Themengeschichtspfad

Total Page:16

File Type:pdf, Size:1020Kb

Themengeschichtspfad ThemenGeschichtsPfad Wissenschaftsstadt München Auf den Spuren berühmter Forschender und Nobelpreisträger in München Die ThemenGeschichtsPfade erscheinen als Inhalt Ergänzung zu der Reihe KulturGeschichtsPfade der Stadt München. Grußwort Oberbürgermeister Dieter Reiter 3 Vorwort Hans-Georg Küppers 5 In der Reihe ThemenGeschichtsPfade bereits erschienene Publikationen: Informationen zum Heft 9 Band 1 Der Nationalsozialismus in München Routenverlauf Rundgang Innenstadt 11 Band 1 engl. National Socialism in Munich Streckenverlauf Wissenschaftslinie U6 11 Band 2 Geschichte der Lesben und Schwulen in München Barrierefreiheit 12 Band 3 Orte des Erinnerns und Gedenkens Nationalsozialismus in München Band 3 engl. Places of Remembrance München als Wissenschaftsstadt 15 National Socialism in Munich München als Wissenschaftsstadt / Band 4 Die Geschichte der Frauenbewegung in München Frauen in der Wissenschaft / Band 5 Ziegeleien im Münchner Osten Wissenschaft im Nationalsozialismus Anleitung zur Spurensuche Band 6 Wissenschaftsstadt München Auf den Spuren berühmter Forschender Die Wissenschaftslinie U6 45 und Nobelpreisträger in München Garching-Forschungszentrum 47 Das Garchinger „Atom-Ei“ / Ehrungen berühmter Wissenschaftler in Garching Studentenstadt 63 Weitere Informationen finden Sie unter: Max-Planck-Institut für Physik www.muenchen.de/tgp (Werner-Heisenberg-Institut) Münchner Freiheit 69 Ricarda Huch – Schriftstellerin, Dichterin, Eine Auflistung der bereits erschienenen Historikerin und zukünftigen Publikationen der Reihe Giselastraße 73 KulturGeschichtsPfade finden Sie am Ende „Schweinchenbau“ / Institut für Soziologie / dieser Broschüre. Ludwig Quidde – Historiker, Pazifist und Friedensnobelpreisträger / Der Literaturnobelpreisträger Thomas Mann Rundgang in der Innenstadt Odeonsplatz / Universität 79 Bayerische Akademie der Wissenschaften / Max-Planck- Gesellschaft / Bayerische Staatsbibliothek / Ludwig-Maximilians- Universität / Schellingstraße / Technische Universität München / Paul-Heyse-Villa / Palais Pringsheim / Chemische Institute Fortsetzung: Die Wissenschaftslinie U6 Sendlinger Tor / Goetheplatz 155 Klinikviertel / Innenstadtkliniken während des Nationalsozialismus / Alter Südlicher Friedhof Poccistraße 175 Ruhmeshalle / Frauen in der Ruhmeshalle Grußwort Holzapfelkreuth 183 Waldfriedhof München ist mit 17 Universitäten, Akademien und Hoch- Klinikum Großhadern 187 schulen der zweitgrößte Hochschulstandort in Deutschland. Campus Großhadern und Martinsried / Die Ludwig-Maximilans-Universität und die Technische Uni- Klinikum Großhadern / Campus Großhadern / versität München zählen dabei zu den besten Universitäten Campus Martinsried / Ehrungen berühmter der Welt. Hinzu kommen zahlreiche namhafte Forschungs- Wissenschaftler in Großhadern / Martinsried institute wie etwa die Fraunhofer-Gesellschaft oder die Max-Planck-Gesellschaft zur Förderung der Wissenschaft, Nobelpreisträger in München 201 das Helmholtz Zentrum sowie das Deutsche Zentrum für Der Nobelpreis / „Alternativer Nobelpreis“ / Luft- und Raumfahrt, aber auch das ifo Institut für Wirt- Münchner Nobelpreisträger / schaftsforschung und das Institut für Zeitgeschichte. Zudem Ehrungen für Nobelpreisträger in München verfügen wir über etliche Technologie- und Gründerzentren, sind Sitz vieler Hightech-Unternehmen und ein Zentrum Weitere Informationen des europäischen Patentwesens. Eben eine Stadt, „in der Literaturauswahl 214 sich die Wissenschaft vor allem durch eine menschliche Weiterführende Links 219 Unmittelbarkeit und Lebendigkeit auszeichnet und die wei- Bildnachweis 221 terhin allem Neuen aufgeschlossen