Table S1 (Revised)

Total Page:16

File Type:pdf, Size:1020Kb

Table S1 (Revised) TABLE 1. LIST OF ALL PROTEINS IDENTIFIED SORTED BY GENE NAME Membrane Probability Accession GI Number Protein Name Entrez Gene Name # of Expts Peptides Fraction score number SV 0.82 10947122 NP_064693.1 ATP-binding cassette, sub-family C, member 9 isoform SUR2B ABCC9 1 EVQM[147]GAVKK SSILIMDEATASIDMATENILQK PM 0.99 21431817 P49597 Protein phosphatase 2C ABI1 (PP2C) (Abscisic acid-insensitive 1) ABI1 1 KEGKDPAAM[147]SAAEYLSK KEGKDPAAMSAAEYLSK PM 0.82 231504 P30172 ACTIN 100,ACTIN 101 AC100 1 AVFPSIVGRPR AGFAGDDAPR VSPDEHPVLLTEAPLNPK SV 1 4501853 NP_001598.1 acetyl-Coenzyme A acyltransferase 1 ACAA1 1 SITVTQDEGIRPSTTMEGLAK PM 0.86 4501855 NP_001084.1 acetyl-Coenzyme A carboxylase beta ACACB 1 VIQVENSHIILTGASALNK M[147]TVPISITNPDLLR MTVPISITNPDLLR EAISNMVVALK SV 0.75 38505218 NP_115545.3 putative acyl-CoA dehydrogenase ACAD11 1 QHSMILVPMNTPGVK QHSM[147]ILVPM[147]NTPGVK PM 1 113018 P08503 Acyl-CoA dehydrogenase, medium-chain specific, mitochondrial precursor (MCAD) ACADM 1 VPKENVLIGEGAGFK PM 0.99 4557237 NP_000010.1 acetyl-Coenzyme A acetyltransferase 1 precursor ACAT1 1 DGLTDVYNK SV 0.89 9998948 NP_064718.1 amiloride-sensitive cation channel 3 isoform c ACCN3 1 DNEETPFEVGIR PM 1 7662238 NP_055792.1 apoptotic chromatin condensation inducer 1 ACIN1 1 VDRPSETKTEEQGIPR CEAEEAEPPAATQPQTSETQTSHL SV 0.76 30089972 NP_004026.2 acyl-coenzyme A oxidase 1 ACOX1 1 EIGTHKPLPGITVGDIGPK TSNHAIVLAQLITK PM 1 16445033 NP_443189.1 ACRC protein; putative nuclear protein ACRC 1 FAKIQIGLKVCDSADR SV 0.93 27477105 NP_055977.3 lipidosin ACSBG1 1 EVEPTSHMGVPR MELPIISNAM[147]LIGDQR PM 0.7 3182886 O18499 ACTIN 1 ACT1 1 IKIIAPPER AGFAGDDAPR GYSFTTTAER QEYDESGPSIVHR AIFPSIVGRPR QEYDESGPSIVHR PM 0.85 113242 P14883 ACTIN II ACT2 1 EEYEDSGPSIVHR VSPEEHPVLLTEAPLNPK PM 1 4501881 NP_001091.1 alpha 1 actin precursor ACTA1 1 EITALAPSTMK AGFAGDDAPR PM+SV 1 4501883 NP_001604.1 alpha 2 actin ACTA2 2 IIAPPERKVAPEEHPTLLTEAPLNPK DSYVGDEAQSK DSYVGDEAQSKR YPIEHGIITNWDDMEK AGFAGDDAPR SYELPDGQVITIGNER EITALAPSTMK VGDEAQSK YPIEHGIITNWDDM[147]EK MQKEITALAPSTMK HQGVMVGMGQKDSYVGDEAQSK M[147]QKEITALAPSTM[147]K AVFPSIVGRPR M[147]QKEITALAPSTMK SGGTTMYPGIADR MQKEITALAPSTM[147]K VAPEEHPTLLTEAPLNPK PM+SV 1 4501885 NP_001092.1 beta cytoskeletal actin ACTB 2 IIAPPERKVAPEEHPVLLTEAPLNPK GYSFTTTAER DSYVGDEAQSK DSYVGDEAQSKR AGFAGDDAPR SYELPDGQVITIGNER EITALAPSTMK VGDEAQSK MQKEITALAPSTMK HQGVMVGMGQKDSYVGDEAQSK M[147]QKEITALAPSTM[147]K AVFPSIVGRPR M[147]QKEITALAPSTMK SGGTTMYPGIADR SFTTTAEREIVR MQKEITALAPSTM[147]K VAPEEHPVLLTEAPLNPK PM+SV 1 4501887 NP_001605.1 actin, gamma 1 propeptide ACTG1 4 