Sedimentology and Stratigraphy of the Upper Cretaceous-Paleocene El

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentology and Stratigraphy of the Upper Cretaceous-Paleocene El Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2002 Sedimentology and stratigraphy of the Upper Cretaceous-Paleocene El Molino Formation, Eastern Cordillera and Altiplano, Central Andes, Bolivia: implications for the tectonic development of the Central Andes Richard John Fink Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Fink, Richard John, "Sedimentology and stratigraphy of the Upper Cretaceous-Paleocene El Molino Formation, Eastern Cordillera and Altiplano, Central Andes, Bolivia: implications for the tectonic development of the Central Andes" (2002). LSU Master's Theses. 3925. https://digitalcommons.lsu.edu/gradschool_theses/3925 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. SEDIMENTOLOGY AND STRATIGRAPHY OF THE UPPER CRETACEOUS- PALEOCENE EL MOLINO FORMATION, EASTERN CORDILLERA AND ALTIPLANO, CENTRAL ANDES, BOLIVIA: IMPLICATIONS FOR THE TECTONIC DEVELOPMENT OF THE CENTRAL ANDES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geology and Geophysics by Richard John Fink B.S., Montana State University, 1999 August 2002 ACKNOWLEDGEMENTS I would like to thank Drs. Bouma, Ellwood and Byerly for allowing me to present and defend my M.S. thesis in the absence of my original advisor. Drs. Brian Horton (University of California, Los Angeles) and William Devlin (ExxonMobil Exploration) were instrumental in my development as a scientist and critical thinker. I would like to thank Brian Hampton for providing valuable advice and commentary at all stages of this project. Brian Lareau supplied additional remarks during the project development and analysis phases of this thesis. I am immensely thankful to Dr. Sohrab Tawackoli of the Servicio de Geologia y Minas de Bolivia (La Paz) for logistical support and advice in support of fieldwork. Pedro Chuvata was extremely helpful as a driver, liason and field assistant. James Graber also provided valuable assistance with fieldwork. Conoco Inc. provided petrographic laboratory support. This research was supported by National Science Foundation funds awarded to Dr. Brian Horton. Additional funding was provided by the Geological Society of America, American Association of Petroleum Geologists and Sigma Xi national grants- in-aid programs. Lastly, I would like to thank my parents, Henry J. Fink Jr. and Ilse R. Fink, and Bruce Miller for moral support and encouragement. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS..............................................................................................ii LIST OF TABLES............................................................................................................ v LIST OF FIGURES .........................................................................................................vi ABSTRACT...................................................................................................................viii 1. INTRODUCTION ........................................................................................................ 1 1.1 Tectonic Overview................................................................................................ 2 1.2 Upper Triassic(?)-Paleogene Stratigraphic Overview .......................................... 5 1.2.1 Lower Succession Strata.............................................................................. 5 1.2.2 Middle Succession Strata............................................................................. 5 1.2.3 Upper Succession Strata ............................................................................ 10 2. CRITERIA FOR DISTINGUISHING TECTONIC SETTING ................................. 13 2.1 Rift Basin Systems.............................................................................................. 13 2.1.1 Rift Basin Evolution .................................................................................. 13 2.1.2 Syn-Rift Recognition Criteria........................................................................ 16 2.1.3 Post-Rift Basin Recognition Criteria ......................................................... 19 2.2 Retroarc Foreland Basin Systems ....................................................................... 19 2.2.1 Foreland Basin System Evolution.............................................................. 19 2.2.2 Foreland Basin Recognition Criteria ......................................................... 22 3. EL MOLINO FORMATION...................................................................................... 26 3.1 General Description ............................................................................................ 26 3.1.1 Regional Correlations ................................................................................ 29 3.1.2 Age Control................................................................................................ 30 3.1.3 Depositional Environment-Previous Work................................................ 30 3.2 Depositional Environment-This Work................................................................ 32 3.2.1 FA1 Open Water Facies............................................................................. 32 3.2.2 FA2: Nearshore Facies............................................................................... 41 3.2.3 FA3 Beach, Bar and Shoal Facies.............................................................. 