bleibt und die Früchte Dank 224 ihrer Toleranz ernten wird“. Das hat der Physiknobelpreis- und erste Kulturelle Ehrenpreisträger Münchens, Werner Übersichtsplan Rundgang Innenstadt Heisenberg, unserer Stadt schon bei der 800-Jahr-Feier Übersichtsplan Rundgang Wissenschaftslinie 3 1958 attestiert. Und auch für die Zukunft Recht behalten, wie man sieht. Mehr als ein Dutzend weitere Nobelpreis- träger hat München seither hervorgebracht. Allein was fehlte, war ein handliches Kompendium, das diesen stetigen Aufstieg seit dem 19. Jahrhundert bündig dokumentiert und jedem Interessierten zur Verfügung steht. Mit dem neuen ThemenGeschichtsPfad zur Wissenschafts- stadt München ist diese Lücke nun erfolgreich geschlossen worden. Nach den Broschüren zum Nationalsozialismus in München, zur Geschichte der Lesben und Schwulen, zur Frauenbewegung und zu den Ziegeleien im Münchner Osten kann man sich hiermit erneut auf die Spurensuche Vorwort machen nach bedeutsamen Orten und Ereignissen im Stadtgebiet, in diesem Fall bezogen auf unsere reiche Liebe Münchnerinnen, liebe Münchner, Wissenschaftsgeschichte. Allen, die sich auf diesen Weg liebe Gäste der Stadt, begeben, wünsche ich viele neue Einsichten und span- nende Aha-Erlebnisse. wenn Sie eine ungewöhnliche Form der Wissensvermittlung erleben möchten, dann kann ich Ihnen den vorliegenden ThemenGeschichtsPfad zur Wissenschaftsstadt München nur empfehlen. Dort finden Sie nämlich Antworten auf so kuriose Fragen, wie zum Beispiel „Was ist das Garchinger ‚Atom-Ei‘?“ oder „Was birgt der sogenannte ‚Schweinchen- bau‘ an der Leopoldstraße 13?“ oder „Warum stand in der Ruhmeshalle hinter der Bavaria die selbstgefertigte Büste einer Münchner Künstlerin, wo dort doch nur die Büsten Dieter Reiter von baye rischen Feldherren, Dichtern und Wissenschaftlern Oberbürgermeister der Landeshauptstadt München stehen?“. Aber natürlich beantwortet der ThemenGeschichts­ Pfad auch herkömmliche Fragen, nämlich „Wo befindet sich die Ehrengalerie der Nobelpreisträger?“, „Wer ist der Begrün- der der Quantenmechanik?“ oder – für München ganz wich- tig – „Welche wissenschaftliche Institution verfügt über ihre eigene Brauerei?“. 4 5 Wie Sie sehen, verfolgen wir ganz im Sinne des angelsäch- Das muss dem Wettbewerb keineswegs widersprechen. sischen public science das Ziel, Wissenschaft anschaulich Dass Münchens Universitäten die deutschen Listen sämt- darzustellen und sie vom Vorurteil der reinen Rationalität zu licher inter nationaler Rankings anführen und überhaupt im befreien. Denn etwas sehr Entscheidendes wird allzu oft globalen Vergleich weit vorne liegen, ist kein Geheimnis vergessen: die Emotionalität und die Offenheit, aus dem und hat auch mit der erwähnten Offenheit zu tun. Beide eigenen Denken und aus der eigenen Methode herauszu- Universitäten, die TU und die LMU, gehören zu den ersten gehen, um Neues zu schaffen. Von diesem Forschergeist, Hochschulen, deren Forschungsprojekte seit 2005 durch von dieser unbändigen Neugier und Leidenschaft hat die Exzellenz initiative des Bundes und der Länder maß- Mün chen ganz außerordentlich profitiert. Das ist die Trieb- geblich gefördert werden. Ein Blick auf die lange Reihe der feder für die Zukunft. Wollten wir auch nur oberflächlich Nobelpreisträger unterstreicht nur die Bedeutung der Stadt zusam men fassen, was zwischen Garching und Großhadern als hochkarätigen internationalen Wissenschaftsstandort. passiert, wäre das Stoff für mindestens einen weiteren Mehr als 40 Nobelpreisträger sind in München geboren oder ThemenGeschichtsPfad. haben hier zumindest geforscht, gelehrt und gelebt. Von Wilhelm Conrad Röntgen über Max Planck, Albert Einstein Dass aber gerade hier so weit und erfolgreich