EITALAPSEITALAPSGILTLK IIAPPERK AVFPSIVGRPR MQKEITALAPSTMK SYELPDGQVITIGNER GYSFTTTAER AGFAGDDAPR M[147]QKEITALAPSTM[147]K M[147]QKEITALAPSTMK IKIIAPPERK IKIIAPPER ALPHAILR SYELPDGQVITIGNER TTGIVMDSGDGVTHTVPIYEGY AVFPSIVGRPR QEYDESGPSIVHR DSYVGDEAQSK EITALAPSTM[147]K GILTLK IIAPPERK PM 0.74 113284 Q00214 ACTIN, MUSCLE ACTM 1 QEYDESGPSIVHR AVFPLTVGRPR EITALAPSTMKSK PM+SV 1 4501891 NP_001093.1 actinin, alpha 1 ACTN1 3 TINEVENQILTRDAK LAILGIHNEVSK TINEVENQILTR YLDIPK DYETATLSEIK MLDAEDIVGTARPDEK GISQEQMNEFR PM+SV 1 12025678 NP_004915.2 actinin, alpha 4 ACTN4 1 TINEVENQILTRDAK GISQEQMQEFR MLDAEDIVNTARPDEK SV 1 5031573 NP_005712.1 ARP3 actin-related protein 3 homolog ACTR3 1 DREVGIPPEQSLETAK PM 0.75 47078295 NP_000013.2 adenosine deaminase ADA 1 RLNINAAKSSFLPEDEK SV 1 4557253 NP_001100.1 ADAM 8; a disintegrin and metalloproteinase domain 8 precursor ADAM8 1 GPQELVPTTHPGQPAR PM 0.99 8923417 NP_060295.1 hypothetical protein FLJ20446 ADPRHL2 1 GGDTDTIATM[147]AGAIAGAYYGM[147]DQVPESW SV 0.82 4501967 NP_000674.1 alpha-2C-adrenergic receptor; alpha2-AR-C4 ADRA2C 1 M[147]ASPALAAALAVAAAAGPNASGAGER PM 0.97 416590 P32794 AFG2 protein AFG2 1 VVVIAATNRPNSVDPALR SV 0.65 31377758 NP_060127.2 aftiphilin protein isoform 1 AFTPH 1 AWSLVDSADNSEAIR PPV PM 0.92 20140221 Q9BSE5 Agmatinase, mitochondrial precursor (AUH) AGMAT 1 GPGPGVGARPAAGLFHPGRR PM 0.78 4501993 NP_003650.1 alkylglycerone phosphate synthase precursor AGPS 1 TTSKASLNPSDTPPSVVNEDF PM 0.9 41151826 XP_372195.1 PREDICTED: agrin AGRIN 1 GPAGCEADASAPATCAEM[147]RCEFGAR FGALCEAETGR PM 0.93 7662452 NP_056054.1 ATP\GTP binding protein 1 AGTPBP1 1 GPIVVPTAGEGTSGNSGNLR PM 0.99 10947054 NP_066187.1 ankyrin 2 isoform 2 AHK2 1 GDDMPEIPPETVTEEEYIDEHGHTVVK PM 1 7706457 NP_057332.1 A-kinase anchor protein 11 isoform 1 AKAP11 1 NVIPDTPPSTPLVPSRASSEW PM 0.75 21493045 NP_004265.3 A-kinase anchor protein 6 AKAP6 1 RVSENNGNGK PM 0.91 21431604 Q9ULX6 Neighbor of A-kinase anchoring protein 95 (Homologous to AKAP95) AKAP8L 1 GIPGLDVEDDEEGGGGAP PM+SV 0.91 4502027 NP_000468.1 serum albumin precursor ALB 4 DLGEENFK KVPQVSTPTLVEVSR AEFAEVSK QTALVELVK LVAASQAALGL VPQVSTPTLVEVSR LVNEVTEFAK LVTDLTK RDAHKSEVAHR SEVAHR TPVSDR SV 1 23503239 NP_699160.1 ALDEHYDE DEHYDROGENASE 16 FAMILY MEMBER A1 ALDH16A1 1 GAVEAAHQAFPGWAGQSPGAR SV 1 4557305 NP_000025.1 aldolase A ALDOA 1 ADDGRPFPQVIK IGEHTPSALAIMENANVLAR IVAPGKGILAADESTGSIAK ELSDIAHRIVAPGK GILAADESTGSIAKR SV 0.85 40354205 NP_000026.2 aldolase B ALDOB 1 LDQGGAPLAGTNK SV 0.9 27436959 NP_055935.2 ALMS1 ALMS1 1 TGTPTVSSNSHSHSEK PM+SV 0.65 15718675 NP_001620.2 arachidonate 5-lipoxygenase-activating protein ALOX5AP 3 TQSTPGYIFGK TGTLAFER PM 0.97 10198656 NP_065434.1 anti-Mullerian