The Eruptive Chronology of the Ampato-Sabancaya Volcanic

Total Page:16

File Type:pdf, Size:1020Kb

The Eruptive Chronology of the Ampato-Sabancaya Volcanic Journal of Volcanology and Geothermal Research 323 (2016) 110–128 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores The eruptive chronology of the Ampato–Sabancaya volcanic complex (Southern Peru) Pablo Samaniego a,⁎,MarcoRiverab, Jersy Mariño b, Hervé Guillou c,CélineLiorzoud, Swann Zerathe e, Rosmery Delgado b, Patricio Valderrama a,b,VincentScaoc a Laboratoire Magmas et Volcans, Université Blaise Pascal - CNRS - IRD, 6 Avenue Blaise Pascal, TSA 60026 - CS 60026, 63178 Aubière, France b Observatorio Vulcanológico del INGEMMET, Dirección de Geología Ambiental y Riesgo Geológico, Urb. Magisterial B-16, Umacollo, Arequipa, Peru c Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France d Laboratoire Domaines Océaniques, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Rue Dumont d'Urville, 29280 Plouzané, France e Institut des Sciences de la Terre, Université Grenoble Alpes – CNRS - IRD, 1381 rue de la piscine, 38400 Saint Martin d'Hères, France article info abstract Article history: We have reconstructed the eruptive chronology of the Ampato–Sabancaya volcanic complex (Southern Peru) on Received 14 January 2016 the basis of extensive fieldwork, and a large dataset of geochronological (40K–40Ar, 14Cand3He) and geochemical Received in revised form 1 April 2016 (major and trace element) data. This volcanic complex is composed of two successive edifices that have experi- Accepted 29 April 2016 enced discontinuous volcanic activity from Middle Pleistocene to Holocene times. The Ampato compound Available online 07 May 2016 volcano consists of a basal edifice constructed over at least two cone-building stages dated at 450–400 ka and – fi fi Keywords: 230 200 ka. After a period of quiescence, the Ampato Upper edi ce was constructed rstly during an effusive – – Ampato stage (80 70 ka), and then by the formation of three successive peaks: the Northern, Southern (40 20 ka) and Sabancaya Central cones (20–10 ka). The Southern peak, which is the biggest, experienced large explosive phases, resulting Central Andes in deposits such as the Corinta plinian fallout. During the Holocene, eruptive activity migrated to the NE and con- Eruptive chronology structed the mostly effusive Sabancaya edifice. This cone comprised many andesitic and dacitic blocky lava flows Eruptive rates and a young terminal cone, mostly composed of pyroclastic material. Most samples from the Ampato–Sabancaya Volcanic hazards define a broad high-K magmatic trend composed of andesites and dacites with a mineral assemblage of plagio- clase, amphibole, biotite, ortho- and clino-pyroxene, and Fe–Ti oxides. A secondary trend also exists, correspond- ing to rare dacitic explosive eruptions (i.e. Corinta fallout and flow deposits). Both magmatic trends are derived by fractional crystallisation involving an amphibole-rich cumulate with variable amounts of upper crustal assimilation. A marked change in the overall eruptive rate has been identified between Ampato (~0.1 km3/ka) and Sabancaya (0.6–1.7 km3/ka). This abrupt change demonstrates that eruptive rates have not been homogeneous throughout the volcano's history. Based on tephrochronologic studies, the Late Holocene Sabancaya activity is characterised by strong vulcanian events, although its erupted volume remained low and only produced a local impact through ash fallout. We have identified at least 6 eruptions during the last 4–5 ka, including the historical AD 1750–1784 and 1987–1998 events. On the basis of this recurrent low-to-moderate explosive activity, Sabancaya must be considered active and a potentially threatening volcano. © 2016 Elsevier B.V. All rights reserved. 