in die Zukunft oder Klaus von Klitzing bis hin zum „Jüngsten“ Gerhard Ertl, geblickt wird, hat mit der Vergangenheit zu tun. München der die renommierte Auszeichnung 2007 erhalten hat. Die mag sich spät in die Riege der Wissenschaftsstädte einge- Fortsetzung folgt, das darf an einem Standort wie München reiht haben – erst im Jahr 1826 wurde die Universität aus als sicher gelten. Ingolstadt hierher verlegt. Doch was mit einer gewissen Verzögerung seinen Lauf nahm, trug bald umso reichere Vergleichbares mag es für die Geisteswissenschaften nicht Früchte. Der vorliegende ThemenGeschichtsPfad führt das geben, doch auch in diesen Bereichen wurde in München nicht nur lehrreich, sondern auf mindestens so spannende Enormes geleistet. Wobei Paul Heyse, u. a. Professor für wie unterhaltsame Weise vor Augen. Und nicht zuletzt Romanische Philologie, 1910 immerhin als erster deutscher waren es die Universitäten und Forschungseinrichtungen, Schriftsteller mit dem Nobelpreis für Literatur ausgezeichnet die in entscheidendem Maße zur Modernisierung und zur wurde. In diesem Zusammenhang darf natürlich Thomas Demokratisierung der Wissenschaft und darüber hinaus Mann nicht fehlen, der den Preis 1929 erhielt. Fast vier Jahr- bei getragen haben. Die industrielle, wirtschaftliche und zehnte hat der Schriftsteller des „Zauberberg“ in München lebensweltliche Entwicklung Münchens und Bayerns wurde gelebt, zeitweise sogar an der TU studiert und noch wenige und wird hier befördert. Von jeher hat man an den Universi- Wochen vor seinem Tod 1955 an den dama ligen Ober- täten ganz selbstverständlich den internationalen Austausch bürger meister Thomas Wimmer geschrieben, er sei dieser gepflegt, nicht selten über kaum überwindbare politische Stadt „von Herzen zugetan“. Eine große Geste war das nach Grenzen hinweg. Auch in dieser Hinsicht konnte und kann allem, was er und seine Familie erlebt hatten. Und viele eine Gesellschaft von der Wissenschaft nur lernen. andere, die während des NS-Regimes ihren Platz in der 6 7 Wissenschaft verloren hatten und verfolgt wurden. Auch Informationen zum Heft dieses dunkle Kapitel ist nicht ausgespart. Der ThemenGeschichtsPfad „Wissenschaftsstadt München Die ThemenGeschichtsPfade stehen immer auch für eine – Auf den
Recommended publications
  • Hendrik Antoon Lorentz's Struggle with Quantum Theory A. J
    Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Archive for History of Exact Sciences ISSN 0003-9519 Volume 67 Number 2 Arch. Hist. Exact Sci. (2013) 67:149-170 DOI 10.1007/s00407-012-0107-8 1 23 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may self- archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Arch. Hist. Exact Sci. (2013) 67:149–170 DOI 10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Received: 15 June 2012 / Published online: 24 July 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentz in quantum theory. Although especially his early work is valuable, the main importance of Lorentz’s work lies in the conceptual clarifications he provided and in his critique of the foundations of quantum theory. 1 Introduction The Dutch physicist Hendrik Antoon Lorentz (1853–1928) is generally viewed as an icon of classical, nineteenth-century physics—indeed, as one of the last masters of that era. Thus, it may come as a bit of a surprise that he also made important contribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- ment in physics. The importance of Lorentz’s work lies not so much in his concrete contributions to the actual physics—although some of his early work was ground- breaking—but rather in the conceptual clarifications he provided and his critique of the foundations and interpretations of the new ideas.