hormone receptor, type II AMHR2 1 AQVEMQGCRDSDEPGCESLHCDPSPR PM 0.68 22027646 NP_570899.1 angiomotin like 1 AMOTL1 1 PCQLPFPSTM[147]QQHSPM[147]SSQTSSASGPL PM 0.87 33302598 O76262 Alpha-amylase-related protein precursor AMYREL 1 DMGSVLNYKSPRQYK SV 0.99 10947036 NP_065208.1 ankyrin 1 isoform 4 ANK1 1 ELQFSVEDINR ISEILLDHGAPIQAK PM 0.92 32967599 NP_001140.2 ankyrin 3 isoform 2 ANK3 1 LIIEETKPCVPVSM[147]K PM 0.9 51466429 XP_380018.2 ankyrin repeat and IBR domain containing 1 ANKIB1 1 EENILAGEAASQAGDSGNEAANR FHDMNPQSIALIPPATTEISADSQL SV 0.82 38683807 NP_115593.3 ankyrin repeat domain protein 17 isoform a ANKRD17 1 SSSANSKIGSSAPTTTAANTSLM[147]GIK TDEM[147]HTALMEACM[147]DGHVEVAR KSDNHSPAVVTTTVSSK VIGRGGCNINAIR PM 0.72 24233530 NP_710181.1 ankyrin repeat domain 44 ANKRD44 1 SEEAVQVLIKHSADVNAR PM 0.67 41195096 XP_048747.4 ankyrin repeat domain 50 ANKRD50 1 MLAMSYTCQAK STKASKGGK PM+SV 0.88 4502095 NP_001141.1 aminopeptidase N ANPEP 4 AQIINDAFNLASAHK DNEETGFGSGTR DHSAIPVINR ALEQALEK VVATTQM[147]QAADAR NLASAHK SIQLPTTVR EATDVIIIHSK SV 1 4502101 NP_000691.1 annexin I (lipocortin I) ANXA1 1 TPAQFDADELR GVDEATIIDILTKR SV 0.97 22165433 NP_665876.1 annexin A11; annexin XI ANXA11 1 DAQELYAAGENR GVGTDEACLIEILASR PM 0.8 4502111 NP_001147.1 annexin VII isoform 1 ANXA7 1 GFGTDEQAIVDVVANRSNDQR PM 1 14210504 NP_115882.1 clathrin coat assembly protein AP47 AP1M1 1 ELEEESIR LETGAPR PM 1 22035548 NP_001154.2 amyloid beta A4 precursor protein-binding, family A, member 1 APBA1 1 QAPAGQQRAVGPAGGGEAGQRY SV 0.68 22035550 NP_005494.2 amyloid beta A4 precursor protein-binding, family A, member 2 APBA2 1 IIEINGQSVVATAHEK PM 0.76 5031587 NP_005874.1 adenomatosis polyposis coli 2 APC2 2 GLGVEDATPSSSSENYVQETPL AIQEGANSIVTWLHQAAAATR VAAPGTTWR M[147]IAM[147]GSAAALR GVEDATPSSSSENYVQETPLVL PM 0.82 4885065 NP_005157.1 amyloid beta (A4) precursor-like protein 1 APLP1 1 RGVEYVCCPPPGTPDPSGTAVGDPSTR PM 0.8 24211473 Q9D7N9 Adipocyte plasma membrane-associated protein (Protein DD16) APMAP 1 VVKLENGEIETIAR PM 0.86 4502153 NP_000375.1 apolipoprotein B precursor; apoB-100; apoB-48 APOB 2 QANAQLSNPK HKLIDVISMYRELLK PM+SV 1 8922079 NP_061160.1 apolipoprotein B48 receptor APOB48R 2 QAQVLGTERTEEAAESQTAGR GAESEWTWHGETEGK PM+SV 0.91 4557325 NP_000032.1 apolipoprotein E3 APOE 2 GEVQAMLGQSTEELR SV 0.72 40548322 NP_954976.1 similar to Rho GTPase activating protein 12 ARHGAP27 1 VIEHGEQNRMSVQSVAIVF SV 0.89 10835002 NP_001166.1 Rho GDP dissociation inhibitor (GDI) beta ARHGDIB 1 TLLGDGPVVTDPK PM 1 21264565 NP_006006.3 AT rich interactive domain 1A (SWI- like) isoform a ARID1A 1 SPGVSTSGISSSQGEQSNPAQSPFSPHTSPHL PM+SV 0.93 22035679 NP_112739.2 AT rich interactive domain 