Nobelpreis Für Physik,1901
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hendrik Antoon Lorentz's Struggle with Quantum Theory A. J
Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Archive for History of Exact Sciences ISSN 0003-9519 Volume 67 Number 2 Arch. Hist. Exact Sci. (2013) 67:149-170 DOI 10.1007/s00407-012-0107-8 1 23 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may self- archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Arch. Hist. Exact Sci. (2013) 67:149–170 DOI 10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Received: 15 June 2012 / Published online: 24 July 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentz in quantum theory. Although especially his early work is valuable, the main importance of Lorentz’s work lies in the conceptual clarifications he provided and in his critique of the foundations of quantum theory. 1 Introduction The Dutch physicist Hendrik Antoon Lorentz (1853–1928) is generally viewed as an icon of classical, nineteenth-century physics—indeed, as one of the last masters of that era. Thus, it may come as a bit of a surprise that he also made important contribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- ment in physics. The importance of Lorentz’s work lies not so much in his concrete contributions to the actual physics—although some of his early work was ground- breaking—but rather in the conceptual clarifications he provided and his critique of the foundations and interpretations of the new ideas. -
Philosophical Rhetoric in Early Quantum Mechanics, 1925-1927
b1043_Chapter-2.4.qxd 1/27/2011 7:30 PM Page 319 b1043 Quantum Mechanics and Weimar Culture FA 319 Philosophical Rhetoric in Early Quantum Mechanics 1925–27: High Principles, Cultural Values and Professional Anxieties Alexei Kojevnikov* ‘I look on most general reasoning in science as [an] opportunistic (success- or unsuccessful) relationship between conceptions more or less defined by other conception[s] and helping us to overlook [danicism for “survey”] things.’ Niels Bohr (1919)1 This paper considers the role played by philosophical conceptions in the process of the development of quantum mechanics, 1925–1927, and analyses stances taken by key participants on four main issues of the controversy (Anschaulichkeit, quantum discontinuity, the wave-particle dilemma and causality). Social and cultural values and anxieties at the time of general crisis, as identified by Paul Forman, strongly affected the language of the debate. At the same time, individual philosophical positions presented as strongly-held principles were in fact flexible and sometimes reversible to almost their opposites. One can understand the dynamics of rhetorical shifts and changing strategies, if one considers interpretational debates as a way * Department of History, University of British Columbia, 1873 East Mall, Vancouver, British Columbia, Canada V6T 1Z1; [email protected]. The following abbreviations are used: AHQP, Archive for History of Quantum Physics, NBA, Copenhagen; AP, Annalen der Physik; HSPS, Historical Studies in the Physical Sciences; NBA, Niels Bohr Archive, Niels Bohr Institute, Copenhagen; NW, Die Naturwissenschaften; PWB, Wolfgang Pauli, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg a.o., Band I: 1919–1929, ed. A. Hermann, K.V. -
Von Richthofen, Einstein and the AGA Estimating Achievement from Fame
Von Richthofen, Einstein and the AGA Estimating achievement from fame Every schoolboy has heard of Einstein; fewer have heard of Antoine Becquerel; almost nobody has heard of Nils Dalén. Yet they all won Nobel Prizes for Physics. Can we gauge a scientist’s achievements by his or her fame? If so, how? And how do fighter pilots help? Mikhail Simkin and Vwani Roychowdhury look for the linkages. “It was a famous victory.” We instinctively rank the had published. However, in 2001–2002 popular French achievements of great men and women by how famous TV presenters Igor and Grichka Bogdanoff published they are. But is instinct enough? And how exactly does a great man’s fame relate to the greatness of his achieve- ment? Some achievements are easy to quantify. Such is the case with fighter pilots of the First World War. Their achievements can be easily measured and ranked, in terms of their victories – the number of enemy planes they shot down. These aces achieved varying degrees of fame, which have lasted down to the internet age. A few years ago we compared1 the fame of First World War fighter pilot aces (measured in Google hits) with their achievement (measured in victories); and we found that We can estimate fame grows exponentially with achievement. fame from Google; Is the same true in other areas of excellence? Bagrow et al. have studied the relationship between can this tell us 2 achievement and fame for physicists . The relationship Manfred von Richthofen (in cockpit) with members of his so- about actual they found was linear. -
