Genomics of Brain Disorders 2020

Total Page:16

File Type:pdf, Size:1020Kb

Genomics of Brain Disorders 2020 GENOMICS OF BRAIN DISORdERS 18 - 20 MARCH 2020 ABSTRACT BOOK ABSTRACT 2020 CONFERENCES COURSES Evolutionary Systems Biology LABORATORY COURSES LECTURE/DISCUSSION COURSES 12-14 February Genomics and Clinical Microbiology Clinical Genomics: Fundamentals of Optimmunize: Improving the beneficial 19-24 January Variant Interpretation in Clinical Practice effects of vaccines NEW Genomics and Clinical Virology 29-31 January 19-21 February 23–28 February Genomic Practice for Genetic Counsellors Single Cell Biology Genetic Engineering of Mammalian 3-5 February 11-13 March Stem Cells Practical Aspects of Small Molecule Genomics of Brain Disorders 15–27 March Drug Discovery 18-20 March Next Generation Sequencing 21-26 June Genomics of Rare Diseases 20–27 April Evolutionary Biology and Ecology 25-27 March Low Input Epigenomics NEW of Cancer Proteomics in Cell Biology and 12-20 May 29 June-3 July Disease Mechanisms RNA Transcriptomics Science Policy: Improving the 30 March-1 April 17-26 June Uptake of Research into UK Policy Longitudinal Studies Single Cell Technologies and Analysis 19-21 August 20-22 April 24-31 July Genomics for Dermatology Nursing, Genomics and Healthcare NEW Molecular Pathology and 25-27 November 27-29 April Diagnosis of Cancer OVERSEAS COURSES Antimicrobial Resistance - Genome 22-27 November Next Generation Big Data and Emerging Technologies Derivation and Culture of Human 4-6 May Sequencing Bioinformatics Induced Pluripotent Stem Cells (hiPSCs) 19-24 January (Chile) Curating the Clinical Genome 14-18 December 20-22 May 9-14 February (Malaysia) Healthy Ageing COMPUTATIONAL COURSES Molecular Approaches to Clinical 27-29 May Mathematical Models for Infectious Microbiology in Africa 21-27 March (The Gambia) Genomic Epidemiology of Malaria Disease Dynamics 7-10 June 24 February-6 March Genomics and Epidemiological Surveillance of Bacterial Pathogens Virus Genomics and Evolution Fungal Pathogen Genomics 19-24 April (Paraguay) 15-17 June 11-16 May Reproducibility, Replicability and Trust Summer School in Bioinformatics Working with Pathogen Genomes in Science NEW 22-26 June 10-15 May (Vietnam) 9-11 September Systems Biology: From Large Viral Genomics and Bioinformatics Genome Informatics Datasets to Biological Insight 7-12 June (Uruguay) 14-17 September 6-10 July Antimicrobial Resistance of CRISPR and beyond: perturbations at Genetic Analysis of Mendelian Bacterial Pathogens scale to understand genomes and Complex Disorders 27 September-3 October (Kenya) 15-21 July 23-25 September Malaria Experimental Genetics Proteomics Bioinformatics Genomic Imprinting - from Biology 8-13 November (The Gambia) to Disease NEW 26-31 July 28-30 September Genetic Analysis of Practical Aspects of Drug Discovery Exploring Human Host-Microbiome Population-based Association Studies 29 November-4 December (Uruguay) Interactions in Health and Disease 21-25 September 21-23 October Working with Protozoan Parasite ONLINE COURSES Database Resources Bacterial Genomes - 4 courses 4-9 October Genetic Counselling - 1 course Next Generation Please see our website for more details Sequencing Bioinformatics and scheduling of online courses 18-24 October Computational Systems Biology for Complex Human Disease NEW 6-11 December @ACSCevents wellcomegenomecampus.org/coursesandconferences WGC_Courses_and_Conferences_2020-Abstract-Books(Blue-FullColour)december2019.indd 1 03/12/2019 11:08:04 Name: Genomics of Brain Disorders 2020 Wellcome Genome Campus Conference Centre, Hinxton, Cambridge, UK 18-20 March 2020 Scientific Programme Committee: Kristen Brennand Icahn School of Medicine at Mount Sinai, USA Alison Goate Icahn School of Medicine at Mount Sinai, USA Michael Owen Cardiff University, UK Mina Ryten UCL, UK Tweet about it: #GBD20 @ACSCevents /ACSCevents /c/WellcomeGenomeCampusCoursesandConferences 1 Scientific Programme Committee Kristen Brennand Alison Goate Icahn School of Medicine at Mount Sinai, USA Icahn School of Medicine at Mount Sinai, USA Michael Owen Mina Ryten Cardiff University, UK UCL, UK Wellcome Genome Campus Scientific Conferences Team: Jemma Hume Nicole Schatlowski Conference and Events Scientific Programme Organiser Officer 2 Dear colleague, I would like to offer you a warm welcome to Genomics of Brain Disorders 2020. I hope you will find the talks interesting and stimulating, and find opportunities for meeting colleagues, making new connections and form new and exciting collaborations throughout your time here with us. The conference is organised by Wellcome Genome Campus Advanced Courses and Scientific Conferences (ACSC), which is run on a not-for-profit basis, funded by the Wellcome Trust. ACSC funds, develop and deliver training and conferences that span basic research, cutting-edge biomedicine, and the application of genomics in healthcare. Our scientific programme committees, speakers and instructors are world-renowned scientists and clinicians. We run ~60 events each year attracting up to 3,500 people, from ~130 countries to the Campus. Our programme includes a range of conferences