(Middle Devonian) Tetrapod Trackways from The

Total Page:16

File Type:pdf, Size:1020Kb

(Middle Devonian) Tetrapod Trackways from The Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 318 Palaeoenvironments of the Earliest (Middle Devonian) Tetrapod Trackways from the Holy Cross Mountains, Poland; Locomotion in a Terrestrial Setting? De tidigaste tetrapod-spåren från mellersta devon − liv i en död efemär sjö? Martin Qvarnström INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 318 Palaeoenvironments of the Earliest (Middle Devonian) Tetrapod Trackways from the Holy Cross Mountains, Poland; Locomotion in a Terrestrial Setting? De tidigaste tetrapod-spåren från mellersta devon − liv i en död efemär sjö? Martin Qvarnström Title page: drawing of early tetrapod by Jakub Kowalski (reproduced with permission). ISSN 1650-6553 Copyright © Martin Qvarnström and the Department of Earth Sciences, Uppsala University Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2015 Abstract Palaeoenvironments of the Earliest (Middle Devonian) Tetrapod Trackways from the Holy Cross Mountains, Poland; Locomotion in a Terrestrial Setting? Martin Qvarnström The palaeoenvironment from which early tetrapods emerged is crucial to comprehend in order to understand the mechanisms that drove and allowed the terrestrialization of vertebrates; one of the most important evolutionary ‘events’ in the history of animals. Nevertheless, much of the terrestrialization is shrouded in obscurity, inter alia, due to scarcity of early tetrapods in the fossil record. Each new discovery of anything linked to vertebrate terrestrialization is therefore of great importance. Here, I present new detailed analyses of the palaeoenvironmental conditions at the time of formation of the earliest (early Middle Devonian) tetrapod trackways found in the Zachełmie Quarry in the Holy Cross Mountains of southern Poland. The trackways are found in three horizons in a clay-rich dolomitic succession represented by the Lower Complex of the Wojciechowice Formation. This Lower Complex is composed of short shallowing upward sequences that often terminate with desiccation cracks and/or paleosols. Vertically fluctuating δ18O values in the complex suggest multiple episodes of closed hydrological systems. A model of ephemeral to perennial lakes in a terrestrial setting is therefore proposed. Such environment is in concordance with evidence of scarce bioturbation and a flourish of microbial communities that, in contrast to a normal marine setting, most likely represent an ecologically stressed ecosystem. Furthermore: non-marine rare earth element (REE) signals, desiccation events, fossils of green algae (charophytes), paleosol development, low energy cyclic deposits and general lack of marine taxa in the body and trace fossil records in this complex firmly establishes the interpretation of palustrine carbonates formed in a lacustrine-like setting. However, in the lower part of the complex, some highly fractioned marine fossils occur. These are suggested to have been transported during wash-up events which temporally places the setting in marine proximity. Seasons of monsoonal rainfall resulted in erosion and influx of detrital grains which is evidenced by fine planar lamination (of seasonal cyclicity) in most of the sediments and occasional occurrence of blackened clasts (and rain-drop imprints). Thus, none of the pre-existing palaeoenvironmental hypotheses of tetrapod emergence are in full concordance with the data from the Zachełmie Quarry. Instead, a new palaeoenvironment is proposed for the earliest tetrapods: schizohaline ephermal to perennial lakes with periodic desiccation. This infers that already in the early Middle Devonian, tetrapods had conquered the terrestrial realm and were perhaps already capable of terrestrial locomotion over quite substantial distances. Keywords: Tetrapods, palaeoenvironment, trackways, paleosols, microfacies, trace fossils, fin-limb transition, Holy Cross Mountains Degree Project E in Earth Science, 1GV085, 45 credits Supervisor: Grzegorz Niedźwiedzki Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, No. 318, 2015 The whole document is available at www.diva-portal.org Populärvetenskaplig sammanfattning De tidigaste tetrapod-spåren från mellersta devon − liv i en död efemär sjö? Martin Qvarnström Däggdjur, reptiler, fåglar och amfibier utgör tillsammans en besläktad djurgrupp som kallas för tetrapoder (fyrfotingar). Deras gemensamma förfader härstammade från de lobfenade fiskarna men skiljde sig från dem genom att inneha utvecklade ben med tår istället för de ”köttiga” fenor som de lobfeniga fiskarna karaktäriseras av. Denna evolutionära nyhet