25 Years of Quantum Hall Effect
S´eminaire Poincar´e2 (2004) 1 – 16 S´eminaire Poincar´e 25 Years of Quantum Hall Effect (QHE) A Personal View on the Discovery, Physics and Applications of this Quantum Effect Klaus von Klitzing Max-Planck-Institut f¨ur Festk¨orperforschung Heisenbergstr. 1 D-70569 Stuttgart Germany 1 Historical Aspects The birthday of the quantum Hall effect (QHE) can be fixed very accurately. It was the night of the 4th to the 5th of February 1980 at around 2 a.m. during an experiment at the High Magnetic Field Laboratory in Grenoble. The research topic included the characterization of the electronic transport of silicon field effect transistors. How can one improve the mobility of these devices? Which scattering processes (surface roughness, interface charges, impurities etc.) dominate the motion of the electrons in the very thin layer of only a few nanometers at the interface between silicon and silicon dioxide? For this research, Dr. Dorda (Siemens AG) and Dr. Pepper (Plessey Company) provided specially designed devices (Hall devices) as shown in Fig.1, which allow direct measurements of the resistivity tensor. Figure 1: Typical silicon MOSFET device used for measurements of the xx- and xy-components of the resistivity tensor. For a fixed source-drain current between the contacts S and D, the potential drops between the probes P − P and H − H are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage increases the carrier density below the gate. For the experiments, low temperatures (typically 4.2 K) were used in order to suppress dis- turbing scattering processes originating from electron-phonon interactions. -
CV Klaus Von Klitzing
Curriculum Vitae Professor Dr. Klaus von Klitzing Name: Klaus von Klitzing Born: 28 June 1943 Major Scientific Interests: Solid State Research, Experimental Solid Physics, Low Dimensional Electron Systems, Quantum Hall Effect Nobel Prize in Physics 1985 Academic and Professional Career since 1985 Director at the Max Planck Institute for Solid State Research and Honorary Professor at Stuttgart University, Germany 1980 - 1984 Professor at the Technical University Munich, Germany 1978 Habilitation 1972 Ph.D. in Physics 1969 - 1980 University of Würzburg, Germany 1962 - 1969 Diploma in Physics Technical University Braunschweig, Germany Functions in Scientific Societies and Committees (Selection) 2011 Scientific Advisory Board Graphene Flagship 2008 Scientific Committee Bayer Climate Award Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 2007 EURAMET Research Council 2006 Board of Trustees “Institute of Advanced Studies” of TUM 2005 Jury Member START-Wittgenstein Program Austria 2005 Scientific Committee International Solvay Institutes 2000 NTT - Basic Research Laboratory Advisory Board 1992 Bord of Trustees of the German Museum Munich, Germany 1989 Bord of Trustees of the Physikalisch-Technische Bundesanstalt Braunschweig Honours and Awarded Memberships (Selection) 2019 Member of Orden Pour le Mérite 2012 TUM Distinguished Affiliated Professor 2011 Honorary Degree of the National University of Mongolia 2011 Honorary Degree of the Weizmann Institute of Science, Rehovot 2010 Honorary Member of the Deutsche Hochschulverband -
On the Linkage Between Planck's Quantum and Maxwell's Equations
The Finnish Society for Natural Philosophy 25 years, K.V. Laurikainen Honorary Symposium, Helsinki 11.-12.11.2013 On the Linkage between Planck's Quantum and Maxwell's Equations Tuomo Suntola Physics Foundations Society, www.physicsfoundations.org Abstract The concept of quantum is one of the key elements of the foundations in modern physics. The term quantum is primarily identified as a discrete amount of something. In the early 20th century, the concept of quantum was needed to explain Max Planck’s blackbody radiation law which suggested that the elec- tromagnetic radiation emitted by atomic oscillators at the surfaces of a blackbody cavity appears as dis- crete packets with the energy proportional to the frequency of the radiation in the packet. The derivation of Planck’s equation from Maxwell’s equations shows quantizing as a property of the emission/absorption process rather than an intrinsic property of radiation; the Planck constant becomes linked to primary electrical constants allowing a unified expression of the energies of mass objects and electromagnetic radiation thereby offering a novel insight into the wave nature of matter. From discrete atoms to a quantum of radiation Continuity or discontinuity of matter has been seen as a fundamental question since antiquity. Aristotle saw perfection in continuity and opposed Democritus’s ideas of indivisible atoms. First evidences of atoms and molecules were obtained in chemistry as multiple proportions of elements in chemical reac- tions by the end of the 18th and in the early 19th centuries. For physicist, the idea of atoms emerged for more than half a century later, most concretely in statistical thermodynamics and kinetic gas theory that converted the mole-based considerations of chemists into molecule-based considerations based on con- servation laws and probabilities. -
