'Contrasting Effects of Tropical Cyclones on The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tropical Cyclones in the Great Barrier Reef Region
Tropical cyclones and climate change in the Great Barrier Reef region Tropical cyclones can devastate coastal and marine ecosystems in the Great Barrier Reef region. Reef image: Matt Curnock > The annual number of Tropical cyclones have the potential to generate extreme winds, tropical cyclones in the heavy rainfall and large waves that can devastate agriculture Great Barrier Reef region and marine infrastructure and ecosystems in the Great Barrier shows large year-to-year Reef (GBR) region. Powerful wind gusts, storm surges and variability, primarily due coastal flooding resulting from tropical cyclones can damage to the El Niño-Southern tourism infrastructure, such as damage to Hamilton Island Oscillation phenomenon. from cyclone Debbie in 2017, and the combination of wind, flooding and wave action can uproot mangroves. > There is no clear trend Wave action and flood plumes from Global temperatures continue in the annual number river runoff can devastate seagrass to increase in response to rising (e.g. central GBR, cyclone Yasi, concentrations of greenhouse gases of observed tropical 2011) and coral reef communities in the atmosphere. In response, the cyclones impacting (e.g. southern GBR, cyclone impacts associated with extreme the Great Barrier Reef Hamish, 2009 and northern GBR, weather hazards and disasters, since 1980. However, cyclone Nathan, 2015). Waves in including those caused by tropical particular can damage corals even cyclones in the GBR region, are during this time impacts when cyclones are several hundred likely to change. Understanding how from other stressors kilometers away from the reef. these changes to extreme weather hazards will manifest in the GBR have increased in Recovery of ecosystems from this region in the future is critical for damage can take years to decades, frequency and severity. -
Cyclone Factsheet UPDATE
TROPICAL CYCLONES AND CLIMATE CHANGE: FACTSHEET CLIMATECOUNCIL.ORG.AU TROPICAL CYCLONES AND CLIMATE CHANGE: FACT SHEET KEY POINTS • Climate change is increasing the destructive power of tropical cyclones. o All weather events today, including tropical cyclones, are occurring in an atmosphere that is warmer, wetter, and more energetic than in the past. o It is likely that maximum windspeeds and the amount of rainfall associated with tropical cyclones is increasing. o Climate change may also be affecting many other aspects of tropical cyclone formation and behaviour, including the speed at which they intensify, the speed at which a system moves (known as translation speed), and how much strength is retained after reaching land – all factors that can render them more dangerous. o In addition, rising sea levels mean that the storm surges that accompany tropical cyclones are even more damaging. • While climate change may mean fewer tropical cyclones overall, those that do form can become more intense and costly. In other words, we are likely to see more of the really strong and destructive tropical cyclones. • A La Niña event brings an elevated tropical cyclone risk for Australia, as there are typically more tropical cyclones in the Australian region than during El Niño years. BACKGROUND Tropical cyclones, known as hurricanes in the North Atlantic and Northeast Pacific, typhoons in the Northwest Pacific, and simply as tropical cyclones in the South Pacific and Indian Oceans, are among the most destructive of extreme weather events. Many Pacific Island Countries, including Fiji, Vanuatu, Solomon Islands and Tonga, lie within the South Pacific cyclone basin. -
1 World Health Organization Department of Communications Evidence Syntheses to Support the Guideline on Emergency Risk Communic