4B (RBP1- like) isoform 2 ARID4B 3 GTNSSDSEELSAGESITK GTNSSDSEELSAGESITK PM 1 5453704 NP_006398.1 ADP-ribosylation-like factor 6 interacting protein 5 ARL6IP5 1 TPMGIVLDALEQQEEGINR SV 0.82 8922601 NP_060654.1 ADP-ribosylation factor-like 10C ARL8B 1 IWDIGGQPR GVNAIVYM[147]IDAADR GVNAIVYMIDAADR PM 1 5174393 NP_006001.1 arginine-rich protein ARMET 1 DVTFSPATIENELIK SV 0.94 5031601 NP_005711.1 actin related protein 2\3 complex subunit 1B ARPC1B 1 CSQFCTTGMDGGM[147]SIWDVK ASSEGGTAAGAGLDSLHK SV 1 13569956 NP_112240.1 actin related protein 2\3 complex, subunit 5 ARPC5L 1 PTENSSAVLLQWHEK PM 0.89 40217847 NP_054733.2 U5 snRNP-specific protein, 200-KD ASCC3L1 2 EEASDDDM[147]EGDEAVVR PM 0.76 26080431 NP_079133.3 chromosome fragility associated gene 1 ATAD5 2 GIDSDDVQDNSQLK SGYISESENSEISQQVR STNATNSNVKDVGAEEPSR ITGPTGVGKTAAVYACAQEL MVGVLAMAAAAAPPPVK DVGAEEPSR KLNTSTK QMENTTSHANSR NNSSGIK AESEASLLNVSTPK PM 1 19923287 NP_008816.2 AT-binding transcription factor 1 ATBF1 1 SVLHQTK QSPTGSDSGSVQEDSGSEPK PM 0.99 51468832 XP_058426.7 ATG16 autophagy related 16-like 2 ATG16L2 1 ESAAMAGPGVPGAPAAR GPHCTQVIPVQGR PM 0.82 17370591 Q9GKS6 Potential phospholipid-transporting ATPase VD ATP10D 1 DVSAETLM[147]QLPELYK PM 0.85 51471472 XP_085028.4 ATPase, Class VI, type 11A isoform a ATP11A 1 YPDNR TGTLTENNM[147]EFK NSDYAIPK PM 0.81 22748667 NP_689509.1 Na+\K+ -ATPase alpha 3 subunit ATP1A3 1 GVGIISEGNETVEDIAAR PM 0.96 4502281 NP_001670.1 Na+\K+ -ATPase beta 3 subunit ATP1B3 1 IIGLKPEGVPR SV 1 28373105 NP_777613.1 sarco\endoplasmic reticulum Ca2+ -ATPase isoform e ATP2A3 1 HFSVTAEGGLSPAQVTGAR AVGVAVATGLHTELGK PM 0.79 4502287 NP_001673.1 ATPase, Ca++ transporting, plasma membrane 1 ATP2B1 1 GGQVIQIPVADITVGDIAQVK
Recommended publications
  • Table S1. List of Proteins in the BAHD1 Interactome
    Table S1. List of proteins in the BAHD1 interactome BAHD1 nuclear partners found in this work yeast two-hybrid screen Name Description Function Reference (a) Chromatin adapters HP1α (CBX5) chromobox homolog 5 (HP1 alpha) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins (20-23) HP1β (CBX1) chromobox homolog 1 (HP1 beta) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins HP1γ (CBX3) chromobox homolog 3 (HP1 gamma) Binds histone H3 methylated on lysine 9 and chromatin-associated proteins MBD1 methyl-CpG binding domain protein 1 Binds methylated CpG dinucleotide and chromatin-associated proteins (22, 24-26) Chromatin modification enzymes CHD1 chromodomain helicase DNA binding protein 1 ATP-dependent chromatin remodeling activity (27-28) HDAC5 histone deacetylase 5 Histone deacetylase activity (23,29,30) SETDB1 (ESET;KMT1E) SET domain, bifurcated 1 