49 3.2.4 FA4: Floodplain Facies.............................................................................. 55 3.2.5 FA5: Fluvial Facies.................................................................................... 62 3.3 Discussion........................................................................................................... 68 4. PALEOCURRENT DIRECTIONS AND PROVENANCE....................................... 72 4.1 Methods and Background Data........................................................................... 72 4.2 Description.......................................................................................................... 76 4.3 Interpretation....................................................................................................... 81 4.4 Discussion........................................................................................................... 82 5. CONCLUSIONS......................................................................................................... 85 iii REFERENCES ............................................................................................................... 89 APPENDIX A. STRATIGRAPHIC SECTIONS ......................................................... 101 APPENDIX B. STRATIGRAPHIC SECTION COORDINATES AND NOTES....... 112 VITA............................................................................................................................. 116 iv LIST OF TABLES 2-1 Recognition criteria for syn-rift, post-rift and foreland basin settings .................. 14 3-1 Table showing lithofacies codes used in subsequent stratigraphic columns......... 36 4-1 Table showing point count parameters.................................................................. 74 4-2 Table showing raw thin section point count data .................................................. 75 4-3 Table showing raw clast count data....................................................................... 77 v LIST OF FIGURES 1-1 Digital elevation and schematic maps showing the field area................................. 3 1-2 Cross-sectional diagram of the Central Andes ........................................................ 4 1-3 Chronostratigraphic column showing Cretaceous Bolivia strata ............................ 6 1-4 Photo of La Puerta Formation ................................................................................. 7 1-5 Photo showing eolian cross-bedding within the La Puerta Formation.................... 8 1-6 Photo showing igneous intrusion within the La Puerta Formation ......................... 9 1-7 Photo of middle succession strata at the Miraflores Syncline............................... 11 1-8 Photo of the Chaunaca and El Molino Formations................................................ 12 2-1 Illustration showing the evolution of active and passive rifts ............................... 15 2-2 Illustration showing the key components of a foreland basin system ................... 21 3-1 Photo showing silicified gastropods used for stratigraphic correlations ............... 27 3-2 Close-up photograph of silicified gastropods........................................................ 28 3-3 Base map showing the location of stratigraphic sections...................................... 33 3-4 Graphic representation of FA1 .............................................................................. 34 3-5 Legend for stratigraphic columns.......................................................................... 35 3-6 Regional distribution of FA1................................................................................
Recommended publications
  • Hill Landscape Evolution of Far Western New South Wales
    REGOLITH AND LANDSCAPE EVOLUTION OF FAR WESTERN NEW SOUTH WALES S.M. Hill CRC LEME, Department of Geology and Geophysics, University of Adelaide, SA, 5005 INTRODUCTION linked with a period of deep weathering and an erosional and sedimentary hiatus (Idnurm and Senior, 1978), or alternatively The western New South Wales landscape contains many of the denudation and sedimentation outside of the region I areas such as elements that have been important to the study of Australian the Ceduna Depocentre (O’Sullivan et al., 1998). Sedimentary landscapes including ancient, indurated and weathered landscape basin development resumed in the Cainozoic with the formation remnants, as well as young and dynamic, erosive and sedimentary of the Lake Eyre Basin in the north (Callen et al., 1995) and the landforms. It includes a complex landscape history closely related Murray Basin in the south (Brown and Stephenson, 1991; Rogers to the weathering, sedimentation and denudation histories of et al., 1995). Mesozoic sediments in the area of the Bancannia major Mesozoic and Cainozoic sedimentary basins and their Basin (Trough) have been traditionally considered as part of the hinterlands, as well as the impacts of climate change, eustacy, Eromanga Basin, which may have been joined to the Berri Basin tectonics, and anthropogenic activities. All this has taken place through this area. Cainozoic sediments in the Bancannia Basin across a vast array of bedrock types, including regolith-dominated have been previously described within the framework of the Lake areas extremely prospective for mineral exploration. Eyre Basin (Neef et al., 1995; Gibson, this volume), but probably PHYSICAL SETTINGS warrant a separate framework.
