Evolution of Airplanes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Luftwaffe Wasn't Alone
PIONEER JETS OF WORLD WAR II THE LUFTWAFFE WASN’T ALONE BY BARRETT TILLMAN he history of technology is replete with Heinkel, which absorbed some Junkers engineers. Each fac tory a concept called “multiple independent opted for axial compressors. Ohain and Whittle, however, discovery.” Examples are the incandes- independently pursued centrifugal designs, and both encoun- cent lightbulb by the American inventor tered problems, even though both were ultimately successful. Thomas Edison and the British inventor Ohain's design powered the Heinkel He 178, the world's first Joseph Swan in 1879, and the computer by jet airplane, flown in August 1939. Whittle, less successful in Briton Alan Turing and Polish-American finding industrial support, did not fly his own engine until Emil Post in 1936. May 1941, when it powered Britain's first jet airplane: the TDuring the 1930s, on opposite sides of the English Chan- Gloster E.28/39. Even so, he could not manufacture his sub- nel, two gifted aviation designers worked toward the same sequent designs, which the Air Ministry handed off to Rover, goal. Royal Air Force (RAF) Pilot Officer Frank Whittle, a a car company, and subsequently to another auto and piston 23-year-old prodigy, envisioned a gas-turbine engine that aero-engine manufacturer: Rolls-Royce. might surpass the most powerful piston designs, and patented Ohain’s work detoured in 1942 with a dead-end diagonal his idea in 1930. centrifugal compressor. As Dr. Hallion notes, however, “Whit- Slightly later, after flying gliders and tle’s designs greatly influenced American savoring their smooth, vibration-free “Axial-flow engines turbojet development—a General Electric– flight, German physicist Hans von Ohain— were more difficult built derivative of a Whittle design powered who had earned a doctorate in 1935— to perfect but America's first jet airplane, the Bell XP-59A became intrigued with a propeller-less gas- produced more Airacomet, in October 1942. -
PC-6/B2-H4 Airplane Flight Manual Doc. No. 1820 at Revision 8
PILOT’S INFORMATION MANUAL PC-6/B2-H4 applicable from AC S/N 825 PILOT’S INFORMATION MANUAL PC-6/B2-H4 applicable from AC S/N 825 WARNING •This PC-6 Pilot’s Information Manual is published for general and familiarization purposes only. •This Pilot’s Information Manual does NOT meet FAA, FOCA or any other civil aviation authority regulations for operation of ANY Aircraft. •This Pilot’s Information Manual is a reproduction of a PC-6 Airplane Flight Manual, however, it is NOT revised or updated. •This Pilot’s Information Manual does NOT reflect the configuration or operating parameters of any actual aircraft. •Only the Approved Airplane Flight Manual issued for a specific serial number aircraft may be used for actual operation of that serial number aircraft. Pilatus Aircraft Ltd P.O. Box 992 6371 Stans, Switzerland Phone +41 41 619 67 00 Fax +41 41 619 92 00 [email protected] www.pilatus-aircraft.com AIRPLANE FLIGHT MANUAL PC-6/B2-H4 ONLY REPORT NO. 1820 PURPOSES REGISTRATION ._____ __. SERIAL NO . APPLICABLE FROM A/C SIN 825 FAMILIARIZATION THIS AIRPLANDANE IS TO BE OPERAT ED IN COMPLIANCE WITH INFORMATION AND LIMI TATIONS CONTAINED HEREIN THIS FLIGHT MANUAL IS TO BE KEPT GENERAL IN THE AIRCRAFT AT ALL TIMES FOR Approved by: SWISS FEDERAL OFF FOR CIVIL AVIATION · �L Nov 20, JS�S" Date of Approval : ____·- ______ PILATUS AIRCRAFT LTD STANS/SWITZERLAND ONLY PURPOSES FAMILIARIZATION AND GENERAL FOR © Pilatus Aircraft Ltd. This document contains proprietary information that is protected by copyright. All rights are reserved, No part of this document may be copied, reproduced or translated to other languages without the prior written consent of Pilatus Aircraft Ltd. -
During World War Ii. New Insights from the Annual Audits of German Aircraft Producers