and laboratory-, computational - and discussion- based courses, providing hands-on training in the latest biomedical techniques for research scientists, clinicians and healthcare professionals. We also organise invitation-only retreats for high-level discussion on emerging science, technologies and strategic direction for select groups and policy makers. To enable everyone to benefit from the revolution in genomic medicine, we have recently introduced an online courses programme to provide training across the globe for free. To find out more about our programme, please visit: https://coursesandconferences.wellcomegenomecampus.org/ We also have a strong commitment to equality, diversity and inclusion across the programme. We provide funding to support childcare, or extra costs for dependants, while attending a conference or course. There is also a family room for parents, to accommodate feeding and napping. Delegates can stay involved in the conference, as the talks will be live-streamed into this room. To further promote a culture of inclusion and equal representation at our conferences, we ensure that 50% or our programme committees, session chairs and invited speakers are women. We also work with our programme committees to invite speakers from a range of countries. To read more about our policies, please visit: https://coursesandconferences.wellcomegenomecampus.org/about-us/policies/ The conference team are here to help this meeting run smoothly, and at least one member will be at the registration desk between sessions, so please do come and speak with us if you have any queries. Finally, enjoy the conference. Best wishes, Dr Rebecca Twells Head of Advanced Courses and Scientific Conferences [email protected] 3 General Information Conference Badges Please wear your name badge at all times to promote networking and to assist staff in identifying you. Scientific Session Protocol Photography, audio or video recording of the scientific sessions, including poster session is not permitted. Social Media Policy To encourage the open communication of science, we would like to support the use of social media at this year’s conference. Please use the conference hashtag #GBD20. You will be notified at the start of a talk if a speaker does not wish their talk to be open. For posters, please check with the presenter to obtain permission. Internet Access Wifi access instructions: Join the ‘ConferenceGuest’ network Enter your name and email address to register Click ‘continue’ – this will provide a few minutes of wifi access and send an email to the registered email address Open the registration email, follow the link ‘click here’ and confirm the address is valid Enjoy seven days’ free internet access! Repeat these steps on up to 5 devices to link them to your registered email address Presentations Please provide an electronic copy of your talk to a member of the AV team who will be based in the meeting room. Poster Sessions Posters will be displayed throughout the conference. Please display your poster in the Conference Centre on arrival. There will be two poster sessions during the conference. Odd number poster assignments will be presenting in poster session 1, which takes place on Wednesday, 18 March at 18:00 – 19:30. Even number poster assignments will be presenting in poster session 2, which takes place on Thursday, 19 March at 18:00 – 19:30. The page number of your abstract in the abstract book indicates your assigned poster board number. An index of poster numbers appears in the back of this book. Conference Meals and Social Events Lunch and dinner will be served in the Hall, apart from on Lunch on Wednesday, 18 March when it will be served in the Conference Centre alongside registration. Please refer to the conference programme in this book as times will vary based on the daily scientific presentations. Please note there are no lunch or dinner facilities available outside of the conference times. All conference meals and social events are for registered delegates. Please inform the conference organiser if you are unable to attend the conference dinner. The Hall Bar (cash bar) will be open from 19:00 – 23:00 each day. 4 Dietary Requirements If you have advised us of any dietary requirements, you will find a coloured dot on your badge. Please make yourself known to the catering team and they will assist you with your meal request. If you have a gluten or nut allergy, we are unable to guarantee the non-presence of gluten or nuts in dishes, even if they are not used as a direct ingredient. This is due to gluten and nut ingredients being used in the kitchen. For Wellcome Genome Campus Conference Centre Guests Check in If you are staying on site at the Wellcome Genome Campus Conference Centre, you may check into your bedroom from 14:00. The Conference Centre reception is open 24 hours. Breakfast Your breakfast will be served in the Hall restaurant from 07:30 – 09:00. Telephone If you are staying on-site and would like to use the telephone in your room, you will need to contact the Reception desk (Ext. 5000) to have your phone line activated – they will require your credit card details to do so.