tillät, tillsammans med en rad andra egenskaper (lungor, skydd för uttorkning av dermis etc.), att vertebrater helt och hållet kunde koloni- sera land. I och med att vår egen existens är en direkt följd av denna evolutionära händelse är detta ett hett forskningsämne inom evolutionsbiologin. Ändå är mycket fortfarande höljt i dunkel beträffande hur koloniseringen av land gick till och vad det var som drev denna utveckling eftersom övergången skedde under en, i geologisk mått, snabb tidsrymd. Dock har de sista årtiondena resulterat i flertalet nya fossilfynd av primitiva tetrapoder. Ett fynd som är speciellt spektakulärt eftersom det är den hittills äldsta efterlämningen av tetrapoder, är fotspår som uppenbart är gjorda av ett djur som hade ben och tår istället för fenor. Detta förvånade hela det vetenskapliga samfundet eftersom det innebar att vi (tetrapoderna) utvecklades tidigare än vad som var dittills trott och att vertebrat-koloniseringen av land förmodligen skedde flertalet miljoner år tidigare. Vad som också skiljer ett spårfossil från andra fossil är att de är spår av djuren från när och där de levde till skillnad från bara deras skelettdelar som oftast transporterats från där de dog och bara preserveras i speciella miljöer. Detta har jag utnyttjat i detta arbete för att försöka avgöra i vilken miljö de är avsatta i. Jag har analyserat de sedimentära bergarterna i stenbrottet i södra Polen med skärningen som innehåller de lagren i vilka fotspåren finns. Analyser av sällsynta jordartsmetaller från de tre lager där fotspår är tydliga, antyder en speciell avsättningsmiljö som inte liknar en typisk havsmiljö. I den undre delen av lagerföljden där de spårbärande lagren påträffats finns återkristalliserade saltkristaller, torkningssprickor och fossila jordar som indikerar korta respektive långvariga perioder av uttorkning. Andra fossil som i en normal marin miljö borde bevaras i en dolomitisk kalksten lyser med sin frånvaro och istället påfinns massiv koloni- sering av cyanobakterier. Detta brukar ske i speciella miljöer som avviker från vanlig marin komposi- tion, så som äldre sötvattensmiljöer eller laguner med hög salthalt, som därmed är ”svårbebodd” för djur som annars livnär sig på de fotosyntiserande bakterierna. Implikationen av mitt arbete är att tetrapoderna redan i tidig mellan Devon (ca 390 miljoner år sedan) inte bara hade utvecklat ben utan också att de kunde använda dem över landsträckor för att ta sig till, och mellan, kontinentala vatten. Detta är ännu en viktig pusselbit i pusslet som ämnar rekonstruera tetrapodernas (och vår egen) uppkomst. Nyckelord: Tetrapoder, palaeomiljöer, spårfossil, microfacies, fin-limb transition, Holy Cross Mountains Examensarbete E i geovetenskap, 1GV085, 45 hp Handledare: Grzegorz Niedźwiedzki Institutionen för geovetenskaper, Uppsala universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, Nr 318, 2015 Hela publikationen finns tillgänglig på www.diva-portal.org Table of Contents 1 Introduction .......................................................................................................................................... 1 1.1 Evolution of early tetrapods .......................................................................................................... 1 1.2 Palaeoenvironmental theories of tetrapod emergence................................................................... 2 2. Aim ..................................................................................................................................................... 4 3. Background ......................................................................................................................................... 4 3.1 Geological setting ......................................................................................................................... 4 3.3 Zachełmie Quarry ......................................................................................................................... 6 3.3.1 Fossil content ......................................................................................................................... 9 3.5 Geochemistry .............................................................................................................................. 11 3.5.1 Stable isotopes ..................................................................................................................... 11 3.5.2 Rare earth elements and trace elements ............................................................................... 13 4 Material and Methods .......................................................................................................................