ECONOMIC GROWTH CENTER YALE UNIVERSITY P.O. Box 208629 New Haven, CT 06520-8269 http://www.econ.yale.edu/~egcenter/ CENTER DISCUSSION PAPER NO. 905 DEMYSTIFYING THE GERMAN “ARMAMENT MIRACLE” DURING WORLD WAR II. NEW INSIGHTS FROM THE ANNUAL AUDITS OF GERMAN AIRCRAFT PRODUCERS Lutz Budraß University of Bochum Jonas Scherner University of Mannheim Jochen Streb University of Hohenheim January 2005 Notes: Center Discussion Papers are preliminary materials circulated to stimulate discussions and critical comments. The first version of this paper was written while Streb was visiting the Economic Growth Center at Yale University in fall 2004. We are grateful to the Economic Growth Center for financial support. We thank Christoph Buchheim, Mark Spoerer, Timothy Guinnane, and the participants of the Yale economic history workshop for many helpful comments. Corresponding author: Prof. Dr. Jochen Streb, University of Hohenheim (570a), D- 70593 Stuttgart, Germany, E-Mail: [email protected]. This paper can be downloaded without charge from the Social Science Research Network electronic library at: http://ssrn.com/abstract=661102 An index to papers in the Economic Growth Center Discussion Paper Series is located at: http://www.econ.yale.edu/~egcenter/research.htm Demystifying the German “armament miracle” during World War II. New insights from the annual audits of German aircraft producers by Lutz Budraß, Jonas Scherner, and Jochen Streb Abstract Armament minister Albert Speer is usually credited with causing the boom in German armament production after 1941. This paper uses the annual audit reports of the Deutsche Revisions- und Treuhand AG for seven firms which together represented about 50 % of the German aircraft producers. -
AMA FPG-9 Glider OBJECTIVES – Students Will Learn About the Basics of How Flight Works by Creating a Simple Foam Glider
AEX MARC_Layout 1 1/10/13 3:03 PM Page 18 activity two AMA FPG-9 Glider OBJECTIVES – Students will learn about the basics of how flight works by creating a simple foam glider. – Students will be introduced to concepts about air pressure, drag and how aircraft use control surfaces to climb, turn, and maintain stable flight. Activity Credit: Credit and permission to reprint – The Academy of Model Aeronautics (AMA) and Mr. Jack Reynolds, a volunteer at the National Model Aviation Museum, has graciously given the Civil Air Patrol permission to reprint the FPG-9 model plan and instructions here. More activities and suggestions for classroom use of model aircraft can be found by contacting the Academy of Model Aeronautics Education Committee at their website, buildandfly.com. MATERIALS • FPG-9 pattern • 9” foam plate • Scissors • Clear tape • Ink pen • Penny 18 AEX MARC_Layout 1 1/10/13 3:03 PM Page 19 BACKGROUND Control surfaces on an airplane help determine the movement of the airplane. The FPG-9 glider demonstrates how the elevons and the rudder work. Elevons are aircraft control surfaces that combine the functions of the elevator (used for pitch control) and the aileron (used for roll control). Thus, elevons at the wing trailing edge are used for pitch and roll control. They are frequently used on tailless aircraft such as flying wings. The rudder is the small moving section at the rear of the vertical stabilizer that is attached to the fixed sections by hinges. Because the rudder moves, it varies the amount of force generated by the tail surface and is used to generate and control the yawing (left and right) motion of the aircraft. -
Glider Handbook, Chapter 2: Components and Systems
Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil. -
Keck Study Airships; a New Horizon for Science”
Keck Study Airships; A New Horizon for Science” Scott Hoffman Northrop Grumman Aerospace Systems May 1, 2013 Military Aircraft Systems (MAS) Melbourne FL 321-951-5930 Does not Contrail ITAR Controlled Data Airship “Lighter than Air” Definition Airplanes are heavier than air and fly because of the aerodynamic force generated by the flow of air over the lifting surfaces. Balloons and airships are lighter-than-air (LTA), and fly because they are buoyant, which is to say that the total weight of the aircraft is less than the weight of the air it displaces.1 The Greek philosopher Archimedes (287 BC – 212 B.C.) first established the basic principle of buoyancy. While the principles of aerodynamics do have some application to balloons and airships, LTA craft operate principally as a result of aerostatic principles relating to the pressure, temperature and volume of gases. A balloon is an unpowered aerostat, or LTA craft. An airship is a powered LTA craft able to maneuver against the wind. 1 NASA Web site U.S. Centennial of Flight Commission http://www.centennialofflight.gov/index2.cfm Does not Contain ITAR Controlled Data Atmospheric Airship Terminology • Dirigible – Lighter-than-air, Engine Driven, Steerable Craft • Airship –Typically any Type of Dirigible – Rigid –Hindenburg, USS Macon, USS Akron USS Macon 700 ft X 250 ft – Semi-Rigid – Has a Keel for Carriage and Engines • NT-07 Zeppelin Rigid – Non-Rigid – Undercarriage and Engines Support by the Hull • Cylindrical Class-C – “Blimp” – Goodyear, Navy AZ-3, Met Life Blimp, Blue Devil Simi-Rigid -