Recommended publications
  • Influencers on Thyroid Cancer Onset: Molecular Genetic Basis
    G C A T T A C G G C A T genes Review Influencers on Thyroid Cancer Onset: Molecular Genetic Basis Berta Luzón-Toro 1,2, Raquel María Fernández 1,2, Leticia Villalba-Benito 1,2, Ana Torroglosa 1,2, Guillermo Antiñolo 1,2 and Salud Borrego 1,2,* 1 Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; [email protected] (B.L.-T.); [email protected] (R.M.F.); [email protected] (L.V.-B.); [email protected] (A.T.); [email protected] (G.A.) 2 Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain * Correspondence: [email protected]; Tel.: +34-955-012641 Received: 3 September 2019; Accepted: 6 November 2019; Published: 8 November 2019 Abstract: Thyroid cancer, a cancerous tumor or growth located within the thyroid gland, is the most common endocrine cancer. It is one of the few cancers whereby incidence rates have increased in recent years. It occurs in all age groups, from children through to seniors. Most studies are focused on dissecting its genetic basis, since our current knowledge of the genetic background of the different forms of thyroid cancer is far from complete, which poses a challenge for diagnosis and prognosis of the disease. In this review, we describe prevailing advances and update our understanding of the molecular genetics of thyroid cancer, focusing on the main genes related with the pathology, including the different noncoding RNAs associated with the disease.
    [Show full text]
  • Genome-Wide Analysis of Host-Chromosome Binding Sites For
    Lu et al. Virology Journal 2010, 7:262 http://www.virologyj.com/content/7/1/262 RESEARCH Open Access Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) Fang Lu1, Priyankara Wikramasinghe1, Julie Norseen1,2, Kevin Tsai1, Pu Wang1, Louise Showe1, Ramana V Davuluri1, Paul M Lieberman1* Abstract The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP- Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A con- sensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, sug- gesting that some of these sites are indirectly bound by EBNA1.
    [Show full text]
  • RET/PTC Activation in Papillary Thyroid Carcinoma
    European Journal of Endocrinology (2006) 155 645–653 ISSN 0804-4643 INVITED REVIEW RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture Massimo Santoro1, Rosa Marina Melillo1 and Alfredo Fusco1,2 1Istituto di Endocrinologia ed Oncologia Sperimentale del CNR ‘G. Salvatore’, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, University ‘Federico II’, Via S. Pansini, 5, 80131 Naples, Italy and 2NOGEC (Naples Oncogenomic Center)–CEINGE, Biotecnologie Avanzate & SEMM, European School of Molecular Medicine, Naples, Italy (Correspondence should be addressed to M Santoro; Email: [email protected]) Abstract Papillary thyroid carcinoma (PTC) is frequently associated with RET gene rearrangements that generate the so-called RET/PTC oncogenes. In this review, we examine the data about the mechanisms of thyroid cell transformation, activation of downstream signal transduction pathways and modulation of gene expression induced by RET/PTC. These findings have advanced our understanding of the processes underlying PTC formation and provide the basis for novel therapeutic approaches to this disease. European Journal of Endocrinology 155 645–653 RET/PTC rearrangements in papillary growth factor, have been described in a fraction of PTC thyroid carcinoma patients (7). As illustrated in figure 1, many different genes have been found to be rearranged with RET in The rearranged during tansfection (RET) proto-onco- individual PTC patients. RET/PTC1 and 3 account for gene, located on chromosome 10q11.2, was isolated in more than 90% of all rearrangements and are hence, by 1985 and shown to be activated by a DNA rearrange- far, the most frequent variants (8–11). They result from ment (rearranged during transfection) (1).As the fusion of RET to the coiled-coil domain containing illustrated in Fig.