    [Show full text]
  • Depositional Setting of Algoma-Type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok
    Depositional Setting of Algoma-type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok To cite this version: Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok. Depositional Setting of Algoma-type Banded Iron Formation. Precambrian Research, Elsevier, 2016. hal-02283951 HAL Id: hal-02283951 https://hal-brgm.archives-ouvertes.fr/hal-02283951 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Depositional Setting of Algoma-type Banded Iron Formation B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok PII: S0301-9268(16)30108-5 DOI: http://dx.doi.org/10.1016/j.precamres.2016.04.019 Reference: PRECAM 4501 To appear in: Precambrian Research Received Date: 26 September 2015 Revised Date: 21 January 2016 Accepted Date: 30 April 2016 Please cite this article as: B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation, Precambrian Research (2016), doi: http://dx.doi.org/10.1016/j.precamres. 2016.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Stratigraphy, Lithology, and Depositional Environment of the Black Prince Formation Southeastern Arizona and Southwestern New Mexico
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Summer 1980 Stratigraphy, Lithology, and Depositional Environment of the Black Prince Formation Southeastern Arizona and Southwestern New Mexico Patrick Kevin Spencer Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Spencer, Patrick Kevin, "Stratigraphy, Lithology, and Depositional Environment of the Black Prince Formation Southeastern Arizona and Southwestern New Mexico" (1980). WWU Graduate School Collection. 644. https://cedar.wwu.edu/wwuet/644 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. VJWU LIBRARY MASTER'S THESIS In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western Washington University, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without my written permission. Signature Date 2., (^BO_________ MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU.
    [Show full text]
  • The Depositional Environment and Petrology of the White Rim
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY The Depositional Environment and Petrology of the White Rim Sandstone Member of the Permian Cutler Formation, Canyonlands National Park, Utah by Brenda A. Steele-Mallory Open-File Report 82-204 1982 This report is preliminary and has not been been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. CONTENTS Page Abstract ............................................................ 1 Introducti on..........................................................2 Methods of Study......................................................4 Geologic Setting......................................................6 Stratigrapic Relationships............................................9 Economic Geology.....................................................11 Field Observations................................................... 12 Sedimentary Structures..........................................12 Dune Genetic Unit..........................................12 Interdune Genetic Unit.....................................13 Miscellaneous Sedimentary Structures.......................20 Petrology....................................................... 23 Texture.................................................... 23 Mineralogy.................................................25 Bi ologi c Consti tuents...................................... 26 Chemical Constituents......................................26 Diagenetic Features........................................26
    [Show full text]
  • Sources and Fluxes of Water and Salt Below a Regional Groundwater Discharge Complex, South-Eastern Australia
    Sources and Fluxes of Water and Salt Below a Regional Groundwater Discharge Complex, South-Eastern Australia. submitted by Nikki Michelle Howes, B.Sc. (Hons.) as a requirement in full for the degree of Doctor of Philosophy in the School of Chemistry, Physics and Earth Sciences Flinders University of South Australia February 2003 i Table of Contents Abstract vi Declaration of Originality viii Publications Associated With This Thesis ix Acknowledgements ix CHAPTER 1 INTRODUCTION 1 1.1 SCOPE AND OBJECTIVES OF THESIS ........................................................................................ 1 1.2 METHODOLOGY ....................................................................................................................... 7 1.3 SITE DESCRIPTION ................................................................................................................... 8 1.3.1 THE MURRAY BASIN, SOUTH-EASTERN AUSTRALIA ................................................................. 8 1.3.2 THE RAAK PLAIN GROUNDWATER DISCHARGE COMPLEX ........................................................ 9 1.3.3 GEOLOGY AND HYDROGEOLOGY ............................................................................................ 14 1.3.4 PREVIOUS INVESTIGATIONS AT RAAK PLAIN ........................................................................... 16 1.3.5 CHARACTERISTICS OF THE PLAYA LAKES SELECTED FOR THIS STUDY ................................... 17 1.3.5.1 Western Salina .......................................................................................................................