Histone-lysine N-methyltransferase activity (31-34) Transcription factors GTF3C2 general transcription factor IIIC, polypeptide 2, beta 110kDa Required for RNA polymerase III-mediated transcription HEYL (Hey3) hairy/enhancer-of-split related with YRPW motif-like DNA-binding transcription factor with basic helix-loop-helix domain (35) KLF10 (TIEG1) Kruppel-like factor 10 DNA-binding transcription factor with C2H2 zinc finger domain (36) NR2F1 (COUP-TFI) nuclear receptor subfamily 2, group F, member 1 DNA-binding transcription factor with C4 type zinc finger domain (ligand-regulated) (36) PEG3 paternally expressed 3 DNA-binding transcription factor with
    [Show full text]
  • ZNF354C Is a Transcriptional Repressor That Inhibits Endothelial Angiogenic Sprouting James A
    www.nature.com/scientificreports OPEN ZNF354C is a transcriptional repressor that inhibits endothelial angiogenic sprouting James A. Oo1,3, Barnabas Irmer1, Stefan Günther2, Timothy Warwick1, Katalin Pálf1, Judit Izquierdo Ponce1, Tom Teichmann1, Beatrice Pfüger‑Müller1,3, Ralf Gilsbach1,3, Ralf P. Brandes1,3 & Matthias S. Leisegang1,3* Zinc fnger proteins (ZNF) are a large group of transcription factors with diverse functions. We recently discovered that endothelial cells harbour a specifc mechanism to limit the action of ZNF354C, whose function in endothelial cells is unknown. Given that ZNF354C has so far only been studied in bone and tumour, its function was determined in endothelial cells. ZNF354C is expressed in vascular cells and localises to the nucleus and cytoplasm. Overexpression of ZNF354C in human endothelial cells results in a marked inhibition of endothelial sprouting. RNA‑sequencing of human microvascular endothelial cells with and without overexpression of ZNF354C revealed that the protein is a potent transcriptional repressor. ZNF354C contains an active KRAB domain which mediates this suppression as shown by mutagenesis analysis. ZNF354C interacts with dsDNA, TRIM28 and histones, as observed by proximity ligation and immunoprecipitation. Moreover, chromatin immunoprecipitation revealed that the ZNF binds to specifc endothelial‑relevant target‑gene promoters. ZNF354C suppresses these genes as shown by CRISPR/Cas knockout and RNAi. Inhibition of endothelial sprouting by ZNF354C is dependent on the amino acids DV and MLE of the KRAB domain. These results demonstrate that ZNF354C is a repressive transcription factor which acts through a KRAB domain to inhibit endothelial angiogenic sprouting. Te vascular system is controlled by numerous signaling pathways and growth factors which all contribute to the regulation of gene expression.