1. Introduction Zone (CVZ) results from the subduction of the oceanic Nazca plate below the South American continental lithosphere. As a result, the Reconstructing the eruptive chronology of active volcanic systems volcanic front includes at least twelve volcanic centres of Pleistocene represents a key step for any hazard assessment initiative. However, age (Fig. 1a) of which seven have experienced historical eruptive the recent eruptions of Chaitén (2008, Major and Lara, 2013)and activity (i.e. since the arrival of the Spanish conquistadors in the 16th Reventador volcanoes (2002, Hall et al., 2004) showed that the eruptive century). These volcanoes include El Misti (Thouret et al., 2001; chronology of many active volcanic complexes remains poorly known. Harpel et al., 2011), which threatens the city of Arequipa, the active vol- In the Andean cordillera, the Peruvian segment of the Central Volcanic canoes of Ubinas (Thouret et al., 2005; Rivera et al., 2014)and Sabancaya (Gerbe and Thouret, 2004), and Huaynaputina volcano (Thouret et al., 1999; Adams et al., 2001), which has had the biggest ⁎ Corresponding author. historical eruption in the Andes. However, little is still known about E-mail address: [email protected] (P. Samaniego). the eruptive chronology of some of these volcanic centres, such as the http://dx.doi.org/10.1016/j.jvolgeores.2016.04.038 0377-0273/© 2016 Elsevier B.V. All rights reserved. 180000 190000 200000 210000 74º 72ºHistorically active 70º Plio-Quaternary15º a Potentially active volcanic front SARA SARA SOLIMANA ANDAHUA c AMPATO- JULIACA COROPUNA TITICACA BOLIVIALAKE RIO COLCA SABANCAYA CHALA PUNO Madrigal 16º CHACHANI 16º Pinchollo MISTI Cabanaconde Lari UBINAS 000 AREQUIPA HUAYNAPUTINA CAMANA Maca TICSANI 8270 Y TUTUPACA MOLLENDO MOQUEGUA YUCAMANE Achoma ILO CASIRI 5-6 cm/y HUALCA Qda. Huayuray 18º HUALCA 18ºS TACNA CHILE 0 50 100 km 74º 72º 70º 000 Río Sepina 8260 Mucurca 72º Cabanaconde Chivay Trigal Río Colca lake Maca SABANCAYA Ichupamba Solarpampa Hualca Sepina Colihuiri Hualca 000 Huambo 8250 AMPATO Sabancaya Cajamarcana Ampato Collpa Río Parcomayo Sallalli Normal fault Huanca Japo Strike slip 000 Corinta Lineaments 8240 0 5 km Baylillas b 72º 16º 180000 190000 200000 210000 Fig. 1. (a) The Peruvian volcanic arc. (b) Structural context of the Ampato–Sabancaya region, including the Colca river valley. Main structures from Mering et al. (1996) and Gerbe and Thouret (2004) Sabancaya and Hualca Hualca complexes and the nearby Colca canyon. 112 P. Samaniego et al. / Journal of Volcanology and Geothermal Research 323 (2016) 110–128 Sabancaya volcano, and its neighbouring Ampato edifice. Rare historical 3. Methodology accounts mention eruptive activity that occurred in AD 1750 and 1784 (Siebert et al., 2010; Travada y Córdova, 1752; Zamácola y Jaúregui, Fieldwork was carried out during several field campaigns between 1888). More recently, Sabancaya entered a new eruptive phase in 2009 and 2012, which included geological mapping and sampling of 1988, which lasted until at least 1997 (Global Volcanism Program, most volcanic units. At high altitude (above 5000 m asl), fieldwork 1988, 1997). During this period, Sabancaya experienced low to moder- was complicated by the presence of a large icecap as well as voluminous ate explosive eruptions (VEI 1–2) that were characterised by violent glacial deposits. However, the presence of numerous deep glacial vulcanian explosions accompanied by small (up to 5–7 km height) valleys allowed sampling of almost all volcanic units, resulting in a eruption columns with a local ash fallout impact. The most significant broad sample array for petrographic and geochemical studies (Fig. 2). activity was observed between April–May 1990 and April 1991 Major and trace element whole-rock analyses were obtained from (Global Volcanism Program, 1990, 1991). Since March–April 2013, agate-crushed powders of 133 samples spanning the entire volcanic Sabancaya has shown increased fumarolic activity, accompanied by complex, at the Institut Universitaire Européen de la Mer, Université frequent seismic swarms (Global Volcanism Program, 2013; Jay et al., de Bretagne Occidentale (Brest, France), using an Inductive Coupled 2015). Plasma-Atomic Emission Spectrometer (ICP-AES) and following the Following its reactivation in 1988, several studies have been analytical procedure described by Cotten et al. (1995). These data, carried out on Sabancaya. These works include an initial geological together with petrographic descriptions, have been used to characterise reconnaissance, comprising a hazard assessment (Thouretetal., and correlate the different volcanic units. 1994), a regional tephro-chronological survey (Juvigné et al., 1998, We constrained the Pleistocene eruptive chronology via the 2008) and a petrological description of the last eruption products unspiked 40K–40Ar dating method at the Laboratoire des Sciences du (Gerbe and Thouret, 2004). Based on detailed field work and Climat et de l'Environnement (LSCE/IPSL, Gif-sur-Yvette, France). We geochronological and petrological studies, we reconstruct the obtained 10 ages covering the entire history of this volcanic complex structure and the volcanic and magmatic history of the Ampato– (Table 1). The Holocene chronology is based on 14 new radiocarbon Sabancaya volcanic complex from the Pleistocene to the present day. ages mainly obtained from peat and soil samples from several peatbogs around the volcanic complex. Most samples (8) were analysed at the Laboratoire de Mesure du Carbone 14 (LMC14, Gif-sur-Yvette, France) 2. Geological setting and an additional group (6) were analysed at the Centre for Isotope Research (CIO), Groningen University (Netherlands). Table 2 shows The Ampato–Sabancaya