    [Show full text]
  • Philosophical Rhetoric in Early Quantum Mechanics, 1925-1927
    b1043_Chapter-2.4.qxd 1/27/2011 7:30 PM Page 319 b1043 Quantum Mechanics and Weimar Culture FA 319 Philosophical Rhetoric in Early Quantum Mechanics 1925–27: High Principles, Cultural Values and Professional Anxieties Alexei Kojevnikov* ‘I look on most general reasoning in science as [an] opportunistic (success- or unsuccessful) relationship between conceptions more or less defined by other conception[s] and helping us to overlook [danicism for “survey”] things.’ Niels Bohr (1919)1 This paper considers the role played by philosophical conceptions in the process of the development of quantum mechanics, 1925–1927, and analyses stances taken by key participants on four main issues of the controversy (Anschaulichkeit, quantum discontinuity, the wave-particle dilemma and causality). Social and cultural values and anxieties at the time of general crisis, as identified by Paul Forman, strongly affected the language of the debate. At the same time, individual philosophical positions presented as strongly-held principles were in fact flexible and sometimes reversible to almost their opposites. One can understand the dynamics of rhetorical shifts and changing strategies, if one considers interpretational debates as a way * Department of History, University of British Columbia, 1873 East Mall, Vancouver, British Columbia, Canada V6T 1Z1; [email protected]. The following abbreviations are used: AHQP, Archive for History of Quantum Physics, NBA, Copenhagen; AP, Annalen der Physik; HSPS, Historical Studies in the Physical Sciences; NBA, Niels Bohr Archive, Niels Bohr Institute, Copenhagen; NW, Die Naturwissenschaften; PWB, Wolfgang Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg a.o., Band I: 1919–1929, ed. A. Hermann, K.V.
    [Show full text]
  • Von Richthofen, Einstein and the AGA Estimating Achievement from Fame
    Von Richthofen, Einstein and the AGA Estimating achievement from fame Every schoolboy has heard of Einstein; fewer have heard of Antoine Becquerel; almost nobody has heard of Nils Dalén. Yet they all won Nobel Prizes for Physics. Can we gauge a scientist’s achievements by his or her fame? If so, how? And how do fighter pilots help? Mikhail Simkin and Vwani Roychowdhury look for the linkages. “It was a famous victory.” We instinctively rank the had published. However, in 2001–2002 popular French achievements of great men and women by how famous TV presenters Igor and Grichka Bogdanoff published they are. But is instinct enough? And how exactly does a great man’s fame relate to the greatness of his achieve- ment? Some achievements are easy to quantify. Such is the case with fighter pilots of the First World War. Their achievements can be easily measured and ranked, in terms of their victories – the number of enemy planes they shot down. These aces achieved varying degrees of fame, which have lasted down to the internet age. A few years ago we compared1 the fame of First World War fighter pilot aces (measured in Google hits) with their achievement (measured in victories); and we found that We can estimate fame grows exponentially with achievement. fame from Google; Is the same true in other areas of excellence? Bagrow et al. have studied the relationship between can this tell us 2 achievement and fame for physicists . The relationship Manfred von Richthofen (in cockpit) with members of his so- about actual they found was linear.