    [Show full text]
  • Phanerozoic Atmospheric CO Change
    Earth-Science Reviews 54Ž. 2001 349–392 www.elsevier.comrlocaterearscirev Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches Dana L. Royer a,), Robert A. Berner a,1, David J. Beerling b,2 a Kline Geology Laboratory, Yale UniÕersity, P.O. Box 208109, New HaÕen, CT 06520-8109, USA b Department of Animal and Plant Sciences, UniÕersity of Sheffield, Sheffield S10 2TN, UK Accepted 8 November 2000 Abstract The theory and use of geochemical modeling of the long-term carbon cycle and four paleo-PCO2 proxies are reviewed and discussed in order to discern the best applications for each method. Geochemical models provide PCO2 predictions for the entire Phanerozoic, but most existing models present 5–10 m.y. means, and so often do not resolve short-term excursions. Error estimates based on sensitivity analyses range from "75–200 ppmV for the Tertiary to as much as "3000 ppmV during the early Paleozoic. 13 The d C of pedogenic carbonates provide the best proxy-based PCO2 estimates for the pre-Tertiary, with error estimates ranging from "500–1000 ppmV. Pre-Devonian estimates should be treated cautiously. Error estimates for Tertiary reconstructions via this proxy are higher than other proxies and models Ž."400–500 ppmV , and should not be solely relied upon. We also show the importance of measuring the d13C of coexisting organic matter instead of inferring its value from marine carbonates. The d13C of the organic remains of phytoplankton from sediment cores provide high temporal resolutionŽ up to 1034 –10 " " year.Ž , high precision 25–100 ppmV for the Tertiary to 150–200 ppmV for the Cretaceous .
    [Show full text]
  • Alluvial Fans
    GY 111 Lecture Notes D. Haywick (2008-09) 1 GY 111 Lecture Note Series Sedimentary Environments 1: Alluvial Fans Lecture Goals A) Depositional/Sedimentary Environments B) Alluvial fan depositional environments C) Sediment and rocks that form on alluvial fans Reference: Press et al., 2004, Chapter 7; Grotzinger et al., 2007, Chapter 18, p 449 GY 111 Lab manual Chapter 3 Note: At this point in the course, my version of GY 111 starts to diverge a bit from my colleagues. I tend to focus a bit more on sedimentary processes then they do mostly because we live in an area that is dominated by sedimentation and I figure that you should be as familiar as possible with the subject. As it turns out, the web notes are also more comprehensive than what you'll find in your text book A) Depositional/sedimentary environments Last time we met, we discussed how sediment moved from one place to another. Remember that sediment is produced in a lot of different locations, but it seldom stays where it is produced. The action of water, wind and ice transport it from the sediment source to the sediment sink. The variety of sediment sinks that exist on the planet is truly amazing. There are river basins, lakes, deserts, lagoons, swamps, deltas, beaches, barrier islands, reefs, continental shelves, the abyssal plains (very deep!), trenches (even deeper!) etc. As we discussed last time, these places are called depositional environments (also known as sedimentary environments). Each depositional environment may also have several subdivisions. For example, there are open beaches, sheltered beaches, shingle beaches, sand beaches, strandline beaches, even mud beaches.