Recommended publications
  • In Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core) Molly F
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln ANDRILL Research and Publications Antarctic Drilling Program 2009 Significance of the Trace Fossil Zoophycos in Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core) Molly F. Miller Vanderbilt University, [email protected] Ellen A. Cowan Appalachian State University, [email protected] Simon H. H. Nielsen Florida State University Follow this and additional works at: http://digitalcommons.unl.edu/andrillrespub Part of the Oceanography Commons, and the Paleobiology Commons Miller, Molly F.; Cowan, Ellen A.; and Nielsen, Simon H. H., "Significance of the Trace Fossil Zoophycos in Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core)" (2009). ANDRILL Research and Publications. 61. http://digitalcommons.unl.edu/andrillrespub/61 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in ANDRILL Research and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Antarctic Science 21(6) (2009), & Antarctic Science Ltd (2009), pp. 609–618; doi: 10.1017/ s0954102009002041 Copyright © 2009 Cambridge University Press Submitted July 25, 2008, accepted February 9, 2009 Significance of the trace fossil Zoophycos in Pliocene deposits, Antarctic continental margin (ANDRILL 1B drill core) Molly F. Miller,1 Ellen A. Cowan,2 and Simon H.H. Nielsen3 1. Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37235, USA 2. Department of Geology, Appalachian State University, Boone, NC 28608, USA 3. Antarctic Research Facility, Florida State University, Tallahassee FL 32306-4100, USA Corresponding author — Molly F.
    [Show full text]
  • Trace Fossils from Silurian and Devonian Turbidites of the Chauvay Area, Southern Tien Shan, Kyrgyzstan
    Annales Societatis Geologorum Poloniae (2009), vol. 79: 1-11. TRACE FOSSILS FROM SILURIAN AND DEVONIAN TURBIDITES OF THE CHAUVAY AREA, SOUTHERN TIEN SHAN, KYRGYZSTAN Michał WARCHO£1 & Stanisław LESZCZYŃSKI2 1 Institute o f Geological Sciences, Polish Academy of Sciences, ul. Senacka 1, 31-002 Kraków, Poland, e-mail: [email protected] Institute o f Geological Sciences, Jagiellonian University, ul. Oleandry 2a, 30-063 Kraków, Poland, e-mail: [email protected] Warchoł, M. & Leszczyński, S., 2009. Trace fossils from Silurian and Devonian turbidites of the Chauvay area, southern Tien Shan, Kyrgyzstan. Annales Societatis Geologorum Poloniae, 79: 1-11. Abstract: The siliciclastic turbidite successions (Pul’gon and Dzhidala Formations) that crop out in the eastern part of the Chauvay River valley, are marked on geological maps as a belt of terrigenous deposits of Silurian- Devonian age. They resemble deposits of overbank areas and deposilional lobes of deep sea fans, and display common trace fos sils particularly on lower surfaces of sandstone beds. Sixleen ichnolaxa representing four morphological groups have been dislinguished. The trace fos sil as semblages suggest their affiliation to the Nereites ichnolacies. Various branched, prelurbidlte forms predominate in both examlned units, although the assemblages of individual units differ slightly in composition. In the Pulg’on Formation, small, densely distributed burrows commonly occur on lower surfaces of sandstone beds. Shallow burrowing depth together with relatively low diversity trace fossil assemblages indicate lowered oxygenation of the sea floor. Key words: Tien Shan; Kyrgyzstan; Silurian-Devonian; turbidites; trace fossils. Manuscript received 12 August 2008, accepted 26 February 2009 INTRODUCTION described from these deposits.
    [Show full text]
  • Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna.