    [Show full text]
  • Trastuzumab Modulates the Protein Cargo of Extracellular Vesicles Released by ERBB2+ Breast Can‐ Cer Cells
    Supplementary Material: Trastuzumab Modulates the Protein Cargo of Extracellular Vesicles Released by ERBB2+ Breast Can‐ cer Cells Silvia Marconi, Sara Santamaria, Martina Bartolucci, Sara Stigliani, Cinzia Aiello, Maria Cristina Gagliani, Grazia Bellese, Andrea Petretto, Katia Cortese and Patrizio Castagnola Table S1. Antibodies used in the study. Antibody Catalog number Manufacturer Anti‐ALIX sc‐271975 Santa Cruz1 Anti‐CD9 PA5‐85955 Thermofisher Scientific2 Anti‐CD63 sc‐15363 Santa Cruz Anti‐ErbB2 (9G6) sc‐08 Santa Cruz Anti‐GAPDH 14C10 Cell signaling3 Anti‐HSP90 sc‐13119 Santa Cruz 1 Dallas, TX, USA; 2 Waltham, MA, USA; 3 Danvers, MA, USA. Table S2. Differentially regulated proteins by trastuzumab Tz treatment in extracellular vesicles EVs purified from SKBR‐ 3 cells with a statistically significant p‐value resulted from Studentʹs T‐test. The gene symbols coding for proteins downregulated by Tz (and hence upregulated in IgG treated cells) are highlighted in red while proteins upregulated by Tz are highlighted in blue. Official Gene Symbol 1 Gene product (Protein name) ACVR1B Activin A receptor type 1B ANO1 Anoctamin 1 ARFGEF2 ADP Ribosylation Factor Guanine Nucleotide Exchange Factor 2 BTN2A1 Butyrophilin subfamily 2 member A1 CIAPIN1 Cytokine Induced Apoptosis Inhibitor 1 CIT Citron Rho‐Interacting Serine/Threonine Kinase CPPED1 Calcineurin Like Phosphoesterase Domain Containing 1 DNAH7 Dynein Axonemal Heavy Chain 7 EIF3F Eukaryotic translation initiation factor 3 subunit F ESD Esterase D ESYT2 Extended Synaptotagmin 2 F2RL1 F2R Like Trypsin Receptor 1 RIPOR3 RIPOR Family Member 3 FZD6 Frizzled‐6 GAN Gigaxonin GTPBP2 GTP‐binding protein 2 GUCD1 Guanylyl Cyclase Domain Containing 1 HNRNPM Heterogeneous nuclear ribonucleoprotein M LMAN2 Lectin, Mannose Binding 2 LRRC8A Volume‐regulated anion channel subunit LRRC8A NOTCH4 Notch Receptor 4 NT5C2 5ʹ‐Nucleotidase, Cytosolic II PCID2 PCI domain‐containing 2 PDCD5 Programmed cell death 5 PHLDB3 Pleckstrin homology like domain family B member 3 PLAA Phospholipase A2 activating protein Membranes 2021, 11, 199.
    [Show full text]
  • Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
    BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation.
    [Show full text]
  • Supplemental Table S1
    Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1
    [Show full text]
  • A Cell Line P53 Mutation Type UM
    A Cell line p53 mutation Type UM-SCC 1 wt UM-SCC5 Exon 5, 157 GTC --> TTC Missense mutation by transversion (Valine --> Phenylalanine UM-SCC6 wt UM-SCC9 wt UM-SCC11A wt UM-SCC11B Exon 7, 242 TGC --> TCC Missense mutation by transversion (Cysteine --> Serine) UM-SCC22A Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC22B Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC38 Exon 5, 132 AAG --> AAT Missense mutation by transversion (Lysine --> Asparagine) UM-SCC46 Exon 8, 278 CCT --> CGT Missense mutation by transversion (Proline --> Alanine) B 1 Supplementary Methods Cell Lines and Cell Culture A panel of ten established HNSCC cell lines from the University of Michigan series (UM-SCC) was obtained from Dr. T. E. Carey at the University of Michigan, Ann Arbor, MI. The UM-SCC cell lines were derived from eight patients with SCC of the upper aerodigestive tract (supplemental Table 1). Patient age at tumor diagnosis ranged from 37 to 72 years. The cell lines selected were obtained from patients with stage I-IV tumors, distributed among oral, pharyngeal and laryngeal sites. All the patients had aggressive disease, with early recurrence and death within two years of therapy. Cell lines established from single isolates of a patient specimen are designated by a numeric designation, and where isolates from two time points or anatomical sites were obtained, the designation includes an alphabetical suffix (i.e., "A" or "B"). The cell lines were maintained in Eagle's minimal essential media supplemented with 10% fetal bovine serum and penicillin/streptomycin.