Recommended publications
  • Annual Report
    STRENGTHENING CAPACITIES FOR DISASTER RISK REDUCTION AND INCREASING RESILIENCE IN COMMUNITIES OF CAYLLOMA, AREQUIPA. ANNUAL REPORT OCTOBER 2018 – SEPTEMBER 2019 GENERAL PROJECT INFORMATION STRENGTHENING CAPACITIES FOR DISASTER RISK Project Title REDUCTION AND INCREASING RESILIENCE IN COMMUNITIES OF CAYLLOMA, AREQUIPA. Award number 72OFDA18GR00319 Registration number REQ-OFDA-18-000751 Start date October 01, 2018 Duration 15 months Country / region: Peru / department of Arequipa, province of Caylloma. Reported period: April 2019 – September 2019 Date of report: October 23, 2019. Adventist Development and Relief Agency International - ADRA INTERNATIONAL Report for: Debra Olson, Program Manager, Program Implementation Unit. Nestor Mogollon, Director of Monitoring and Evaluation. Adventist Development and Relief Agency Perú – ADRA Perú Víctor Huamán, project manager. Report by: cell phone: 51 - 997 555 483 - email: [email protected] Erick Quispe, local coordinator. cell phone: 51 - 966 315 430 - email: [email protected] REPORTE ANUAL: OCTUBRE 2018 – SETIEMBRE 2019 1. EXECUTIVE SUMMARY Since 2016 the Sabancaya volcano has registered permanent eruptive activity with emissions of gases, ashes and earthquakes, which together with other natural phenomena such as frosts, intense rains and landslides, interrupt local development and affect thousands of people in the province of Caylloma. For this reason, the project aims to integrate disaster risk reduction into institutional management tools of local governments in the Province of Caylloma, with the participation of the population and collaboration at the regional and national levels. The project called "Allichakusun ante desastres" (“Prepared for disasters”) is implemented in two sectors and the reached for the length of award is: (1) agriculture and food security with 545 beneficiaries, and (2) disaster risk reduction policy and practices with 10,014 beneficiaries sensitized, 392 beneficiaries trained, and 339 beneficiaries (54 belong to the community) involved in the development of contingency plans and others.
    [Show full text]
  • ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI – CASIRI (2020 - 2021) (Distrito De Tarata – Región Tacna)
    ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI – CASIRI (2020 - 2021) (Distrito de Tarata – Región Tacna) Informe Técnico N°010-2021/IGP CIENCIAS DE LA TIERRA SÓLIDA Lima – Perú Mayo, 2021 Instituto Geofísico del Perú Presidente Ejecutivo: Hernando Tavera Director Científico: Edmundo Norabuena Informe Técnico Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni - Casiri (2020 – 2021). Distrito de Tarata – Región Tacna Autores Yanet Antayhua Lizbeth Velarde Katherine Vargas Hernando Tavera Juan Carlos Villegas Este informe ha sido producido por el Instituto Geofísico del Perú Calle Badajoz 169 Mayorazgo Teléfono: 51-1-3172300 Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni – Casiri (2020 – 2021) ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI - CASIRI (2020 – 2021) Distrito de Tarata – Región Tacna Lima – Perú Mayo, 2021 2 Instituto Geofísico del Perú Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni – Casiri (2020 – 2021) RESUMEN Este estudio analiza las características sismotectónicas de la actividad sísmica ocurrida en el entorno de la falla Pacollo y volcanes Purupuruni- Casiri (distrito de Tarata – región Tacna), durante el periodo julio de 2020 a mayo de 2021. Desde mayo de 2020 hasta mayo de 2021, en el área de estudio se ha producido dos periodos de crisis sísmica separados por otro en donde la ocurrencia de sismos era constante, pero con menor frecuencia. El primer periodo de crisis sísmica ocurrió en el periodo del 15 al 30 de julio del 2020 con la ocurrencia de 3 eventos sísmicos que alcanzaron magnitud de M4.2.