    [Show full text]
  • Invertebrate Ichnofossils from the Adamantina Formation (Bauru Basin, Late Cretaceous), Brazil
    Rev. bras. paleontol. 9(2):211-220, Maio/Agosto 2006 © 2006 by the Sociedade Brasileira de Paleontologia INVERTEBRATE ICHNOFOSSILS FROM THE ADAMANTINA FORMATION (BAURU BASIN, LATE CRETACEOUS), BRAZIL ANTONIO CARLOS SEQUEIRA FERNANDES Departamento de Geologia e Paleontologia, Museu Nacional, UFRJ, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil. [email protected] ISMAR DE SOUZA CARVALHO Departamento de Geologia, Instituto de Geociências, UFRJ, 21949-900, Cidade Universitária, Rio de Janeiro, RJ, Brazil. [email protected] ABSTRACT – The Bauru Group is a sequence at least 300 m in thickness, of Cretaceous age (Turonian- Maastrichtian), located in southeastern Brazil (Bauru Basin), and consists of three formations, namely Adamantina, Uberaba and Marília. Throughout the Upper Cretaceous, there was an alternation between severely hot dry and rainy seasons, and a diverse fauna and flora was established in the basin. The ichnofossils studied were found in the Adamantina Formation outcrops and were identified as Arenicolites isp., ?Macanopsis isp., Palaeophycus heberti and Taenidium barretti, which reveal the burrowing behavior of the endobenthic invertebrates. There are also other biogenic structures such as plant root traces, coprolites and vertebrate fossil egg nests. The Adamantina Formation (Turonian-Santonian) is a sequence of fine sandstones, mudstones, siltstones and muddy sandstones, whose sediments are interpreted as deposited in exposed channel-bars and floodplains associated areas of braided fluvial environments. Key words: Bauru Basin, ichnofossils, late Cretaceous, continental palaeoenvironments, Adamantina Formation. RESUMO – O Grupo Bauru é uma seqüência de pelo menos 300 m de espessura, de idade cretácica (Turoniano- Maastrichtiano), localizada no Sudeste do Brasil (bacia Bauru), e consiste das formações Adamantina, Uberaba e Marília.
    [Show full text]
  • CURRICULUM VITAE Ilya V. Buynevich Ilya V
    CURRICULUM VITAE Ilya V. Buynevich Ilya V. Buynevich Department of Earth and Environmental Science Tel: 215-204-3635 College of Science and Technology Fax: 215-204-3496 Temple University [email protected] 313 Beury Hall http://sites.temple.edu/coastal 1901 N. 13th Street Philadelphia, PA 19122, USA Citizenship: USA EDUCATION 2001-2003 Post-Doctoral, Geology Woods Hole Oceanographic Institution 2001 Ph.D, Geology Boston University 1994 B.A., Geology, Magna Cum Laude Boston University 1989-1991 Dipl. Sci. Program, Marine Geology Odessa National University, Ukraine RESEARCH INTERESTS Coastal and marine geology; field and experimental ichnology; zoogeomorphology; event sedimentology and taphonomy; morphodynamics and stratigraphy of coastal barriers; aeolian processes and dunefield evolution; geoarchaeology and geoforensics; applied high-resolution geophysics (focus: georadar). POSITIONS HELD 2015 > Associate Professor, Earth and Environmental Science, Temple University 2009-2015 Assistant Professor, Earth and Environmental Science, Temple University 2008-2012 Adjunct Graduate Professor of Oceanography, University of Rhode Island 2004-2009 Assistant Scientist, Geology & Geophysics, Woods Hole Oceanographic Institution 2000-2009 Part-time Faculty, Metropolitan College, Boston University 2007-2009 Visiting Faculty, Earth and Environmental Science, Boston College 2007-2008 Adjunct Faculty, Marine Geology, Kiev National University, Ukraine 2003-2004 Research Geologist, U.S. Geological Survey, Woods Hole Field Center 2001-2003 USGS Postdoctoral Scholar, Woods Hole Oceanographic Institution (WHOI) 1999, 2009 Visiting Faculty, Geology, Tufts University 1997-2000 Research Assistant, Department of Earth Sciences, Boston University PROFESSIONAL ACTIVITY 2014 > - Editorial Board, Geology Bulletin, Lviv National University, Ukraine Geology and Geography Bulletin, Odessa National University, Ukraine 2013 > - Editorial Board, Baltica 2011 > - Associate Editor, Journal of Coastal Research I.V.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • Phanerozoic Atmospheric CO Change