Barry Lawrence Ruderman Antique Maps Inc
Barry Lawrence Ruderman Antique Maps Inc. 7407 La Jolla Boulevard www.raremaps.com (858) 551-8500 La Jolla, CA 92037 [email protected] [Military Aircraft Fleet of Germany] Военно-Воздушный Флот Германии Stock#: 67802 Map Maker: Konov Date: 1936 Place: Moscow & Leningrad Color: Color Condition: VG Size: 39.5 x 26.5 inches Price: SOLD Description: The Soviet Union Eyes Germany's Expanding Airforce. A fascinating pre-World War II Soviet appraisal of Nazi Germany's Luftwaffe airplane fleet, its organization, and geographical distribution. The main body of the image is given over to illustrations of aircraft in various profiles along with their technical specifications. At the center of the poster is a map of Germany showing the country divided by airforce precinct, with the national headquarters in Berlin, and regional headquarters in Konigsberg, Dresden, Munich, Munster, and Kiel. To the left of that is a diagram of the organizational structure of German aviation. Clockwise from upper-left, the following aircraft are illustrated: Dornier Do 10 (C-4); Arado 65; Heinkel HD-37 (as with the Dornier Do C-4, the transliteration throughout the poster is hit or miss; here the HD 37 is written as "НД" even though that would translate to "ND", not "HD"); Heinkel HD 41; Autogyro C.30 (Focke-Wulf); Junkers Ju 52; Dornier Do Y; Rohrbach Ro V "Rocco"; Rohrbach Ro VIII "Roland"; Dornier Do J "Wal"; Junkers Ju 160; Heinkel HD 55; Junkers K 37; Junkers W 34; Heinkel HE 12; Albatros L 78; Junkers G 38. The poster was published by the ИЗОГИЗ (Visual Art Publishing House) division of ОГИЗ, the Association of State Book and Magazine Publishing Houses. -
NASA Styrofoam Tray Glider.Pdf
RIGHT FLIGHT Objectives The students will: Construct a flying model glider. Determine weight and balance of a glider. Standards and Skills Science Science as Inquiry Physical Science Science and Technology Unifying Concepts and Processes Science Process Skills Observing Measuring Collecting Data Inferring Predicting Making Models Controlling Variables Mathematics Problem Solving Reasoning Prediction Measurement Background On December 17, 1903, two brothers, Wilbur and Orville Wright, became the first humans to fly a controllable, powered airplane. To unravel the mysteries of flight, the Wright brothers built and experimented extensively with model gliders. Gliders are airplanes without motors or a power source. 52 Aeronautics: An Educator’s Guide EG-2002-06-105-HQ Building and flying model gliders helped the Wright brothers learn and understand the importance of weight and balance in air- planes. If the weight of the airplane is not positioned properly, the airplane will not fly. For example, too much weight in the front (nose) will cause the airplane to dive toward the ground. The precise balance of a model glider can be determined by varying the location of small weights. Wilbur and Orville also learned that the design of an airplane was very important. Experimenting with models of different designs showed that airplanes fly best when the wings, fuselage, and tail are designed and balanced to interact with each other. The Wright Flyer was the first airplane to complete a controlled takeoff and landing. To manage flight direction, airplanes use control surfaces. Elevators are control surfaces that make the nose of the airplane pitch up and down. A rudder is used to move the nose left and right. -
The Design and Development of a Human-Powered