    [Show full text]
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • Shaman Mystic Retreat Peru Machu Picchu, Rainbow Mountains, Lake Titicaca, Colca Canyon, Sacred Valley 15-Day Trip
    Shaman Mystic Retreat Peru Machu Picchu, Rainbow Mountains, Lake Titicaca, Colca Canyon, Sacred Valley 15-day trip Arranged by Manuel Usca (Peru) and Michael W. Berg (Denmark) Tour description Day one 19/08/2019/08/20:: Lima to Cusco Reception and transfer to hotel With a warm welcome at the airport you will be transferred to the hotel in Cusco. Cusco, the center of the universe, navel of the world and city of the Puma. It is recommended to rest at least two hours before doing any activity. To assist with any altitude sensitivities, the rest of the day is free to connect with the ancestral energy of Cusco. Early in the evening there will be a group meeting, to talk about the great awakening of our spiritual consciousness planned for this trip. Hotel: Hotel Ruinas or Midori Day two 202020/08/2020 /08/20/08/20:: Cusco, Spiritual Integration ceremony, Temple of TTThunderThunder & Cusco HalHalff day activity After breakfast at the hotel. Our bus drives us to the great temple of Amaru Machay – Temple of Life, Temple of the Serpent. We will be met with by Andean Priest to receiving a spiritual teaching, activation ceremony then a short walk will take us to Sacsayhuaman–Temple of Lightning. We will discover the historical and spiritual significance of this beautiful site, participating in a ceremony for the activation of the water, earth and sun. Our journey begins with the forgiveness, Love and Peace, participating in a meditation to connect us deeply. After experiencing a connection to our wisdom at these sites, we will walk back into Cusco along Ancestral spiritual roads enjoying breath taking views over Cusco.
    [Show full text]
  • Hospitales a Nivel Nacional
    HOSPITALES A NIVEL NACIONAL PROVINCIA: AZUAY ZONA 6 ( 072-822-201) ITEM HOSPITAL TELEFONO 1 HOSPITAL VICENTE CORRAL MOSCOZO 074-096-606/074-096-598 2 HOSPITAL DE SIGSIG 072-266-115/ 072-267-629 3 HOSPITAL EL GIRON 072-276-136/074-275-115 4 HOSPITAL PAUTE 072-250-107/074-250-027 5 HOSPITAL GUALACEO 072-255-064/074-256-537 6 HOSPITAL SANTA ISABEL 072-270-147/072-270-437/074-270-295 7 HOSPITAL MARIANO ESTRELLA 072-847-427 8 CENTRO DE SALUD 1 PUMAPUNGO 072-867-071/072-869-642 9 AREA DE SALUD 2 MIRAFLORES 072-837-665/072-838-155/072-845-015 10 CENTRO DE SALUD 3 TOMEBAMBA 072-822-202/072-836-352 11 CENTRO DE SALUD 4 YANUNCAY 072-893-150/072-892-444/074-2892-390 PROVINCIA: BOLIVAR ZONA 5 ITEM HOSPITAL TELEFONO 1 HOSPITAL ALFREDO NOBOA MONTENEGRO 032-980-230 2 HOSPITAL SAN MIGUEL 032-989-112/032-989-416 3 HOSPITAL CHILLANES 032-978-522/032-978-522 4 CENTRO DE SALUD 1 CORDERO CRESPO 032-985-904/032-980-290 5 CENTRO DE SALUD CALUMA 032-974-394/032-974-709 6 CENTRO DE SALUD EHCEANDIA 032-970-376/032-970-545/032-971-221 HOSPITALES A NIVEL NACIONAL PROVINCIA: CARCHI/TULCÁN ZONA 1 ITEM HOSPITAL TELEFONO 1 HOSPITAL LUIS G. DAVILA 062-980-316/062-980-315 2 HOSPITAL EL ANGEL 062-977-166 3 HOSPITAL SAN GABRIEL 062-290-153/062-290-161 4 CENTRO DE SALUD 1 062-980-396 5 CENTRO DE SALUD SAN JUAN DEL ACHAS 062-648-672 PROVINCIA: CAÑAR ZONA 6 ITEM HOSPITAL TELEFONO 1 HOSPITAL HOMERO C.