    Earth-Science Reviews 54Ž. 2001 349–392 www.elsevier.comrlocaterearscirev Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches Dana L. Royer a,), Robert A. Berner a,1, David J. Beerling b,2 a Kline Geology Laboratory, Yale UniÕersity, P.O. Box 208109, New HaÕen, CT 06520-8109, USA b Department of Animal and Plant Sciences, UniÕersity of Sheffield, Sheffield S10 2TN, UK Accepted 8 November 2000 Abstract The theory and use of geochemical modeling of the long-term carbon cycle and four paleo-PCO2 proxies are reviewed and discussed in order to discern the best applications for each method. Geochemical models provide PCO2 predictions for the entire Phanerozoic, but most existing models present 5–10 m.y. means, and so often do not resolve short-term excursions. Error estimates based on sensitivity analyses range from "75–200 ppmV for the Tertiary to as much as "3000 ppmV during the early Paleozoic. 13 The d C of pedogenic carbonates provide the best proxy-based PCO2 estimates for the pre-Tertiary, with error estimates ranging from "500–1000 ppmV. Pre-Devonian estimates should be treated cautiously. Error estimates for Tertiary reconstructions via this proxy are higher than other proxies and models Ž."400–500 ppmV , and should not be solely relied upon. We also show the importance of measuring the d13C of coexisting organic matter instead of inferring its value from marine carbonates. The d13C of the organic remains of phytoplankton from sediment cores provide high temporal resolutionŽ up to 1034 –10 " " year.Ž , high precision 25–100 ppmV for the Tertiary to 150–200 ppmV for the Cretaceous .
    [Show full text]
  • Trace Fossils from Lower Palaeozoic Ocean-Floor Sediments of the Southern Uplands of Scotland M
    Transactions of the Royal Society of Edinburgh: Earth Sciences, 73, 67-87, 1982 Trace fossils from Lower Palaeozoic ocean-floor sediments of the Southern Uplands of Scotland M. J. Benton ABSTRACT: The Ordovician and Silurian rocks of the Southern Uplands of Scotland have been interpreted as sediments deposited on the northern margin of the Iapetus Ocean. Trace fossils are abundant at many localities in ocean-floor turbidites and mudstones that usually lack all other evidence of life. Twelve ichnogenera are present, and they are mainly meandering locomotion and feeding trails and burrow networks: Dictyodora, Caridolites, Helminthoida, Neonereites, Nereites, Protovirgularia, Gordia, Megagrapton, Paleodictyon, Chondrites, Plano- lites and Skolithos. The trace fossils occur in at least five distinct assemblages and the composition of these was probably controlled by the frequency and nature of the turbidity currents, and possibly by the oxygen content of the mudstones. Where turbidity currents were weak, abundant Dictyodora, together with Caridolites, Neonereites, Nereites, Protovirgularia and Gordia occur in various combinations. Where currents were stronger, traces such as Gordia, Paleodictyon and Megagrapton may be exhumed and cast on turbidite soles, and the sand may contain Skolithos. The 'deep-sea' Nereites trace fossil facies is divisible into several assemblages, presumably environmentally controlled. KEY WORDS: Iapetus Ocean, ichnology, mudstone, Nereites Facies, Ordovician, shale, Silurian, turbidite. Deep-sea trace fossil assemblages of the Ordovician and 1. Geological setting Silurian are poorly known. The Lower Palaeozoic turbidites and associated mudstones of the Southern Uplands of Scot- 1.1. Structure and history of deposition land preserve at least 12 ichnogenera and there are several The Ordovician and Silurian rocks of the Southern Uplands distinct assemblages that are associated with particular (basalts, cherts, graptolitic shales, greywackes and red or sedimentary conditions.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Making a Trace Fossil
    WSC National Fossil Day 2020@ HOME Making a Trace Fossil Gathering Supplies: Soft Modeling Clay or Homemade Salt Dough Rolling Pen Toothpick Leaves, Sticks, Bark and/or Shells Paint Brushes (Optional) Types of Fossils! There are two main types of fossils that paleontologists study: body fossils and trace fossils. So what is the difference between the two? Body fossils are probably what you think of most when you hear the word fossil. Like the large bones of a dinosaur. Body fossils are fossils that retain or keep the actual remains of an animal, even though it goes through the fossilization process. Think about fossils of a tooth, a claw, or skull of an ancient animal. These are all parts of the actual animal that have become a fossil. So if the original remains of a plant, insect or animal become fossilized, this would be a body fossil. Trace fossils show the activity of a plant or animal, without any of the actual remains being present. Examples of trace fossils are tracks of animals, or signs of their scratching and burrowing. Even fossilized poop is a type of trace fossil. The imprint of a leaf or bark from a tree or the texture of a shell are all examples of trace fossils. Remember a trace fossil will show the presence of an living organism without an actual part of their remains being fossilized. They can give clues to what animals did and how they acted along with what their environment was like. Try This! Making your own trace fossil. Go out on a nature walk with your family, in your neighborhood or in your backyard.