    [Show full text]
  • On the Linkage Between Planck's Quantum and Maxwell's Equations
    The Finnish Society for Natural Philosophy 25 years, K.V. Laurikainen Honorary Symposium, Helsinki 11.-12.11.2013 On the Linkage between Planck's Quantum and Maxwell's Equations Tuomo Suntola Physics Foundations Society, www.physicsfoundations.org Abstract The concept of quantum is one of the key elements of the foundations in modern physics. The term quantum is primarily identified as a discrete amount of something. In the early 20th century, the concept of quantum was needed to explain Max Planck’s blackbody radiation law which suggested that the elec- tromagnetic radiation emitted by atomic oscillators at the surfaces of a blackbody cavity appears as dis- crete packets with the energy proportional to the frequency of the radiation in the packet. The derivation of Planck’s equation from Maxwell’s equations shows quantizing as a property of the emission/absorption process rather than an intrinsic property of radiation; the Planck constant becomes linked to primary electrical constants allowing a unified expression of the energies of mass objects and electromagnetic radiation thereby offering a novel insight into the wave nature of matter. From discrete atoms to a quantum of radiation Continuity or discontinuity of matter has been seen as a fundamental question since antiquity. Aristotle saw perfection in continuity and opposed Democritus’s ideas of indivisible atoms. First evidences of atoms and molecules were obtained in chemistry as multiple proportions of elements in chemical reac- tions by the end of the 18th and in the early 19th centuries. For physicist, the idea of atoms emerged for more than half a century later, most concretely in statistical thermodynamics and kinetic gas theory that converted the mole-based considerations of chemists into molecule-based considerations based on con- servation laws and probabilities.
    [Show full text]
  • The Splendors (And No Miseries) of Mass Spectrometry
    Image: David Monniaux, Wikipedia Image: Wired Center for Industrial Mathematics Image: Wikipedia Image: ION-TOF.com The Splendors (and no Miseries) of Mass Spectrometry Theodore Alexandrov Center for Industrial Mathematics, University of Bremen Winterseminar, Alghero, Sardinia, Italy 23 Sep 2009 Image: ION-TOF GmbH Image: www.electrotherapymuseum.com Center for Industrial Did you know that? Mathematics Mass spectrometry (MS) is a technique of analytical chemistry that identifies the elemental composition of sample based on mass-to- charge ratio of charged particles. Did you know that MS is used to – Detect and identify the use of drugs of abuse (dopings) in athletes – Identification of explosives and analysis of explosives in postblast residues – Analyse suspicious powders following the post 9/11 anthrax scare – Monitor the breath of patients by anesthesiologists during surgery – and … 2of 14 Center for Industrial T. Rex: just a big chicken? Mathematics A sample of a bone of Tyrannosaurus rex was discovered in 2000 (sample MOR 1125) 68 million years old Soft tissues were inside the bone A sample was demineralized and studied in a mass-spectrometer Several fragments were found which are very similar to collagen—the most common protein found in bones—from birds, specifically chickens! Wired, 22.06.09 (http://www.wired.com/medtech/genetics/magazine/17-07/ff_originofspecies) 3of 14 Center for Industrial T. Rex: just a big chicken? Mathematics 4of 14 Center for Industrial Early history of MS Mathematics Eugen Goldstein (Potsdam) 1886: invented Kanalstrahlen (anode/channel/positive rays) (-) Image: Michael Hedenus, Der Komet in der Entladungsröhre (+) Image: www.electrotherapymuseum.com Wilhelm Wien (RWTH Aachen,Würzburg,Munich) experimented with anode rays in a magnetic field separated canal rays (ions) according to their mass-to-charge ratio It might be expedient to “abandon the terms cathod rays, canal rays and positive light and to speak only of positive and negative particles".
    [Show full text]
  • Wien Peaks, Planck Distribution Function and Its Decomposition, The
    Applied Physics Research; Vol. 12, No. 4; 2020 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education How to Understand the Planck´s Oscillators? Wien Peaks, Planck Distribution Function and Its Decomposition, the Bohm Sheath Criterion, Plasma Coupling Constant, the Barrier of Determinacy, Hubble Cooling Constant. (24.04.2020) Jiří Stávek1 1 Bazovského 1228, 163 00 Prague, Czech republic Correspondence: Jiří Stávek, Bazovského 1228, 163 00 Prague, Czech republic. E-mail: [email protected] Received: April 23, 2020 Accepted: June 26, 2020 Online Published: July 31, 2020 doi:10.5539/apr.v12n4p63 URL: http://dx.doi.org/10.5539/apr.v12n4p63 Abstract In our approach we have combined knowledge of Old Masters (working in this field before the year 1905), New Masters (working in this field after the year 1905) and Dissidents under the guidance of Louis de Broglie and David Bohm. Based on the great works of Wilhelm Wien and Max Planck we have presented a new look on the “Wien Peaks” and the Planck Distribution Function and proposed the “core-shell” model of the photon. There are known many “Wien Peaks” defined for different contexts. We have introduced a thermodynamic approach to define the Wien Photopic Peak at the wavelength λ = 555 nm and the Wien Scotopic Peak at the wavelength λ = 501 nm to document why Nature excellently optimized the human vision at those wavelengths. There could be discovered many more the so-called Wien Thermodynamic Peaks for other physical and chemical processes. We have attempted to describe the so-called Planck oscillators as coupled oscillations of geons and dyons.