World Health Organization Department of Communications Evidence Syntheses to Support the Guideline on Emergency Risk Communication Q10: What are the best social media channels and practices to promote health protection measures and dispel rumours and misinformation during events and emergencies with public health implications? Final Report Submitted by Wayne State University, 42 W. Warren Ave., Detroit, Michigan 48202 United States of America Contact Persons: Pradeep Sopory, Associate Professor, Department of Communication (Email: [email protected]; Ph.: 313.577.3543) Lillian (Lee) Wilkins, Professor, Department of Communication (Email: [email protected]; 313.577.2959) Date: December 21, 2016 1 TABLE OF CONTENTS Table of Contents . 2 Project Team, Acknowledgments, Authors . 3 1.0 Introduction . 4 2.0 Existing Reviews . 7 3.0 Method . 12 4.0 Results . 23 5.0 Discussion . 48 6.0 Funding . 52 7.0 References . 53 8.0 Appendixes . 62 2 PROJECT TEAM, ACKNOWLEDGMENTS, AUTHORS Wayne State University The project team was Pradeep Sopory, Lillian (Lee) Wilkins, Ashleigh Day, Stine Eckert, Donyale Padgett, and Julie Novak. Research assistance provided by (in alphabetical order) Fatima Barakji, Kimberly Daniels, Beth Fowler, Javier Guzman Barcenas. Juan Liu, Anna Nagayko, and Jacob Nickell. Library assistance provided by Damecia Donahue. We acknowledge the assistance of staff (in alphabetical order) Mary Alleyne, Robin Collins, Victoria Dallas, Janine Dunlop, Andrea Hill, Charylce Jackson, and Angela Windfield. World Health Organization Methodology assistance provided by consultant Jane Noyes, library assistance provided by Tomas Allen, and general research assistance provided by Nyka Alexander. We acknowledge the assistance of staff Oliver Stucke. Project initiated and conceptualized by Gaya Gamhewage and Marsha Vanderford. -
The Bathurst Bay Hurricane: Media, Memory and Disaster
The Bathurst Bay Hurricane: Media, Memory and Disaster Ian Bruce Townsend Bachelor of Arts (Communications) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2019 School of Historical and Philosophical Inquiry Abstract In 1899, one of the most powerful cyclones recorded struck the eastern coast of Cape York, Queensland, resulting in 298 known deaths, most of whom were foreign workers of the Thursday Island pearling fleets. Today, Australia’s deadliest cyclone is barely remembered nationally, although there is increasing interest internationally in the cyclone’s world record storm surge by scientists studying past cyclones to assess the risks of future disasters, particularly from a changing climate. The 1899 pearling fleet disaster, attributed by Queensland Government meteorologist Clement Wragge to a cyclone he named Mahina, has not until now been the subject of scholarly historical inquiry. This thesis examines the evidence, as well as the factors that influenced how the cyclone and its disaster have been remembered, reported, and studied. Personal and public archives were searched for references to, and evidence for, the event. A methodology was developed to test the credibility of documents and the evidence they contained, including the data of interest to science. Theories of narrative and memory were applied to those documents to show how and why evidence changed over time. Finally, the best evidence was used to reconstruct aspects of the event, including the fate of several communities, the cyclone’s track, and the elements that contributed to the internationally significant storm tide. The thesis concludes that powerful cultural narratives were responsible for the nation forgetting a disaster in which 96 percent of the victims were considered not to be citizens of the anticipated White Australia. -
Climate Update
1919 The Island 9 April 2002 Climate Update An overview of the present climate in the tropical South Pacific, with an outlook for the coming months, to assist in dissemination of climate information in the Pacific region. Produced by the National March’s climate Institute of Water and An extensive area of enhanced convection occurred over equatorial waters about and west of the Atmospheric Research, date line, from Papua-New Guinea to Western Kiribati, with another convective band associated with New Zealand. a southward displacement of the South Pacific Convergence Zone (SPCZ) extending from the northern Coral Sea southeast to affect Vanuatu and New Caledonia. The SPCZ continued to be more active than usual over southern French Polynesia. Rainfall was more than 200% of average in parts of New Caledonia and southern French Polynesia. Heavy rainfall