    [Show full text]
  • RET Gene Fusions in Malignancies of the Thyroid and Other Tissues
    G C A T T A C G G C A T genes Review RET Gene Fusions in Malignancies of the Thyroid and Other Tissues Massimo Santoro 1,*, Marialuisa Moccia 1, Giorgia Federico 1 and Francesca Carlomagno 1,2 1 Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; [email protected] (M.M.); [email protected] (G.F.); [email protected] (F.C.) 2 Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy * Correspondence: [email protected] Received: 10 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer. Keywords: kinase; tyrosine kinase inhibitor; targeted therapy; thyroid cancer 1. The RET Receptor RET (REarranged during Transfection) was initially isolated as a rearranged oncoprotein upon the transfection of a human lymphoma DNA [1].
    [Show full text]
  • RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients Shumei Kato1, Vivek Subbiah2, Erica Marchlik3, Sheryl K
    Published OnlineFirst September 28, 2016; DOI: 10.1158/1078-0432.CCR-16-1679 Personalized Medicine and Imaging Clinical Cancer Research RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients Shumei Kato1, Vivek Subbiah2, Erica Marchlik3, Sheryl K. Elkin3, Jennifer L. Carter3, and Razelle Kurzrock1 Abstract Purpose: Aberrations in genetic sequences encoding the tyrosine (52/88)], cell cycle–associated genes [39.8% (35/88)], the PI3K kinase receptor RET lead to oncogenic signaling that is targetable signaling pathway [30.7% (27/88)], MAPK effectors [22.7% with anti-RET multikinase inhibitors. Understanding the compre- (20/88)], or other tyrosine kinase families [21.6% (19/88)]. hensive genomic landscape of RET aberrations across multiple RET fusions were mutually exclusive with MAPK signaling cancers may facilitate clinical trial development targeting RET. pathway alterations. All 72 patients harboring coaberrations Experimental Design: We interrogated the molecular portfolio had distinct genomic portfolios, and most [98.6% (71/72)] of 4,871 patients with diverse malignancies for the presence of had potentially targetable coaberrations with either an FDA- RET aberrations using Clinical Laboratory Improvement Amend- approved or an investigational agent. Two cases with lung ments–certified targeted next-generation sequencing of 182 or (KIF5B-RET) and medullary thyroid carcinoma (RET M918T) 236 gene panels. thatrespondedtoavandetanib(multikinase RET inhibitor)- Results: Among diverse cancers, RET aberrations were iden- containing regimen are shown. tified in 88 cases [1.8% (88/4, 871)], with mutations being Conclusions: RET aberrations were seen in 1.8% of diverse the most common alteration [38.6% (34/88)], followed cancers, with most cases harboring actionable, albeit dis- by fusions [30.7% (27/88), including a novel SQSTM1-RET] tinct, coexisting alterations.
    [Show full text]
  • Identification and Characterization of RET Fusions in Advanced Colorectal Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 30 Identification and characterization of RET fusions in advanced colorectal cancer Anne-France Le Rolle1,2,*, Samuel J. Klempner1,2,*, Christopher R. Garrett3, Tara Seery1,2, Eric M. Sanford4, Sohail Balasubramanian4, Jeffrey S. Ross4,5, Philip J. Stephens4, Vincent A. Miller4, Siraj M. Ali4 and Vi K. Chiu1,2 1 Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA, USA 2 Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA, USA 3 The Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA 4 Foundation Medicine Inc., Cambridge, MA, USA 5 Albany Medical College, Albany, NY, USA * These authors have contributed equally to this work Correspondence to: Vi K. Chiu, email: [email protected] Keywords: RET fusion kinase, RET kinase inhibitor, comprehensive genomic profiling, colorectal cancer Received: April 02, 2015 Accepted: May 12, 2015 Published: May 30, 2015 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT There is an unmet clinical need for molecularly directed therapies available for metastatic colorectal cancer. Comprehensive genomic profiling has the potential to identify actionable genomic alterations in colorectal cancer. Through comprehensive genomic profiling we prospectively identified 6 RET fusion kinases, including two novel fusions of CCDC6-RET and NCOA4-RET, in metastatic colorectal cancer (CRC) patients. RET fusion kinases represent a novel class of oncogenic driver in CRC and occurred at a 0.2% frequency without concurrent driver mutations, including KRAS, NRAS, BRAF, PIK3CA or other fusion tyrosine kinases.