    [Show full text]
  • Depositional Controls and Sequence Stratigraphy of Lacustrine to Marine
    DEPOSITIONAL CONTROLS AND SEQUENCE STRATIGRAPHY OF LACUSTRINE TO MARINE TRANSGRESSIVE DEPOSITS IN A RIFT BASIN, LOWER CRETACEOUS BLUFF MESA, INDIO MOUNTAINS, WEST TEXAS ANDREW ANDERSON Master’s Program in Geology APPROVED: Katherine Giles, Ph.D., Chair Richard Langford, Ph.D. Vanessa Lougheed, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Andrew Anderson 2017 DEDICATION To my parents for teaching me to be better than I was the day before. DEPOSITIONAL CONTROLS AND SEQUENCE STRATIGRAPHY OF LACUSTRINE TO MARINE TRANSGRESSIVE DEPOSITS IN A RIFT BASIN, LOWER CRETACEOUS BLUFF MESA, INDIO MOUNTAINS, WEST TEXAS by ANDREW ANDERSON, B.S. THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Geological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2017 ProQuest Number:10689125 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 10689125 Published by ProQuest LLC ( 2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 ACKNOWLEDGEMENTS In the Fall of 2014, Dr.
    [Show full text]
  • Upper Cretaceous of Patagonia, Argentina
    Cretaceous Research 32 (2011) 223e235 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes First record of a clupeomorph fish in the Neuquén Group (Portezuelo Formation), Upper Cretaceous of Patagonia, Argentina Valéria Gallo a,*, Jorge O. Calvo b, Alexander W.A. Kellner c a Laboratório de Sistemática e Biogeografia, Departamento de Zoologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil b Centro Paleontológico Lago Barreales, Universidad Nacional del Comahue, Proyecto Dino, Ruta Prov. 51, km 65, Neuquén 8300, Argentina c Setor de Paleovertebrados, Departamento de Geologia e Paleontologia, Museu Nacional/UFRJ, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil article info abstract Article history: A new genus and species of clupeomorph fish, Leufuichthys minimus, is described from the fluvial Received 8 March 2010 deposits of the Portezuelo Formation, Upper Cretaceous (TuronianeConiacian) of the Neuquén Group, Accepted in revised form 3 December 2010 Patagonia, Argentina. It is a small-sized fish with an estimated body length up to 46 mm. Among other Available online 13 December 2010 characters, the new species shows the following: abdominal scutes; abdomen moderately convex; anal fin elongate-based; three uroneurals; two epurals; caudal fin bearing very elongate rays; and cycloid Keywords: scales. Leufuichthys minimus gen. et sp. nov. shows a greater similarity with Kwangoclupea dartevellei, Clupeomorpha a clupeomorph described from a marine Cenomanian deposit of the Democratic Republic of Congo Systematics fi fi Upper Cretaceous (Africa), mainly due to the presence of an elongate-based anal n, bearing more than 20 n-rays, Patagonia differing from it by the presence of a not hypertrophied abdomen.
    [Show full text]
  • Titanosaur Trackways from the Late Cretaceous El Molino Formation of Bolivia (Cal Orck’O, Sucre)
    Annales Societatis Geologorum Poloniae (2018), vol. 88: 223 – 241. doi: https://doi.org/10.14241/asgp.2018.014 TITANOSAUR TRACKWAYS FROM THE LATE CRETACEOUS EL MOLINO FORMATION OF BOLIVIA (CAL ORCK’O, SUCRE) Christian A. MEYER1, Daniel MARTY2 & Matteo BELVEDERE3 1 Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland; e-mail: [email protected] 2 Museum of Natural History Basel, Augustinergasse 2, CH- 4000 Basel, Switzerland; e-mail: [email protected] 3 Office de la culture, Paléontologie A16, Hôtel des Halles, P.O. Box 64, CH-2900 Porrentruy 2, Switzerland; e-mail: [email protected] Meyer, C. A., Marty, D. & Belvedere, M., 2018. Titanosaur trackways from the Late Cretaceous El Mo- lino Formation of Bolivia (Cal Orck’o, Sucre). Annales Societatis Geologorum Poloniae, 88: 223 – 241. Abstract: The Cal Orck’o tracksite is exposed in a quarry wall, approximately 4.4 km NW of Sucre (Department Chuquisaca, Bolivia) in the Altiplano/Cordillera Oriental, in the El Molino Formation (Middle Maastrichtian). Fossiliferous oolitic limestones, associated with large, freshwater stromatolites and nine levels of dinosaur tracks in the El Molino Formation document an open lacustrine environment. The main track-bearing level is almost vertical with a surface area of ~ 65,000 m2. The high-resolution mapping of the site from 1998 to 2015 revealed a total of 12,092 individual dinosaur tracks in 465 trackways. Nine different morphotypes of dinosaur tracks have been documented. Amongst them are several trackways of theropods, orni- thopods, ankylosaurs and sauropods, with the latter group accounting for 26% of the trackways.