occurred in New Caledonia during the passage of tropical cyclone ‘Des’, the only occurrence in March, which reached storm force as it Contributors tracked southeast from 5 through 7 March. Dry, sunny conditions prevailed over northern Fiji, much of Tuvalu, Tokelau and many islands in northern French Polynesia. Rainfall less than 50% of average Australian Bureau of continued on the Queensland coast of Australia, extending into the western Coral Sea. March was Meteorology unusually warm in Fiji with mean air temperatures at least 1.5ºC above average at some sites. Meteo France More on Page 2. Fiji Met Service European Centre for Medium Range Forecasting, ECMWF NOAA Climate Prediction Centre UK Meteorological Office International Research Institute for Climate Prediction, IRICP World Meteorological Organisation, WMO Outgoing Long-wave Radiation (OLR) anomalies, in Wm-2 , for February 2002 represented by shaded areas, and rainfall percentage of average, shown by numbers. -
Download Field Report
Recovery of the Great Barrier Reef Dr David Bourne, James Cook University Hillary Smith, James Cook University May-September, 2018 PAGE 1 LETTER TO VOLUNTEERS Dear Earthwatch volunteers, Our team at James Cook University and Earthwatch Australia wish to thank you for the continued field support during our 12th and 13th field trip expeditions. Again with great weather conditions, this season has been especially successful in fulfilling our missions in the field. In February 2011, a severe tropical cyclone (Yasi) struck the coast of North Queensland and caused catastrophic damage to reefs in the study area around Orpheus Island located in the central sector of the Great Barrier Reef. In 2016 and 2017 the Great Barrier Reef was also hit by the largest bleaching events on recorded resulting in unprecedented coral mortality in some areas of the reef. Finally coral populations at the study sites have previously suffered from outbreaks of a coral disease, black- band disease (BBD). Our goals of the field work were; 1) monitor the recovery of coral populations extensively damaged following cyclone Yasi; 2) Assess the impacts of the bleaching events in 2017 and 2017 on these recovering populations; 3) study how coral disease outbreaks influence this reef recovery processes; 4) elucidate the microbial mechanisms of BBD; and 5) conduct pilot surveys of benthic cover for future algal removal research. We are grateful for the hard work of the Earthwatch volunteers during the field trips in 2018 and appreciated the fantastic sunny days that volunteers brought with them. Favourable conditions allowed us to efficiently collect coral data from all the study sites that we have been monitoring. -
The Cyclone As Trope of Apocalypse and Place in Queensland Literature
ResearchOnline@JCU This file is part of the following work: Spicer, Chrystopher J. (2018) The cyclone written into our place: the cyclone as trope of apocalypse and place in Queensland literature. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/7pjw%2D9y76 Copyright © 2018 Chrystopher J. Spicer. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] The Cyclone Written Into Our Place The cyclone as trope of apocalypse and place in Queensland literature Thesis submitted by Chrystopher J Spicer M.A. July, 2018 For the degree of Doctor of Philosophy College of Arts, Society and Education James Cook University ii Acknowledgements of the Contribution of Others I would like to thank a number of people for their help and encouragement during this research project. Firstly, I would like to thank my wife Marcella whose constant belief that I could accomplish this project, while she was learning to live with her own personal trauma at the same time, encouraged me to persevere with this thesis project when the tide of my own faith would ebb. I could not have come this far without her faith in me and her determination to journey with me on this path. I would also like to thank my supervisors, Professors Stephen Torre and Richard Landsdown, for their valuable support, constructive criticism and suggestions during the course of our work together. -
When Risk Management of Natural Hazards
Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Not if but when Adapting to natural hazards in the Pacific Islands Region A policy note Public Disclosure Authorized 2006 Sofia Bettencourt | Richard Croad | Paul Freeman | John Hay | Roger Jones Peter King | Padma Lal | Alan Mearns | Geoff Miller | Idah Pswarayi-Riddihough Alf Simpson | Nakibae Teuatabo | Ulric Trotz | Maarten Van Aalst The World Bank East Asia and Pacific Region Pacific Islands Country Management Unit Adapting to Natural Hazards in the Pacific Islands Region 1 This Policy Note is dedicated to the memory of Savenaca Siwatibau for his efforts and vision in mainstreaming hazard risk management into economic planning in the Pacific. Note: The findings, interpretations and conclusions expressed in this Policy Note are entirely those of the authors and should not be attributed in any manner to the World Bank, to its affiliated organizations, or to members of its Board of Executive Directors or the countries they represent nor to the Pacific Islands Forum Secretariat, SOPAC or AusAID. Contents List of Acronyms iii Prologue iv Contributors vi Executive summary viii 1 High vulnerability 1 1.1 Fifty years of disasters 1 1.2 Recent trends 4 1.3 The future climate 6 2 Key lessons learned 9 2.1 Early action pays 9 2.2 Some action but too little impact 11 3. Future directions 17 3. 1 Strengthening the enabling national environment 18 3.2 Supporting decision-making 20 3.3 Mainstreaming 24 3.4 Implementation 28 3.5 Monitoring and evaluation 30 3.6 -
Title Layout
Disaster Risk Assessment and Recovery Utilizing Unmanned Aerial Vehicles in the Pacific Islands. The World Bank UAV4Resilience Project - Update Malcolm Archbold Consultant, World Bank 27 November 2019 Pacific Islands GIS & RS Conference 2019 Introduction Pacific Island nations are some of the most vulnerable to natural disasters • Cyclone Waka – 2001 – Tonga • Cyclone Heta – 2003 – Tonga, Niue, American Samoa • Cyclone Lin – 2008 – Fiji • Cyclone Wilma – 2010 – Solomon Islands, Tonga • Cyclone Ian – 2013 – Fiji, Tonga • Cyclone Pam – 2014 – Vanuatu • Cyclone Winston – 2016 – Fiji • Cyclone Gita – 2018 - Tonga Cyclone Ian, Vanuatu, Jan 2014 The World Bank UAV4Resilence Project • Assess the utility of UAVs in Disaster Management for the SW Pacific • Identify the potential cost-benefits of UAVs for disaster assessment • Develop Standard Operating Procedures for in country operations UAV4Resilence Project UAV Challenge Project – October 2017 Cyclone Gita – Feb 2018 – Tonga Cyclone Gita – 2018 – Tonga Cyclone Gita – 2018 – Tonga Cyclone Gita – 2018 – Tonga Cyclone Gita – 2018 – Tonga OpenAerialMap.org UAV Training and Capacity Building • Commence in May 2019 • Objectives: • Assist in procurement, training and capacity building • Involve Govt Disaster Management organisations and associated Govt Depts/Ministries • Facilitate cooperation and communication between Govt Depts and local Civil Aviation and Air Traffic Control authorities. DroneFlyer Course (2 days) Day 1 Day 2 • Civil Aviation PRAS/drone rules • Review of Day 1 • Airspace • Semi -
Emergency Response Supply Chain Assessment
Emergency Response Supply Chain Assessment August 2007 Conducted by: On behalf of: Australian Council for International Development’s Humanitarian Reference Group and Australian Government, AusAID 2 Executive Summary Experiences from recent emergencies revealed that supply chain activities in the first phase of emergency response (including procurement and transport of relief items) tend to involve a lot of activity starting outside of the affected area, in the strategic zones (out of the affected country and often in the headquarters of an agency). In the study area, Access and Transportation was found to be the most challenging area of Supply Chain Management in 15 out of 16 countries in the eastern Asia and Pacific regions. 24% of all challenges identified related to Access and Transportation. Significant challenges have also been identified in the areas of Market Capacity, People Management and Coordination and Storage and Warehousing. Recommended Supply Chain Management solutions to the challenges identified include the pre-positioning of relief items further down the supply chain, in the tactical zones (just outside the affected area but often inside the affected country or in a neighbouring country). The implementation of some or all of these recommendations will have a direct impact on the efficiency and effectiveness of emergency response. 