    [Show full text]
  • Mouse Ccdc6 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Ccdc6 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Ccdc6 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Ccdc6 gene (NCBI Reference Sequence: NM_001111121 ; Ensembl: ENSMUSG00000048701 ) is located on Mouse chromosome 10. 9 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 9 (Transcript: ENSMUST00000147545). Exon 5 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Ccdc6 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-24G13 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 5 starts from about 47.33% of the coding region. The knockout of Exon 5 will result in frameshift of the gene. The size of intron 4 for 5'-loxP site insertion: 1986 bp, and the size of intron 5 for 3'-loxP site insertion: 5758 bp. The size of effective cKO region: ~661 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 5 9 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Ccdc6 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • NSCLC Mutated Isoforms of CCDC6 Affect the Intracellular Distribution Of
    cancers Article NSCLC Mutated Isoforms of CCDC6 Affect the Intracellular Distribution of the Wild Type Protein Promoting Cisplatinum Resistance and PARP Inhibitors Sensitivity in Lung Cancer Cells Aniello Cerrato *, Francesco Morra, Imma Di Domenico and Angela Celetti * Institute for the Experimental Endocrinology and Oncology “Gaetano Salvatore”, Italian National Council of Research, Via S. Pansini 5, 80131 Naples, Italy; [email protected] (F.M.); [email protected] (I.D.D.) * Correspondence: [email protected] (A.C.); [email protected] (A.C.) Received: 21 November 2019; Accepted: 17 December 2019; Published: 21 December 2019 Abstract: CCDC6 is implicated in cell cycle checkpoints and DNA damage repair by homologous recombination (HR). In NSCLC, CCDC6 is barely expressed in about 30% of patients and CCDC6 gene rearrangements with RET and ROS kinases are detected in about 1% of patients. Recently, CCDC6 point-mutations naming E227K, S351Y, N394Y, and T462A have been identified in primary NSCLC. In this work, we analyze the effects exerted by the CCDC6 mutated isoforms on lung cancer cells. By pull-down experiments and immunofluorescence, we evaluated the biochemical and morphological effects of CCDC6 lung-mutants on the CCDC6 wild type protein. By using two HR-reporter assays, we analyzed the effect of CCDC6 lung-mutants in perturbing CCDC6 physiology in the HR process. Finally, by cell-titer assay, we evaluated the response to the treatment with different drugs in lung cancer cells expressing CCDC6 mutants. This work shows that the CCDC6 mutated and truncated isoforms, identified so far in NSCLC, affected the intracellular distribution of the wild type protein and impaired the CCDC6 function in the HR process, ultimately inducing cisplatinum resistance and PARP-inhibitors sensitivity in lung cancer cells.