THE DESIGN AND DEVELOPMENT OF A HUMAN-POWERED AIRPLANE A THESIS Presented to the Faculty of the Graduate Division "by James Marion McAvoy^ Jr. In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering Georgia Institute of Technology June _, 1963 A/ :o TEE DESIGN AND DETERMENT OF A HUMAN-POWERED AIRPLANE Approved: Pate Approved "by Chairman: M(Ly Z7. /q£3 In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institution shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may he granted by the professor under whose direction it was written, or, in his absence, by the dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is under stood that any copying from, or publication of, this disser tation which involves potential financial gain will not be allowed without written permission. i "J-lW* 11 ACKNOWLEDGMENTS The author wishes to express his most sincere appreciation to Pro fessor John J, Harper for acting as thesis advisor, and for his ready ad vice at all times. Thanks are due also to Doctor Rohin B. Gray and Doctor Thomas W. Jackson for serving on the reading committee and for their help and ad vice . Gratitude is also extended to,all those people who aided in the construction of the MPA and to those who provided moral and physical sup port for the project. -
Military & Maritime Catalog
SCHIFFER P U B L I S H I N G Military & Maritime Catalog AUTUMN/WINTER 2014 aviation: 18 naval: 43 ground forces: 45 militaria: 61 modeling & collectible figures: 76 American Civil War: 78 Cornell Maritime Press: 79 pin-ups: 86 transportation: 88 2 NEW BOOKS MARTIN B-26 MARAUDER: The Ultimate Look: From Drawing William Wolf Board to Widow Maker Vindicated • Fifth in the Ultimate Look bomber series • Photo coverage of the NMUSAF and MAPS restored B-26s • 20 color profiles of some of the most notable of the B-26 series In his fifth book in The Ultimate Look series, Dr. Wolf again brings the same degree of meticulous research to describe this unappreciated and misunderstood B-26 medium bomber. This massive, comprehensive volume is the first to give the reader a definitive description of this neglected bomber, its development, testing, and manufacture. The role of the enigmatic aviation icon Glenn L. Martin is described in the development of the American aviation industry and the Marauder. The author made extensive use of the massive document and photo collections of the Marauder Archives at Akron and Tucson, and the Air Force collection at the NMUSAF. Martin Company design and production information and flight and test evaluations, along with original Company Flight, Parts, and Maintenance Manuals, and rare archival microfilm of original material were also used. The author was given unprecedented access to the family records of B-26 designer Peyton Magruder. The text is complemented by archival photos and drawings, and new color photos of the Marauders at the NMUSAF, Fantasy of Flight, and MAPS Museum. -
The Power for Flight: NASA's Contributions To
The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 .................................... -
A Performance Diagnosis of the 1939 Heinkel He S3B Turbojet
Proceedings of ASME Turbo Expo 2004 Power for Land, Sea, and Air June 14-17, 2004, Vienna, Austria GT2004-53014 A Performance Diagnosis of the 1939 Heinkel He S3B Turbojet. C Rodgers FASME [email protected] ABSTRACT. The historical development of the world’s first pure SFC Specific fuel Consumption jet propelled aircraft, the Heinkel He 178, and its T Temperature turbojet the He S3B has been extensively TIT Turbine Inlet Temperature documented, however only limited descriptions of U Tip Speed the engine and component aero-thermo-dynamic V0 Turbine Spouting Velocity = √√√2g Had performances have, as yet, been published in open Va Turbine exit axial velocity English literature. W Airflow, or relative velocity The basic He S3B engine flowpath configuration of a ∆∆∆ Difference radial compressor mounted back-to-back with a ηηη Efficiency radial inflow turbine, intrigued the author as one ωωω Angular Velocity excellent example of the pre WW11 radial turbomachinery ingenuity and expertise, to the Subscripts extent that it prompted this diagnosis. ad Adiabatic Recognizing that some of the historically quoted c Compressor HeS3B performance data may be dubious, attempts d Diffuser have been made to coalesce data from multiple crit Sonic conditions sources into a more consistent account by i Inlet conducting a detailed engine performance analysis. n Nozzle HeS3B engine performance characteristics are re- s Static created based upon predicted meanline component t Turbine, or total maps derived from engine drawings and supporting Note all angles relative to the axial plane data recently published by AIAA in his biography “Dr Hans von Ohain -Excellence in Flight”.