    [Show full text]
  • Alpha Actinin 4: an Intergral Component of Transcriptional
    ALPHA ACTININ 4: AN INTERGRAL COMPONENT OF TRANSCRIPTIONAL PROGRAM REGULATED BY NUCLEAR HORMONE RECEPTORS By SIMRAN KHURANA Submitted in partial fulfillment of the requirements for the degree of doctor of philosophy Thesis Advisor: Dr. Hung-Ying Kao Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY August, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of SIMRAN KHURANA ______________________________________________________ PhD candidate for the ________________________________degree *. Dr. David Samols (signed)_______________________________________________ (chair of the committee) Dr. Hung-Ying Kao ________________________________________________ Dr. Edward Stavnezer ________________________________________________ Dr. Leslie Bruggeman ________________________________________________ Dr. Colleen Croniger ________________________________________________ ________________________________________________ May 2011 (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS LIST OF TABLES vii LIST OF FIGURES viii ACKNOWLEDEMENTS xii LIST OF ABBREVIATIONS xiii ABSTRACT 1 CHAPTER 1: INTRODUCTION Family of Nuclear Receptors 3 Mechanism of transcriptional regulation by co-repressors and co-activators 8 Importance of LXXLL motif of co-activators in NR mediated transcription 12 Cyclic recruitment of co-regulators on the target promoters 15 Actin and actin related proteins (ABPs) in transcription
    [Show full text]
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Purine Metabolism in Cultured Endothelial Cells
    PURINE METABOLISM IN MAN-III Biochemical, Immunological, and Cancer Research Edited by Aurelio Rapado Fundacion Jimenez Diaz Madrid, Spain R.W.E. Watts M.R.C. Clinical Research Centre Harrow, England and Chris H.M.M. De Bruyn Department of Human Genetics University of Nijmegen Faculty of Medicine Nijmegen, The Netherlands PLENUM PRESS · NEW YORK AND LONDON Contents of Part Β I. PURINE METABOLISM PATHWAYS AND REGULATION A. De Novo Synthesis; Precursors and Regulation De Novo Purine Synthesis in Cultured Human Fibroblasts 1 R.B. Gordon, L. Thompson, L.A. Johnson, and B.T. Emmerson Comparative Metabolism of a New Antileishmanial Agent, Allopurinol Riboside, in the Parasite and the Host Cell 7 D. J. Nelson, S.W. LaFon, G.B. Elion, J.J. Marr, and R.L. Berens Purine Metabolism in Rat Skeletal Muscle 13 E. R. Tully and T.G. Sheehan Alterations in Purine Metabolism in Cultured Fibroblasts with HGPRT Deficiency and with PRPPP Synthetase Superactivity 19 E. Zoref-Shani and 0. Sperling Purine Metabolism in Cultured Endothelial Cells 25 S. Nees, A.L. Gerbes, B. Willershausen-Zönnchen, and E. Gerlach Determinants of 5-Phosphoribosyl-l-Pyrophosphate (PRPP) Synthesis in Human Fibroblasts 31 K.0, Raivio, Ch. Lazar, H. Krumholz, and M.A. Becker Xanthine Oxidoreductase Inhibition by NADH as a Regulatory Factor of Purine Metabolism 35 M.M. Jezewska and Z.W. Kaminski vii viii CONTENTS OF PART Β Β. Nucleotide Metabolism Human Placental Adenosine Kinase: Purification and Characterization 41 CM. Andres, T.D. Palella, and I.H. Fox Long-Term Effects of Ribose on Adenine Nucleotide Metabolism in Isoproterenol-Stimulated Hearts .