    [Show full text]
  • Lower Cretaceous Avian-Dominated, Theropod
    Lower cretaceous avian-dominated, theropod, thyreophoran, pterosaur and turtle track assemblages from the Tugulu Group, Xinjiang, China: ichnotaxonomy and palaeoecology Lida Xing1,2, Martin G. Lockley3, Chengkai Jia4, Hendrik Klein5, Kecheng Niu6, Lijun Zhang7, Liqi Qi8, Chunyong Chou2, Anthony Romilio9, Donghao Wang2, Yu Zhang2, W Scott Persons10 and Miaoyan Wang2 1 State Key Laboratory of Biogeology and Environmental Geology, China University of Geoscience (Beijing), Beijing, China 2 School of the Earth Sciences and Resources, China University of Geoscience (Beijing), Beijing, China 3 Dinosaur Trackers Research Group, University of Colorado at Denver, Denver, United States 4 Research Institute of Experiment and Detection of Xinjiang Oil Company, PetroChina, Karamay, China 5 Saurierwelt Paläontologisches Museum, Neumarkt, Germany 6 Yingliang Stone Natural History Museum, Nan’an, China 7 Institute of Resources and Environment, Key Laboratory of Biogenic Traces & Sedimentary Minerals of Henan Province, Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Henan Polytechnic University, Jiaozuo, China 8 Faculty of Petroleum, China University of Petroleum (Beijing) at Karamay, Karamay, China 9 School of Biological Sciences, The University of Queensland, Brisbane, Australia 10 Mace Brown Museum of Natural History, Department of Geology and Environmental Geosciences, College of Charleston, Charleston, United States ABSTRACT Rich tetrapod ichnofaunas, known for more than a decade, from the Huangyangquan Reservoir (Wuerhe District, Karamay City, Xinjiang) have been an abundant source Submitted 10 January 2021 of some of the largest Lower Cretaceous track collections from China. They originate Accepted 26 April 2021 from inland lacustrine clastic exposures of the 581–877 m thick Tugulu Group, 28 May 2021 Published variously divided into four formations and subgroups in the northwestern margin of Corresponding author the Junggar Basin.
    [Show full text]
  • Trace Fossils and Substrates of the Terminal Proterozoic–Cambrian Transition: Implications for the Record of Early Bilaterians and Sediment Mixing
    Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing Mary L. Droser*†,So¨ ren Jensen*, and James G. Gehling‡ *Department of Earth Sciences, University of California, Riverside, CA 92521; and ‡South Australian Museum, Division of Natural Sciences, North Terrace, Adelaide 5000, South Australia, Australia Edited by James W. Valentine, University of California, Berkeley, CA, and approved August 16, 2002 (received for review May 29, 2002) The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at Ϸ555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sed- iments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. he appearance and subsequent diversification of bilaterian Tanimals is a topic of current controversy (refs. 1–7; Fig. 1). Three principal sources of evidence exist: body fossils, trace fossils (trails, tracks, and burrows of animal activity recorded in the sedimentary record), and divergence times calculated by means of a molecular ‘‘clock.’’ The body fossil record indicates a geologically rapid diversification of bilaterian animals not much earlier than the Precambrian–Cambrian boundary, the so-called Cambrian explosion.
    [Show full text]