The Splendors (And No Miseries) of Mass Spectrometry
Image: David Monniaux, Wikipedia Image: Wired Center for Industrial Mathematics Image: Wikipedia Image: ION-TOF.com The Splendors (and no Miseries) of Mass Spectrometry Theodore Alexandrov Center for Industrial Mathematics, University of Bremen Winterseminar, Alghero, Sardinia, Italy 23 Sep 2009 Image: ION-TOF GmbH Image: www.electrotherapymuseum.com Center for Industrial Did you know that? Mathematics Mass spectrometry (MS) is a technique of analytical chemistry that identifies the elemental composition of sample based on mass-to- charge ratio of charged particles. Did you know that MS is used to – Detect and identify the use of drugs of abuse (dopings) in athletes – Identification of explosives and analysis of explosives in postblast residues – Analyse suspicious powders following the post 9/11 anthrax scare – Monitor the breath of patients by anesthesiologists during surgery – and … 2of 14 Center for Industrial T. Rex: just a big chicken? Mathematics A sample of a bone of Tyrannosaurus rex was discovered in 2000 (sample MOR 1125) 68 million years old Soft tissues were inside the bone A sample was demineralized and studied in a mass-spectrometer Several fragments were found which are very similar to collagen—the most common protein found in bones—from birds, specifically chickens! Wired, 22.06.09 (http://www.wired.com/medtech/genetics/magazine/17-07/ff_originofspecies) 3of 14 Center for Industrial T. Rex: just a big chicken? Mathematics 4of 14 Center for Industrial Early history of MS Mathematics Eugen Goldstein (Potsdam) 1886: invented Kanalstrahlen (anode/channel/positive rays) (-) Image: Michael Hedenus, Der Komet in der Entladungsröhre (+) Image: www.electrotherapymuseum.com Wilhelm Wien (RWTH Aachen,Würzburg,Munich) experimented with anode rays in a magnetic field separated canal rays (ions) according to their mass-to-charge ratio It might be expedient to “abandon the terms cathod rays, canal rays and positive light and to speak only of positive and negative particles". -
Date: To: September 22, 1 997 Mr Ian Johnston©
22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A. -
Wien Peaks, Planck Distribution Function and Its Decomposition, The
Applied Physics Research; Vol. 12, No. 4; 2020 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education How to Understand the Planck´s Oscillators? Wien Peaks, Planck Distribution Function and Its Decomposition, the Bohm Sheath Criterion, Plasma Coupling Constant, the Barrier of Determinacy, Hubble Cooling Constant. (24.04.2020) Jiří Stávek1 1 Bazovského 1228, 163 00 Prague, Czech republic Correspondence: Jiří Stávek, Bazovského 1228, 163 00 Prague, Czech republic. E-mail: [email protected] Received: April 23, 2020 Accepted: June 26, 2020 Online Published: July 31, 2020 doi:10.5539/apr.v12n4p63 URL: http://dx.doi.org/10.5539/apr.v12n4p63 Abstract In our approach we have combined knowledge of Old Masters (working in this field before the year 1905), New Masters (working in this field after the year 1905) and Dissidents under the guidance of Louis de Broglie and David Bohm. Based on the great works of Wilhelm Wien and Max Planck we have presented a new look on the “Wien Peaks” and the Planck Distribution Function and proposed the “core-shell” model of the photon. There are known many “Wien Peaks” defined for different contexts. We have introduced a thermodynamic approach to define the Wien Photopic Peak at the wavelength λ = 555 nm and the Wien Scotopic Peak at the wavelength λ = 501 nm to document why Nature excellently optimized the human vision at those wavelengths. There could be discovered many more the so-called Wien Thermodynamic Peaks for other physical and chemical processes. We have attempted to describe the so-called Planck oscillators as coupled oscillations of geons and dyons. -
Klaus Von Klitzing 1985 NOBEL PRIZE in PHYSICS Yoseph Imry, Tel Aviv (School of Physics and Astronomy, Tel Aviv University)