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Geothermal Map of Perú
    Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Geothermal Map of Perú Víctor Vargas & Vicentina Cruz Instituto Geológico Minero y Metalúrgico – INGEMMET. Av. Canadá Nº 1470. Lima 41. San Borja, Lima - Perú [email protected] [email protected] Keywords: Geothermal map, Eje Volcánico Sur, contribute in the development of this environmentally geothermal manifestations, volcanic rocks, deep faults, friendly resource, for electric power generation and direct Perú. uses ABSTRACT 1. INTRODUCTION The Andes Cordillera resulted from the interaction of the All over the world the major geothermal potential is Nazca Plate and the South American Plate. The subduction associated to discontinuous chains of Pio-Pleistocenic process occurring between both plates has controlled all volcanic centers that take part of the Pacific Fire Belt, and geological evolution of such territory since Mesozoic to Perú as a part of this, has a vast geothermal manifestation present time. In this context, magmatic and tectonic like hot springs, geysers, fumaroles etc. processes have allowed the development of geothermal environments with great resources to be evaluated and The Peruvian Geological Survey - INGEMMET- has subsequently developed making a sustainable exploitation traditionally been the first institution devoted to perform of them. geothermal studies that include the first mineral resources and thermal spring’s inventory. The first geothermal studies In consequence, Perú has a vast geothermal potential with were accomplished in the 70's starting with the first many manifestations at the surface as hot springs, geysers, inventory of mineral and thermal springs (Zapata, 1973). fumaroles, steam, etc., all over the country. The first The main purpose of those studies was the geochemical geothermal studies began in the 70's with the first inventory characterization of geothermal flows.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Pscde3 - the Four Sides of the Inca Empire
    CUSCO LAMBAYEQUE Email: [email protected] Av. Manco Cápac 515 – Wanchaq Ca. M. M. Izaga 740 Of. 207 - Chiclayo www.chaskiventura.com T: 51+ 84 233952 T: 51 +74 221282 PSCDE3 - THE FOUR SIDES OF THE INCA EMPIRE SUMMARY DURATION AND SEASON 15 Days/ 14 Nights LOCATION Department of Arequipa, Puno, Cusco, Raqchi community ATRACTIONS Tourism: Archaeological, Ethno tourism, Gastronomic and landscapes. ATRACTIVOS Archaeological and Historical complexes: Machu Picchu, Tipón, Pisac, Pikillaqta, Ollantaytambo, Moray, Maras, Chinchero, Saqsayhuaman, Catedral, Qoricancha, Cusco city, Inca and pre-Inca archaeological complexes, Temple of Wiracocha, Arequipa and Puno. Living culture: traditional weaving techniques and weaving in the Communities of Chinchero, Sibayo, , Raqchi, Uros Museum: in Lima, Arequipa, Cusco. Natural areas: of Titicaca, highlands, Colca canyon, local fauna and flora. TYPE OF SERVICE Private GUIDE – TOUR LEADER English, French, or Spanish. Its presence is important because it allows to incorporate your journey in the thematic offered, getting closer to the economic, institutional, and historic culture and the ecosystems of the circuit for a better understanding. RESUME This circuit offers to get closer to the Andean culture and to understand its world view, its focus, its technologies, its mixture with the Hispanic culture, and the fact that it remains present in Indigenous Communities today. In this way, by bus, small boat, plane or walking, we will visit Archaeological and Historical Complexes, Communities, Museums & Natural Environments that will enable us to know the heart of the Inca Empire - the last heir of the Andean independent culture and predecessor of the mixed world of nowadays. CUSCO LAMBAYEQUE Email: [email protected] Av.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Tesis Mildred Ollague
    UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS ADMINISTRATIVAS TRABAJO DE TITULACIÓN PRESENTADO COMO REQUISITO PARA OPTAR POR EL TÍTULO DE INGENIERÍA EN SISTEMAS ADMINISTRATIVOS COMPUTACIONALES TEMA: “PROTOTIPO DE APLICACIÒN WEB PARA EL CONTROL DE NUTRICIÓN Y CRECIMIENTO PARA NIÑOS DE 1 A 10 AÑOS” AUTORA: OLLAGUE MOSQUERA MILDRED LISSETTE TUTOR: ING. ROMAN BARREZUETA LUGIO DAVID GUAYAQUIL, SEPTIEMBRE 2017 REPOSITORIO NACIONAL EN CIENCIAS Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÍTULO: PROTOTIPO DE APLICACIÓN WEB PARA EL CONTROL DE NUTRICIÓN Y CRECIMIENTO PARA NIÑOS DE 1 A 10 AÑOS AUTOR/ES: REVISORES: Mildred Lissette Ollague Mosquera Ing.Cecibel Alexandra León Arriaga INSTITUCIÓN: Universidad de FACULTAD: Facultad de Ciencias Guayaquil Administrativas CARRERA: Ingeniería en Sistemas Administrativos Computarizados FECHA DE PUBLICACIÓN: NO. DE PÁGS: ÁREA TEMÁTICA: Tecnología PALABRAS CLAVES: Prototipo Aplicación Web Nutrición Crecimiento RESUMEN El presente trabajo investigativo se centra en la creación de un aplicativo web para el control de nutrición y crecimiento de niños de 1 a 10 años, en la que se registra peso y talla de niños para despues evaluar su IMC, Perímetro Cefálico y Perímetro medio del brazo para lo cual se utiliza las tablas percentiles de la OMS con esto se emite un diagnóstico básico y se puede observar gráficamente como va el desarrollo del niño, también se puede enviar un correo con el historial del paciente al médico de su preferencia. N° DE REGISTRO (en base de N° DE CLASIFICACIÓN: datos): DIRECCIÓN URL (propuesta tecnológica en la web) ADJUNTO URL (propuesta tecnológica en la web): ADJUNTO PDF: SI NO CONTACTO CON AUTOR/ES: Teléfono: E-mail: Mildred Lissette Ollague Mosquera 0989194863 [email protected] CONTACTO EN LA Nombre: Ing.
    [Show full text]
  • Universidad Nacional De San Agustín Facultad De Ingeniería Geológica Geofísica Y Minas Escuela Profesional De Ingeniería Geológica
    UNIVERSIDAD NACIONAL DE SAN AGUSTÍN FACULTAD DE INGENIERÍA GEOLÓGICA GEOFÍSICA Y MINAS ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA “ESTUDIO GEOLÓGICO, PETROGRÁFICO Y GEOQUÍMICO DEL COMPLEJO VOLCÁNICO AMPATO - SABANCAYA (Provincia Caylloma, Dpto. Arequipa)” Tesis presentada por: Bach. Rosmery Delgado Ramos Para Optar el Grado Académico de Ingeniero Geólogo AREQUIPA – PERÚ 2012 AGRADECIMIENTOS Quiero manifestar mis más sinceros agradecimientos a todas las personas que fueron parte esencial en mi formación profesional, personal y toda mi vida. Agradezco a mis padres, Victor R. Delgado Delgado y Rosa Luz Ramos Vega, por su constante apoyo y que a pesar de las dificultades y caídas siempre estaban conmigo para cuidarme, ayudarme y sobre todo amarme. A mis hermanos Renzo R. y Angela V. Delgado Ramos que con su optimismo y perseverancia me ayudaron a enfrentar los caminos difíciles de la vida y seguir con mis ideales. Agradezco también a mis asesores al Dr. Marco Rivera y Dr. Pablo Samaniego, que con su paciencia, consejos, regaños, apoyo incondicional y sus grandes enseñanzas, cultivaron en mí la pasión por la investigación y las ganas de alcanzar mis objetivos. Agradezco al Instituto Geológico Minero y Metalúrgico y al convenio de colaboración con el IRD a cargo del Dr. Pablo Samaniego, por la beca que me otorgó durante el período en el cual realice mi tesis. Gracias a mi asesor de tesis el Dr. Fredy García de la Universidad Nacional de San Agustín que por su revisión detallada y gran apoyo benefició en este trabajo. Agradezco al SENAMHI por proporcionarme los datos de clima, fundamentales para el desarrollo de esta tesis.
    [Show full text]