    [Show full text]
  • Quantum Theory, Quantum Mechanics) Part 1
    Quantum physics (quantum theory, quantum mechanics) Part 1 1 Outline Introduction Problems of classical physics Black-body Radiation experimental observations Wien’s displacement law Stefan – Boltzmann law Rayleigh - Jeans Wien’s radiation law Planck’s radiation law photoelectric effect observation studies Einstein’s explanation Quantum mechanics Features postulates Summary Quantum Physics 2 Question: What do these have in common? lasers solar cells transistors computer chips CCDs in digital cameras Ipods superconductors ......... Answer: They are all based on the quantum physics discovered in the 20th century. 3 “Classical” vs “modern” physics 4 Why Quantum Physics? “Classical Physics”: developed in 15th to 20th century; provides very successful description “macroscopic phenomena, i.e. behavior of “every day, ordinary objects” o motion of trains, cars, bullets,…. o orbit of moon, planets o how an engine works,.. o Electrical and magnetic phenomena subfields: mechanics, thermodynamics, electrodynamics, “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” 5 --- William Thomson (Lord Kelvin), 1900 Why Quantum Physics? – (2) Quantum Physics: developed early 20th century, in response to shortcomings of classical physics in describing certain phenomena (blackbody radiation, photoelectric effect, emission and absorption spectra…) describes microscopic phenomena, e.g. behavior of atoms, photon-atom scattering and flow of the electrons in a semiconductor.
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]
  • Arxiv:2003.05894V1 [Physics.Hist-Ph] 9 Mar 2020 Quacy, As Paul Ehrenfest Did in the 1930S.[2] Have Been Lucky
    The problem of scientific greatness and the role of ordinary scientists Nathan Hagen, 2020-Mar-13 Abstract: Textbooks in physics use science history to humanize the subject and motivate stu- dents for learning, but they deal exclusively with the heroes of the field and ignore the vast majority of scientists who have not found their way into history. What is the role of these invis- ible scientists — are they merely the worker ants in the colony of science, whose main utility is to facilitate the heroes of the field? 1 Introduction colleagues’ names has not survived, their efforts have never- theless been essential for the advances achieved by science. As students of the sciences, we start our studies filled with enthusiasm and ambition, drinking up technical de- tails while reading about the theories and experiments of 2 What makes a scientist great? our great predecessors — Newton, Darwin, Einstein, et al. After years of study, as we gain in ability and reach the fron- Some geniuses stand so far above us in their insights that tiers of knowledge in our chosen disciplines, we encounter they seem alien in their ability. Isaac Newton formulated the harsh realities of research and struggle to push forward. the laws of motion, discovered a mathematical description While some succeed and receive the accolades of their peers, of gravity, created calculus, invented the first practical re- many give up and leave science altogether, some tire of the flecting telescope, built the theory of color based on the light struggle and focus on teaching, while others push on with- spectrum, and added a host of other scientific accomplish- out wide recognition of their work.