3 3 Acknowledgements The authors wish to thank the following individuals, agencies and organizations (listed alphabetically) for their contributions of information, time and resources to this study: Philippa Beale – Caritas Australia in Timor Leste; Charles P. Bernimolin – Regional Disaster Response Advisor, UNOCHA Pacific; Simon Boe – World Vision Vanuatu; Virginie Bohl – LSU, UNOCHA Geneva; Raymond Bojczuk – A/Emergencies Manager Humanitarian and Emergencies Section, AusAID; Bernard Broughton – Director, Project Design and Management Pty Ltd; Florent Chane – Program Officer, Australian Red Cross (project Technical Working Group member); Miriam R. -
The Pacific Experience in Developing Policy and Legislation on Disaster Risk Reduction and Climate Change Adaptation
THE PACIFIC EXPERIENCE IN DEVELOPING POLICY AND LEGISLATION ON DISASTER RISK REDUCTION AND CLIMATE CHANGE ADAPTATION The Pacific Experience in Developing Policy and Legislation on Disaster Risk Reduction and Climate Change Adaptation 1 The Pacific Experience in Developing Policy and Legislation on Disaster Risk Reduction and Climate Change Adaptation THE PACIFIC EXPERIENCE IN DEVELOPING POLICY AND LEGISLATION ON DISASTER RISK REDUCTION AND CLIMATE CHANGE ADAPTATION Contents Glossary iv Chapter 1. Introduction 1 1.1 Scope of the study and acknowledgements 1 1.2 Background 1 1.3 Findings of the institutional and policy analysis on DRR and CCA in the Pacific 3 Chapter 2. Joint National Action Plans on Disaster Risk Management and Climate Change (JNAPs) – Regional Perspective 4 2.1 Background of the JNAPs 4 2.2 Intent to develop the JNAPs 5 2.3 Process to develop the JNAPs 6 2.4 Implementation of the JNAPs 7 Chapter 3. Country Studies – Tonga 10 3.1 Introduction 10 3.2 Joint National Action Plan on Climate Change Adaptation and Disaster Risk Management 2010-2015 10 3.3 Emergency Management Act (2007) 16 Chapter 4. Country Studies – Cook Islands 19 4.1. Introduction 19 4.2 Te Kaveinga Nui – National Sustainable Development Plan 2011-2015 19 4.3 Disaster Risk Management Act (2007) 23 Chapter 5. Country Studies – Solomon Islands 26 5.1 Introduction 26 5.2 Joint framework for resilient development 26 5.3 Process towards the joint framework for resilient development 27 Chapter 6. Conclusions 29 References 32 Annex 1: Interviewees 34 Annex 2: Interview -
Tropical Cyclone Yasi and Its Predecessors
Tropical Cyclone Yasi and its predecessors Australian Tsunami Research Centre Miscellaneous Report No. 5 February 2011 ATRC 5 Tropical Cyclone Yasi and its predecessors Catherine Chagué-Goff1,2, James R. Goff1, Jonathan Nott3, Craig Sloss4, Dale Dominey-Howes1, Wendy Shaw1, Lisa Law3 1Australian Tsunami Research Centre, University of New South Wales 2Australian Nuclear Science and Technology Organisation 3James Cook University 4Queensland University of Technology Australian Tsunami Research Centre Miscellaneous Report No. 5 February 2011 Australian Tsunami Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney 2052, NSW Australia Phone +61-2-9385 8431, Fax +61-2-9385 1558 www.unsw.edu.au 1. Introduction The following information was taken from the Bureau of Meteorology (BOM) webpage: http://www.bom.gov.au/cyclone/history/yasi.shtml (see also Figure 1). Severe Tropical Cyclone Yasi began developing as a tropical low northwest of Fiji on 29 January 2011 and started tracking on a general westward track. The system quickly intensified to a cyclone category to the north of Vanuatu and was named Yasi at 10pm on 30 January by the Fijian Meteorological Service. Yasi maintained a westward track and rapidly intensified to a Category 2 by 10am on 31 January and then further to a Category 3 by 4pm on the same day. Yasi maintained Category 3 intensity for the next 24 hours before being upgraded to a Category 4 at 7pm on 1 February. During this time, Yasi started to take a more west-southwestward movement and began to accelerate towards the tropical Queensland coast.