    [Show full text]
  • Accelerating Functional Gene Discovery in Osteoarthritis
    The Jackson Laboratory The Mouseion at the JAXlibrary Faculty Research 2021 Faculty Research 1-20-2021 Accelerating functional gene discovery in osteoarthritis. Natalie C Butterfield Katherine F Curry Julia Steinberg Hannah Dewhurst Davide Komla-Ebri See next page for additional authors Follow this and additional works at: https://mouseion.jax.org/stfb2021 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Authors Natalie C Butterfield, Katherine F Curry, Julia Steinberg, Hannah Dewhurst, Davide Komla-Ebri, Naila S Mannan, Anne-Tounsia Adoum, Victoria D Leitch, John G Logan, Julian A Waung, Elena Ghirardello, Lorraine Southam, Scott E Youlten, J Mark Wilkinson, Elizabeth A McAninch, Valerie E Vancollie, Fiona Kussy, Jacqueline K White, Christopher J Lelliott, David J Adams, Richard Jacques, Antonio C Bianco, Alan Boyde, Eleftheria Zeggini, Peter I Croucher, Graham R Williams, and J H Duncan Bassett ARTICLE https://doi.org/10.1038/s41467-020-20761-5 OPEN Accelerating functional gene discovery in osteoarthritis Natalie C. Butterfield 1, Katherine F. Curry1, Julia Steinberg 2,3,4, Hannah Dewhurst1, Davide Komla-Ebri 1, Naila S. Mannan1, Anne-Tounsia Adoum1, Victoria D. Leitch 1, John G. Logan1, Julian A. Waung1, Elena Ghirardello1, Lorraine Southam2,3, Scott E. Youlten 5, J. Mark Wilkinson 6,7, Elizabeth A. McAninch 8, Valerie E. Vancollie 3, Fiona Kussy3, Jacqueline K. White3,9, Christopher J. Lelliott 3, David J. Adams 3, Richard Jacques 10, Antonio C. Bianco11, Alan Boyde 12, ✉ ✉ Eleftheria Zeggini 2,3, Peter I. Croucher 5, Graham R. Williams 1,13 & J. H. Duncan Bassett 1,13 1234567890():,; Osteoarthritis causes debilitating pain and disability, resulting in a considerable socio- economic burden, yet no drugs are available that prevent disease onset or progression.
    [Show full text]
  • Pattern Discovery and Cancer Gene Identification in Integrated Cancer
    Pattern discovery and cancer gene identification in integrated cancer genomic data Qianxing Moa,b, Sijian Wangc, Venkatraman E. Seshana, Adam B. Olshend, Nikolaus Schultze, Chris Sandere, R. Scott Powersf, Marc Ladanyig, and Ronglai Shena,1 aDepartment of Epidemiology and Biostatistics, eComputational Biology Program, and gDepartment of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan–Kettering Cancer Center, New York, NY 10065; bDepartment of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030; cDepartment of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53792; dDepartment of Epidemiology and Biostatistics, University of California, San Francisco, CA 94107; and fCancer Genome Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11797 Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved December 19, 2012 (received for review May 27, 2012) Large-scale integrated cancer genome characterization efforts in- integrates the information to extract biological principles from the cluding the cancer genome atlas and the cancer cell line encyclo- massive amount of data to provide useful insights for advancing pedia have created unprecedented opportunities to study cancer diagnostic, prognostic, and therapeutic strategies. biology in the context of knowing the entire catalog of genetic In a previous publication (8), we proposed an integrative alterations. A clinically important challenge is to discover cancer clustering framework
    [Show full text]
  • Systematic Investigation of Promoter Substitutions Resulting from Somatic
    www.nature.com/scientificreports OPEN Systematic investigation of promoter substitutions resulting from somatic intrachromosomal structural alterations in diverse human cancers Babak Alaei‑Mahabadi, Kerryn Elliott & Erik Larsson* One of the ways in which genes can become activated in tumors is by somatic structural genomic rearrangements leading to promoter swapping events, typically in the context of gene fusions that cause a weak promoter to be substituted for a strong promoter. While identifable by whole genome sequencing, limited availability of this type of data has prohibited comprehensive study of the phenomenon. Here, we leveraged the fact that copy number alterations (CNAs) arise as a result of structural alterations in DNA, and that they may therefore be informative of gene rearrangements, to pinpoint recurrent promoter swapping at a previously intractable scale. CNA data from nearly 9500 human tumors was combined with transcriptomic sequencing data to identify several cases of recurrent activating intrachromosomal promoter substitution events, either involving proper gene fusions or juxtaposition of strong promoters to gene upstream regions. Our computational screen demonstrates that a combination of CNA and expression data can be useful for identifying novel fusion events with potential driver roles in large cancer cohorts. Copy number alterations (CNAs) signifcantly contribute to cancer development, usually by causing oncogene amplifcation or tumor suppressor deletion 1–3. Well-characterized examples of cancer driver events involving CNAs are CDKN2A4 and PTEN5 deletions or MYC6, EGFR7 and ERBB22,7 amplifcations. With the availability of high-resolution SNP arrays, several studies have comprehensively investigated these events in cancer, mainly focusing on gene amplitude changes8,9. CNAs are a consequence of changes in chromosome structure 10.
    [Show full text]
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
    [Show full text]