    [Show full text]
  • Review of the Upper Jurassic-Lower Cretaceous Stratigraphy in Western Cameros Basin, Northern Spain
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 Review of the Upper Jurassic-Lower Cretaceous stratigraphy in Western Cameros basin, Northern Spain Vidal, Maria del Pilar Clemente Published in: Sociedad Geologica de Espana. Revista Publication date: 2010 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Vidal, M. D. P. C. (2010). Review of the Upper Jurassic-Lower Cretaceous stratigraphy in Western Cameros basin, Northern Spain. Sociedad Geologica de Espana. Revista, 23(2-3), 101-143. http://www.sociedadgeologica.es/publicaciones_revista.html General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 101 Revista de la Sociedad Geológica de España 23 (3-4) REVIEW OF THE UPPER JURASSIC-LOWER CRETACEOUS STRATIGRAPHY IN WESTERN CAMEROS BASIN, NORTHERN SPAIN Pilar Clemente Department of Civil Engineering, Centre for Energy Resources Engineering (CERE) Denmark Technical University (DTU Byg), Brovej, building 118, DK - 2800 Kgs.
    [Show full text]
  • The Chaco Paraná Basin Rift Basin System. an Approach to the Tectonic-Stratigraphical Evolution from the Late Cretaceous to Quaternary
    The Chaco Paraná Basin rift basin system. An approach to the tectonic-stratigraphical evolution from the Late Cretaceous to Quaternary. South America Roberto Torra Departamento de Geociencias. Fac. de Ingeniería. Universidad Nacional del Nordeste Avda. Las Heras 727, H3500COI. Resistencia. Chaco. Argentina. e-mail: [email protected] Resumo O presente trabalho trata de um estudo de geologia regional, sedimentologia e tectônica feito nas seqüências marinhas costeiras rasas de idade neocretàcica a miocênica. Estas seqüências estão coligadas num sistema do tipo “rift basin” que evoluiu desde o neocretácico. A bacia em estudo encontra-se localizada no América do Sul, bordejando ao oeste do Escudo Brasileiro. O sistema regional rift basin da Bacia Chaco Paraná formou-se como uma típica bacia extensional intracratónica, limitada no oeste pelo antepaís do orógeno andino, que ainda não tinha sofrido sua principal fase de orogênese e levantamento regional. As amplas áreas invadidas pelos mares e seus depósitos associados de seqüências costeiras superficiais cobriram uma ampla pediplanicie de relevo pouco pronunciado. A primeira etapa transgressiva começou ao final do Senoniano tardío ou Maestrichtiano prematuro. Logo aconteceram oi avanços maiores até o Neo- Mioceno, com retrocessos e avanços sucessivos de menor importancia. Podem registrar-se pelo menos três etapas de associações de clímax extensionais (crustal stretchs) e de mar alto associadas com variações eustáticas ocorridas durante o Senoniano-Maestrichtiano-Paleoceno, o Eoceno e o Mioceno. O primeiro aconte- cimento transgressivo aconteceu durante o Neo-Cretàcico, mas seu registro sedimentológico conhecido é escasso. Porem, seríam necessarias um maior núme- Ciência e Natura, UFSM, 27 (2): 25 - 64, 2005 25 ro de perfurações para um reconhecimento mais exato dos depósitos desta transgreção marinha, bem exposta na região sud-andina (Serras Subandinas) do noroeste da Argentina e Bolivia.
    [Show full text]