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • List of Genes Associated with Sudden Cardiac Death (Scdgseta) Gene
    List of genes associated with sudden cardiac death (SCDgseta) mRNA expression in normal human heart Entrez_I Gene symbol Gene name Uniprot ID Uniprot name fromb D GTEx BioGPS SAGE c d e ATP-binding cassette subfamily B ABCB1 P08183 MDR1_HUMAN 5243 √ √ member 1 ATP-binding cassette subfamily C ABCC9 O60706 ABCC9_HUMAN 10060 √ √ member 9 ACE Angiotensin I–converting enzyme P12821 ACE_HUMAN 1636 √ √ ACE2 Angiotensin I–converting enzyme 2 Q9BYF1 ACE2_HUMAN 59272 √ √ Acetylcholinesterase (Cartwright ACHE P22303 ACES_HUMAN 43 √ √ blood group) ACTC1 Actin, alpha, cardiac muscle 1 P68032 ACTC_HUMAN 70 √ √ ACTN2 Actinin alpha 2 P35609 ACTN2_HUMAN 88 √ √ √ ACTN4 Actinin alpha 4 O43707 ACTN4_HUMAN 81 √ √ √ ADRA2B Adrenoceptor alpha 2B P18089 ADA2B_HUMAN 151 √ √ AGT Angiotensinogen P01019 ANGT_HUMAN 183 √ √ √ AGTR1 Angiotensin II receptor type 1 P30556 AGTR1_HUMAN 185 √ √ AGTR2 Angiotensin II receptor type 2 P50052 AGTR2_HUMAN 186 √ √ AKAP9 A-kinase anchoring protein 9 Q99996 AKAP9_HUMAN 10142 √ √ √ ANK2/ANKB/ANKYRI Ankyrin 2 Q01484 ANK2_HUMAN 287 √ √ √ N B ANKRD1 Ankyrin repeat domain 1 Q15327 ANKR1_HUMAN 27063 √ √ √ ANKRD9 Ankyrin repeat domain 9 Q96BM1 ANKR9_HUMAN 122416 √ √ ARHGAP24 Rho GTPase–activating protein 24 Q8N264 RHG24_HUMAN 83478 √ √ ATPase Na+/K+–transporting ATP1B1 P05026 AT1B1_HUMAN 481 √ √ √ subunit beta 1 ATPase sarcoplasmic/endoplasmic ATP2A2 P16615 AT2A2_HUMAN 488 √ √ √ reticulum Ca2+ transporting 2 AZIN1 Antizyme inhibitor 1 O14977 AZIN1_HUMAN 51582 √ √ √ UDP-GlcNAc: betaGal B3GNT7 beta-1,3-N-acetylglucosaminyltransfe Q8NFL0
    [Show full text]
  • SOX4-Mediated Repression of Specific Trnas Inhibits Proliferation of Human Glioblastoma Cells
    SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells Jianjing Yanga,b,c, Derek K. Smithc,d, Haoqi Nia,b,c,KeWua,b, Dongdong Huanga,b, Sishi Pana,b,c, Adwait A. Sathee, Yu Tangc,d, Meng-Lu Liuc,d, Chao Xinge,f,g, Chun-Li Zhangc,d,1, and Qichuan Zhugea,b,1 aDepartment of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000; bZhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000; cDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; dHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; eMcDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390; fDepartment of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and gDepartment of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390 Edited by S. Altman, Yale University, New Haven, CT, and approved February 5, 2020 (received for review November 15, 2019) Transfer RNAs (tRNAs) are products of RNA polymerase III (Pol III) indicates that tRNA expression may also be under cell state- and essential for mRNA translation and ultimately cell growth and dependent regulations (12–16). proliferation. Whether and how individual tRNA genes are specif- In this study, we performed a systematic analysis on how ically regulated is not clear. Here, we report that SOX4, a well- NGN2/SOX4-mediated cell-fate reprogramming leads to cell known Pol II-dependent transcription factor that is critical for neuro- cycle exit of human glioblastoma cells.
    [Show full text]