Insect Identification Handbook for India. Information Bulletin No
Abstract Citation: Wightman, J.A. and Ranga Rao, G.V. 1993. A Groundnut Insect Identification Handbook for India. Information Bulletin no. 39. (In En. Summaries in En, Fr.) Patancheru, A.P. 502 324, India: Interna- tional Crops Research Institute for the Semi-Arid Tropics. 64 pp. ISBN 92-9066-275-1. Order code IBE 039. Groundnut or peanut (Arachis hypogaea L.) is an important oilseed crop in India. It is attacked by many insects throughout the country at different stages of plant growth, but only a few of the over 100 insects associated with this crop are economically important. This bulletin pro- vides short descriptions of the most important species, their biology, distribution, and damage symptoms. Color photographs are provided for easy identification of the pests, and appropriate control measures are suggested. Cover: Red hairy caterpillar (Amsacta albistriga) on a groundnut leaf. A Groundnut Insect Identification Handbook for India J.A. Wightman and G.V. Ranga Rao ICRISAT Information Bulletin no. 39 International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India 1993 Copyright© 1993 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). All rights reserved. Except for quotations of short passages for the purpose of criticism and review, no part of this publication may be reproduced, stored in retrieval systems, or transmitted in any form or by any means, electronic, mechanical, photo- copying, recording, or otherwise, without prior permission from ICRISAT. The Institute does not require payment for the non- commercial use of its published works, and hopes that this Copyright declaration will not diminish the bona fide use of its research findings in agricultural research and development. -
Studies on Insect Pests of Drumstick and Their Natural Enemies in Northern Dry Zone Climate of Karnataka, India
Int.J.Curr.Microbiol.App.Sci (2020) 9(12): 2175-2180 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 12 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.912.257 Studies on Insect Pests of Drumstick and their Natural Enemies in Northern Dry Zone Climate of Karnataka, India K. B. Rachana1, S. B. Jagginavar1*, H. T. Prakash2 and S. A. Biradar2 1Department of Agricultural Entomology, College of Agriculture, India 2ICAR-Krishi Vigyan Kendra, Vijayapur, Karnataka, UAS, Dharwad, (Karnataka), India *Corresponding author ABSTRACT K e yw or ds Studies on status of insect pests on drumstick crop and their natural enemies were Drumstick, Noorda conducted at College of Agriculture campus, Vijayapur which is located in Northern dry zone climate of Karnataka. The population dynamics of insect pests on drumstick blitealis, Thrips, Natural enemies etc field was recorded throughout season (2018-19). The results revealed that, the insect pests viz., leaf eating caterpillar, Noorda blitealis Walker larvae found throughout the st Article Info year. The Maximum population (10.24 larvae /5 branches) was recorded during 51 Standard Meteorological Week (December). Thrips infestation was observed Accepted: throughout the year and maximum population (16.40 thrips /5 branches) was recorded 16 November 2020 th during 20 Standard Meteorological Week (May). Other insect viz., coccinellids, Available Online: praying mantid, spiders (Non insect) and parasitoid -
Pests of Apple,Fig, Ber & Aonla & Their Management College : College of Horticulture, Rehli Name of Teacher : Dr S K Mishra (Plant Protection)
Title of the course : Insect pests of Fruits, Plantation, Medicinal & Aromatic Crops Class : 2nd Year 2nd Sem Title of the topic : Insect pests of Apple,Fig, Ber & Aonla & their Management College : College of Horticulture, Rehli Name of Teacher : Dr S K Mishra (Plant Protection) PESTS OF APPLE Malus pumila Apple ( ) is commercially the most important temperate fruit and is fourth among the most widely produced fruits in the world after banana, orange and grape. However, the production and quality of apple is poor as compared to that of the developed countries because of several factors including insect and diseases. Although a large number of insect pests attacks to apple crops but some of them are very serious and needSr. attentionCommon for their Name control. Scientific Name Family Order No. Cydia pomonella Tetranychus urticae 1 Codling moth Panonychus ulmi Tortricidae Lepidoptera 2 Spider mites