europhysics BULLETIN OF THE EUROPEAN PHYSICAL SOCIETY news J.A. Volume 16 Number 11/12 November/December 1985 Klaus von Klitzing 1985 NOBEL PRIZE IN PHYSICS Yoseph Imry, Tel Aviv (School of Physics and Astronomy, Tel Aviv University) An October 16, 1985, the Swedish meanwhile been surpassed by an order Academy of Sciences announced the of magnitude and the result was found award of the 1985 Nobel Prize in Physics to be universal — independent of mate to Klaus von Klitzing of the Max-Planck rial and sample properties. The plateaux Institute in Stuttgart, for the discovery were also observed by Kawaji and of the Quantized Hall Effect (QHE). The Wakabayashi 2). QHE was reported in 1980 in a paper1) Besides its sheer beauty, this striking by von Klitzing in collaboration with G. result touches upon several topics of Dorda of Siemens and M. Pepper of fundamental interest, has important ap Cambridge. As shown in Fig. 1, the Hall plications to precision measurements Klaus von Klitzing now aged 42 began his conductance Gxy of a 2D electron gas in and metrology, has motivated and will physics studies at the Technical University an MOS was found, for finite ranges of undoubtedly lead to novel develop in Braunschweig and then in 1972 moved to the gate voltage in which the regular ments. Moreover, it relies on the physics the University of Wurzburg gaining his Habi conductance, Gxx, was severely reduc of devices of great industrial interest 3). litation in 1978 after spending a period at the ed, to be quantized with plateaux having Before explaining the effect briefly University of Oxford. -
Quantum Theory, Quantum Mechanics) Part 1
Quantum physics (quantum theory, quantum mechanics) Part 1 1 Outline Introduction Problems of classical physics Black-body Radiation experimental observations Wien’s displacement law Stefan – Boltzmann law Rayleigh - Jeans Wien’s radiation law Planck’s radiation law photoelectric effect observation studies Einstein’s explanation Quantum mechanics Features postulates Summary Quantum Physics 2 Question: What do these have in common? lasers solar cells transistors computer chips CCDs in digital cameras Ipods superconductors ......... Answer: They are all based on the quantum physics discovered in the 20th century. 3 “Classical” vs “modern” physics 4 Why Quantum Physics? “Classical Physics”: developed in 15th to 20th century; provides very successful description “macroscopic phenomena, i.e. behavior of “every day, ordinary objects” o motion of trains, cars, bullets,…. o orbit of moon, planets o how an engine works,.. o Electrical and magnetic phenomena subfields: mechanics, thermodynamics, electrodynamics, “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” 5 --- William Thomson (Lord Kelvin), 1900 Why Quantum Physics? – (2) Quantum Physics: developed early 20th century, in response to shortcomings of classical physics in describing certain phenomena (blackbody radiation, photoelectric effect, emission and absorption spectra…) describes microscopic phenomena, e.g. behavior of atoms, photon-atom scattering and flow of the electrons in a semiconductor. -
Proposed Changes to the SI , Their Impact on Fundamental Constants and Other SI Units
Proposed changes to the SI , their impact on fundamental constants and other SI units . < < >> >>>> >> Fundamental Constants Edwin Williams Planck constant, h,e LNE, Guest Scientist & NIST LNE CCM is asking: What system is best for the CCM and your metrology Community? The new SI in which we scale our system by fixing the values of e, h, NA and k provides: A system that is favorable to the mass community. Agreement with other measurements of h and NA. A system more stable over time and more suitable for the expression of the values of the fundamental constants. (P. Mohr) What is needed to implement the new system? Educate your community. Implement the changes required to be consistent with new values of h and NA . When? 2011 If 1ppm discrepancy resolved. Atomic mass and quantum electric standards are more stable, long term, than macroscopic mass standards What is the purpose of SI Provide a basis for a practical measurement system so that both science and industry can prosper We are being asked to simply choose the scales against which all measurements are made We still have the same metric system but it won’t drift and the scales will be clearer (have less uncertainty) Scientists can only disprove theories never prove them. The SI assumes that our present knowledge is valid but it is understood that the sciences upon which it is based must be tested. The SI simply provides a system where we can compare results from around the world. The adjustment of the fundamental constants is the most stringent test we make of the system.