    [Show full text]
  • The White Rose in Cooperation With: Bayerische Landeszentrale Für Politische Bildungsarbeit the White Rose
    The White Rose In cooperation with: Bayerische Landeszentrale für Politische Bildungsarbeit The White Rose The Student Resistance against Hitler Munich 1942/43 The Name 'White Rose' The Origin of the White Rose The Activities of the White Rose The Third Reich Young People in the Third Reich A City in the Third Reich Munich – Capital of the Movement Munich – Capital of German Art The University of Munich Orientations Willi Graf Professor Kurt Huber Hans Leipelt Christoph Probst Alexander Schmorell Hans Scholl Sophie Scholl Ulm Senior Year Eugen Grimminger Saarbrücken Group Falk Harnack 'Uncle Emil' Group Service at the Front in Russia The Leaflets of the White Rose NS Justice The Trials against the White Rose Epilogue 1 The Name Weiße Rose (White Rose) "To get back to my pamphlet 'Die Weiße Rose', I would like to answer the question 'Why did I give the leaflet this title and no other?' by explaining the following: The name 'Die Weiße Rose' was cho- sen arbitrarily. I proceeded from the assumption that powerful propaganda has to contain certain phrases which do not necessarily mean anything, which sound good, but which still stand for a programme. I may have chosen the name intuitively since at that time I was directly under the influence of the Span- ish romances 'Rosa Blanca' by Brentano. There is no connection with the 'White Rose' in English history." Hans Scholl, interrogation protocol of the Gestapo, 20.2.1943 The Origin of the White Rose The White Rose originated from individual friend- ships growing into circles of friends. Christoph Probst and Alexander Schmorell had been friends since their school days.
    [Show full text]
  • {How Sommerfeld Extended Bohr's Model of the Atom (1913–1916)}
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263003051 How Sommerfeld extended Bohr's model of the atom (1913-1916) Article in European Physical Journal H, The · December 2013 DOI: 10.1140/epjh/e2013-40052-4 CITATIONS READS 12 33,525 1 author: Michael Eckert Deutsches Museum 160 PUBLICATIONS 524 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Fluid mechanics View project History of Physics View project All content following this page was uploaded by Michael Eckert on 25 November 2014. The user has requested enhancement of the downloaded file. Eur. Phys. J. H 39, 141–156 (2014) THE EUROPEAN DOI: 10.1140/epjh/e2013-40052-4 PHYSICAL JOURNAL H How Sommerfeld extended Bohr’s model of the atom (1913–1916) Michael Eckerta Deutsches Museum, D-80306 Munich, Germany Received 13 December 2013 / Received in final form 17 December 2013 Published online 30 January 2014 c EDP Sciences, Springer-Verlag 2014 Abstract. Sommerfeld’s extension of Bohr’s atomic model was moti- vated by the quest for a theory of the Zeeman and Stark effects. The crucial idea was that a spectral line is made up of coinciding frequencies which are decomposed in an applied field. In October 1914 Johannes Stark had published the results of his experimental investigation on the splitting of spectral lines in hydrogen (Balmer lines) in electric fields, which showed that the frequency of each Balmer line becomes decom- posed into a multiplet of frequencies. The number of lines in such a decomposition grows with the index of the line in the Balmer series.
    [Show full text]
  • The Influences of the White Rose and Their Peaceful Resistance for Intellectual Freedom
    Marissa Swope, Liberty University “We are your Bad Conscience” The Influences of the White Rose and their Peaceful Resistance for Intellectual Freedom Amidst the climate of intellectual oppression experienced within Germany, the White Rose movement organized non-violent resistance within the Nazi stronghold of Munich. The White Rose represents the collective efforts of Hans and Sophie Scholl (siblings), Alexander Schmorell, Willi Graf, Christoph Probst, and Professor Kurt Huber. Together these German students and professor peacefully challenged Hitler and Nazism by composing, printing, and distributing anonymous leaflets which rejected Nazi tyranny and genocide. On June 27, 1942, the first leaflet was distributed. The paper was titled “Leaflet of the White Rose” and marked with a number one, signifying the first of a series. The opening lines of the first leaflet decried the Nazi regime and incited each German to critically investigate the actions of their government. The halls of Ludwig Maximillian University of Munich were scattered with these mysterious papers. Around one hundred copies of the leaflet had been mailed to a diversified grouping of recipients, including those who shared similar beliefs or were known to harbor resentment toward Nazism. Over the next year, a total of six leaflets circulated Munich, each advocating for active opposition to the Nazi regime. While the White Rose movement did not overthrow the Nazi regime, they defied the totalitarian state by voicing their beliefs and encouraging passive resistance. Their motivations stemmed from moral convictions and ideological differences between Nazism, namely the fundamental pursuit of freedom. Intellectual and religious similarities within familial relationships and friendships, restriction of freedom under the Third Reich, crimes of the German state during World War II, and the shared duty to encourage resistance influenced the members of the White Rose to defy the Nazi regime.
    [Show full text]