Tetranychidae Acarina 3 European red mite Codling moth Tetranychidae Acarina Cydia pomonella Distribution Host range : It is widely distributed throughout Europe, Noeth America, Australia, MarksPakistan of and identification India. : Apple, pear, quince, walnut, citrus, peach and many wild species of Pyrus. : Moths are greenish to dark brown with chocolate brown or copper-coloured circular markings near the tip of forewings. The hind wings are pale grey. BioThe- ecologyfull grown larvae are pinkish or creamy white in colour with a brown head and 8 pairs of legs and measure 16-22 mm in length. : The female lays eggs on young fruits, leaves and twings. A female lays about 100 eggs. The incubation period is 4-12 days. The larvae become full fed in 21-30 days. -
Heteroptera: Anthocoridae, Lasiochilidae)
2018 ACTA ENTOMOLOGICA 58(1): 207–226 MUSEI NATIONALIS PRAGAE doi: 10.2478/aemnp-2018-0018 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu RESEARCH PAPER Annotated catalogue of the fl ower bugs from India (Heteroptera: Anthocoridae, Lasiochilidae) Chandish R. BALLAL1), Shahid Ali AKBAR2,*), Kazutaka YAMADA3), Aijaz Ahmad WACHKOO4) & Richa VARSHNEY1) 1) National Bureau of Agricultural Insect Resources, Bengaluru, India; e-mail: [email protected] 2) Central Institute of Temperate Horticulture, Srinagar, 190007 India; e-mail: [email protected] 3) Tokushima Prefectural Museum, Bunka-no-Mori Park, Mukoterayama, Hachiman-cho, Tokushima, 770–8070 Japan; e-mail: [email protected] 4) Department of Zoology, Government Degree College, Shopian, Jammu and Kashmir, 192303 India; e-mail: [email protected] *) Corresponding author Accepted: Abstract. The present paper provides a checklist of the fl ower bug families Anthocoridae th 6 June 2018 and Lasiochilidae (Hemiptera: Heteroptera) of India based on literature and newly collected Published online: specimens including eleven new records. The Indian fauna of fl ower bugs is represented by 73 5th July 2018 species belonging to 26 genera under eight tribes of two families. Generic transfers of Blap- tostethus pluto (Distant, 1910) comb. nov. (from Triphleps pluto Distant, 1910) and Dilasia indica (Muraleedharan, 1978) comb. nov. (from Lasiochilus indica Muraleedharan, 1978) are provided. A lectotype is designated for Blaptostethus pluto. Previous, as well as new, distribu- -
Major Insect Pests of Brinjal and Their Management
Popular Article Popular Kheti Volume -4, Issue-2 (April -June), 2016 Available online at www.popularkhet i.com © 2016 popularkheti.com eISSN: 2321-0001 Major Insect Pests of Brinjal a nd Their Management Kanchan G. Padwal 1*, Sameer Kumar Singh 1, Sujeet Kumar Sharma 2 1Department of Entomology and Agricultural Zoology Institute of Agricultural Sciences , Banaras Hi ndu University, Varanasi (UP) 2Division of Plant Protection , Indian Institute of Vegetable Research, Varanasi (UP) *Email of corresponding author : [email protected] Brinjal is the most common and extensively grown all over the country and occupy an important place in the food basket of Indian consumers and attacked by many insect pests. Among them some have been problem for brinjal cultivation. The present article gives emphasis on the identification, life cycle, nature of damage and susta inable management of major insect pests of the brinjal. Introduction Brinjal ( Solanum melongena L.), also known as egg plant is referred as “King of vegetables”, originated from India and now grown as a vegetable throughout the tropical, sub -tropical and warm temperate areas of the world. Eggplant contains nutrients such as dietary fiber, folate, ascorbic acid, vitamin K, niacin, vitamin B6, pantothenic acid, potassium, iron, magnesium, manganese, phosphorus , and copper; the nutrients that it contributes to the diets of the poor are especially important during times when other vegetables are in short supply. The crop is attacked by number of insect pests including Leafhopper (Amrasca devastans ), aphid ( Aphis gossypii ), white fly ( Bemisia tabaci ) and shoot and fruit borer ( Leucinodes orbonalis ), Hadda beetle (Epilachna vigintioctopunctata ), Stem borer ( Euzophera perticella ), Lace wing bug ( Urentius hystricellus ), Brinjal brown leaf hopper ( Cestius phycitis ), Leaf roller ( Eublemma olivacea ).Besides these insect pests brinjal is also attacked by several other pests including mites, which result in significant losses in the yield.